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ABSTRACT: Spatially variable wave breaking generates vorticity in the surfzone, leading to

transient rip currents (TRC), driving exchange between the surfzone and inner shelf. However,

breaking-wave vorticity forcing is poorly understood, including its dependence on wave dissipation,

directional spread, and beach slope. Using 72 Boussinesq model simulations on a planar beach,

we examine the alongshore, cross- and time-lagged covariance of the vorticity forcing. The

covariance is decomposed into separable functions, whose form and associated four dimensional

parameters (forcing standard deviation �̂�0, peak alongshore wavenumber �̂�𝑦0, propagation speed

𝑐, and decorrelation time-scale 𝜏) are derived from the simulations. The alongshore wavenumber

spectrum is represented by a Weibull distribution. In a crest-following reference frame, the time-

lagged covariance decays exponentially. The cross-crest lagged covariance changes sign as seen

in example vorticity forcing. Nondimensional versions of �̂�0 and �̂�𝑦0, depending on water depth,

beach slope, and wave dissipation, scale well and increase with breakpoint wave directional spread

𝜎𝜃𝑏 up to 13.5◦. The shallow water phase speed scales 𝑐. Breakpoint significant wave height and

gravity nondimensionalize 𝜏, and the nondimensional 𝜏 depends upon the normalized vorticity

forcing magnitude �̂�0/�̂�max. With focus upon covariance, we lose phase information on the

alongshore wave-crest coherence. The simulations are limited in parameter space. We present

a pathway for parameterizing vorticity forcing. As wave-averaged (WA) models do not include

vorticity forcing, a parameterization could enable WA model study of interacting TRC and inner

shelf processes over large regions.
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SIGNIFICANCE STATEMENT: Rip currents are crucial for cross-shore exchange of larvae,27

pathogens, and sediment, thus playing a key role in human and ecosystem health. Breaking-28

wave generates vorticity in the surfzone, leading to transient rip currents (TRC). However, the29

breaking-wave vorticity forcing is poorly understood and is often not represented in models that30

span the surfzone and inner shelf. The purpose of this study is to better understand breaking-wave31

vorticity forcing. Our finding suggests that the forcing statistics can be predicted using beach32

slope, wave dissipation, and other bulk wave properties. The study points to a pathway towards a33

parameterization of breaking-wave vorticity forcing that could enable model study of interacting34

TRC and inner shelf processes over large regions.35

1. Introduction36

The surfzone is the nearshore region where depth-limited wave breaking occurs. Exchange of37

pollutants, larvae, and sediment across the surfzone is important for human health (e.g., Boehm38

et al. 2015), ecosystem dynamics (e.g., Morgan et al. 2018), and beach erosion (e.g., Masselink39

et al. 2008). The surfzone is strongly stirred by horizontal eddies (vertical vorticity), particularly40

on alongshore uniform beaches (Spydell et al. 2007; Clark et al. 2010; Baker et al. 2021), driving41

exchange. Surfzone horizontal eddies are driven by finite-crest length wave breaking, generating42

vertical vorticity (Peregrine 1998; Clark et al. 2012), which then coalesce, likely due to inverse43

energy cascade (Spydell and Feddersen 2009; Elgar and Raubenheimer 2020; Elgar et al. 2023),44

leading to offshore-directed transient rip currents (TRC) offshore (Suanda and Feddersen 2015). On45

alongshore uniform beaches, TRCs are the principal mechanism of surfzone to inner-shelf exchange46

(Hally-Rosendahl et al. 2015; Suanda and Feddersen 2015; Hally-Rosendahl and Feddersen 2016;47

Kumar and Feddersen 2017a; Grimes et al. 2020; Grimes and Feddersen 2021).48

The generation of surfzone vertical vorticity depends on along-crest gradients of energy dis-49

sipation on individual waves (Peregrine 1998). Thus, a model that resolves individual waves50

(wave-resolving, WR) is required to represent energy dissipation gradients. Boussinesq type51

(e.g., depth-integrated) models are wave-resolving and can represent this vorticity generation52

mechanism (e.g., Chen et al. 1999, 2003; Johnson and Pattiaratchi 2006; Spydell and Feddersen53

2009; Feddersen 2014), which, on alongshore uniform beaches, depends critically on wave direc-54

tional spread 𝜎𝜃 (Spydell and Feddersen 2009; O’Dea et al. 2021; Nuss et al. 2025). Boussinesq55
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models have been shown to reproduce low-frequency eddy statistics and the cross-shore structure56

of very low frequency rotational velocity observed in field (Feddersen et al. 2011) and laboratory57

(Nuss et al. 2025) settings suggesting the modeled vorticity generation mechanism is accurate.58

However, Boussinesq models are limited on the inner-shelf because they do not represent the59

vertical variation of circulation, density, and tracers. Reynolds-Averaged Navier–Stokes (RANS)60

type models (e.g., CROCO, Treillou et al. 2025) are both depth-resolving and wave-resolving and61

can represent this vorticity generation mechanism (Marchesiello et al. 2021; Treillou et al. 2025).62

However, RANS type models are computationally expensive and are limited in the domain size.63

Wave-averaged (WA) models have been widely used in a variety of nearshore applications64

(e.g., Uchiyama et al. 2017; Wu et al. 2021, and many others). These models use a wave action65

equation to represent the effects of waves on circulation through radiation stress (Kumar et al.66

2011) or the vortex force (Kumar et al. 2012). Although, these models can represent the effects67

of wave groups (Olabarrieta et al. 2023), they cannot represent the finite-crest length vorticity68

generation mechanism that leads to transient rip currents. However, WA models such as COAWST69

(Kumar et al. 2012) have the advantage of resolving the vertical and include density effects. This70

is important for examination of the effects of Stokes drift (Lentz et al. 2008) and winds (Lentz and71

Fewings 2012; Horwitz and Lentz 2014), important cross-inner shelf exchange mechanisms. As72

resolving individual waves is not required, the WA models can have much longer time-steps than73

WR models and are thus more computationally efficient. WA models have been used to simulate74

30 km alongshore and 10 km cross-shore domains over months (Wu et al. 2020; Feddersen et al.75

2021).76

The effect of TRC on the inner shelf in both stratified and unstratified conditions is of particular77

interest, requiring a model that both resolves the vertical and resolves waves. One approach is to78

one-way couple a WR and a WA model, where the rotational component of the breaking-wave79

forcing (that generates vertical vorticity) is extracted from a WR model, and used as a time-80

dependent input body force in a WA model (Kumar and Feddersen 2017a). This approach results81

in similar WR (funwaveC) and WA (COAWST) model root-mean-square (rms) vorticity cross-shore82

profiles (Kumar and Feddersen 2017a) and has been used to study the effect of TRC on both the83

unstratified and stratified inner-shelf (Kumar and Feddersen 2017a,b,c; Grimes et al. 2020; Grimes84

and Feddersen 2021).85
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Yet, one-way coupling has significant disadvantages, requiring running both a WR and WA86

model for identical conditions and the laborious extraction of the rotational body force. Direct87

coupling is computationally inefficient. The WR model time-steps are on the order of Δ𝑡 = 10−2 s88

whereas WA time-steps are much larger (𝑂 (1) s). Typical WR grid sizes are Δ𝑥 ≈ 1 m which limits89

the alongshore domain size to 𝑂 (1) km. In contrast, alongshore regions spanning 10 km or more90

are of interest in coupled surfzone/shelf modeling studies (e.g., Kumar et al. 2015). A surfzone91

eddy generation parameterization for use with WA models would enable studies on inner-shelf92

effects of TRC relative to other realistic forcing mechanisms such as wind or internal tides.93

Aside from increasing with wave directional spread 𝜎𝜃 (O’Dea et al. 2021; Nuss et al. 2025),94

many details of breaking wave generated vorticity forcing are not well understood. Vorticity forcing95

is often associated with the ends of breaking-crests, the statistics of which have been studied in96

laboratory (Baker et al. 2023) and Boussinesq model (Nuss et al. 2025) contexts. Modeled vorticity97

forcing magnitude integrated over the surfzone has been shown to increase with𝜎𝜃 up to a maximum98

and subsequently decrease, likely due to a balance between larger total breaking-wave area at lower99

𝜎𝜃 and increased crest variability (crest ends) at high 𝜎𝜃 (Nuss et al. 2025). Nuss et al. (2025)100

used a bulk approach, averaging over the surfzone or the breaking wave region. The statistics of101

vorticity forcing such as the alongshore scales, temporal, and cross-shore scales at a particular102

cross-shore location in the surfzone are not well understood. In particular, these statistics can have103

dependence on bathymetry and the incident wave field, quantities inherent to a WA model. If such104

statistics and their dependencies were known, then a parameterization of breaking wave vorticity105

forcing for a WA model could be developed.106

Here, we examine the statistics of breaking wave vorticity forcing derived from a suite of 72107

Boussinesq model simulations with a focus on the lagged covariance of vorticity forcing that108

depends upon the cross-shore coordinate and the alongshore-, cross-shore, and time lags. The109

model configuration, the suite of simulations, and examples of the vorticity forcing are described110

in Section 2. In Section 3a, the vorticity forcing covariance is defined and decomposed into111

separable functions that depend on the various lags. The form of these functions and their asso-112

ciated dimensional parameters are derived from the simulations. We then examine the alongshore113

wavenumber spectra of vorticity forcing in Section 3b and focus upon the time- and cross-shore114

lagged covariance in Section 3c. In Section 4, the key dimensional parameters estimated in Section115
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Fig. 1. funwaveC schematic showing model bathymetry 𝑧 = −ℎ(𝑥) versus cross-shore coordinate 𝑥, where

𝑥 = 0 m is the still-water shoreline. The thin line at 𝑧 = 0 m indicates the still water level. A wide sponge layer

is located at the offshore end of the model domain (dark shaded region). A narrow (5 m) sponge layer is on the

onshore end at the top of the beach (not indicated). The wavemaker (light shaded region) radiates waves onshore

and offshore.
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3 are nondimensionalized and scaled as a function of nondimensional parameters. A discussion116

of the implications of this study and a path to implementation of the parameterized breaking wave117

vorticity forcing follows in section 5.118

2. Methods119

a. funwaveC model and configuration120

The open-source wave-resolving Boussinesq model funwaveC has been extensively used to study126

surfzone drifter and tracer dispersion, surfzone eddies, transient rip currents, and shoreline runup127

(e.g., Spydell and Feddersen 2009; Feddersen et al. 2011; Clark et al. 2011; Guza and Feddersen128

2012; Feddersen 2014; Suanda and Feddersen 2015; Hally-Rosendahl and Feddersen 2016). The129

time-dependent Nwogu (1993) model equations for horizontal velocity u and free-surface 𝜂 are130

similar to the nonlinear shallow-water equations and include higher order dispersive terms, bottom131

and lateral friction, wave-generation, and breaking-wave forcing terms. Model details are found132

elsewhere (Feddersen et al. 2011; Suanda et al. 2016).133
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Germane to the topic of surfzone vorticity generation, the horizontal momentum equation for134

horizontal velocity u has schematic terms135

𝜕u
𝜕𝑡

+ . . . = . . .+Fbr , (1)

where Fbr is the breaking-wave force represented as a Newtonian damping (Kennedy et al. 2000),136

Fbr = (ℎ+𝜂)−1∇ · [𝜈br(ℎ+𝜂)∇u], (2)

with the Lynett (2006) eddy viscosity 𝜈br, mean water depth ℎ and the instantaneous free-surface137

elevation 𝜂. The Fbr has both an irrotational component that drives wave setup, and a rotation138

component (F(rot)
br ) that drives sheared surfzone alongshore currents and eddies. The generation of139

vertical vorticity 𝜔 can be written schematically as140

𝜕𝜔

𝜕𝑡
= ...+∇×Fbr, (3)

where the dot product with the vertical unit vector ẑ is implied throughout on the right-hand-141

side. On an alongshore uniform bathymetry, non-zero ∇×Fbr is generated with finite-crest length142

breaking of a directionally spread wave field (Peregrine 1998; Spydell and Feddersen 2009; Clark143

et al. 2012).144

The statistics of ∇×Fbr are examined with 72 idealized funwaveC model simulations that span145

wave and bathymetric slope properties (Suanda and Feddersen 2015). The bathymetry is alongshore146

uniform with alongshore domain length of 1200 m. The cross-shore domain length varies from 550147

m to 784 m. The bathymetry has an offshore flat region (depth, ℎ = 9 m) where waves are generated148

and a planar slope region extending above the mean water line allowing wave runup (Fig. 1). Grid149

resolution is 1 m in both cross (𝑥) and alongshore (𝑦) coordinates. The wavemaker (Suanda et al.150

2016) generates directionally spread random waves from a Pierson-Moskovitz spectrum (Pierson151

and Moskowitz 1964) with a specific significant wave height 𝐻s and peak period 𝑇p and mean152

incidence angle 𝜃 = 0◦. The normally incident waves have directional spread 𝜎𝜃 (Kuik et al. 1988)153

with a Gaussian shape that is uniform at all frequencies. An offshore 100 m wide sponge layer154
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absorbs the outgoing wave energy (Fig. 1). At the onshore boundary a 5-m wide sponge layer at155

the top of the beach is applied.156

The 72 model simulations span a range of beach slopes (𝛽 = 0.02,0.03,0.04) and wave parameters:157

significant wave height (𝐻s = 0.5,0.8,1.1 m), peak period (𝑇p = 8,14 s), and wave directional158

spread (𝜎𝜃 = 2.5◦,5◦,10◦,20◦). The peak period variation represents typical sea (𝑇p = 8 s) and159

swell (𝑇p = 14 s) cases. Simulations are run for 7800 s with output at 1 Hz. The last 4800 s is160

used for analysis once mean square vorticity has equilibrated (Feddersen 2014). Standard analyses161

(Kuik et al. 1988) are used to estimate 𝐻s(𝑥) and bulk 𝜎𝜃 (𝑥). The surfzone width 𝐿SZ is defined162

as the distance from the shoreline to the 𝑥 location where maximum significant wave 𝐻s occurs.163

We define directional spread at 𝑥 = −𝐿SZ as 𝜎𝜃𝑏. The Iribarren number at breaking Irb, defined as164

Irb =
𝛽√︁

𝐻𝑠,∞/𝜆𝑏
, (4)

where 𝐻𝑠,∞ is the deep water 𝐻𝑠 and 𝜆𝑏 is the wavelength at 𝑥 = −𝐿SZ, varies from 0.13–0.44.165

Throughout, we define skill between two variables 𝜙 and 𝜓 as 1− ⟨(𝜙−𝜓)2⟩/Var(𝜙) where Var166

represents the variance.167

b. Example Model Simulation168

An illustrative funwaveC simulation features incident random, directionally-spread waves that169

propagate shoreward, shoal, begin breaking near 𝑥 = −175 m and dissipate as they approach the170

shoreline (Fig. 2). The model parameters here are 𝛽 = 0.02, 𝐻s = 1.1 m, 𝑇p = 8 s, and 𝜎𝜃 = 20◦.171

(horizontal dashed line in Fig. 2), and 𝐿SZ = 172 m in the example. Similar to previous wave-172

resolving simulations (e.g., Spydell and Feddersen 2009; Feddersen et al. 2011; Feddersen 2014;173

Suanda and Feddersen 2015; Wei et al. 2017; Nuss et al. 2025), the directionally spread wave field174

results in finite crest length wave breaking generating a rich surfzone vorticity field with magnitude175

generally varying ±0.1 s−1 that spans a range of scales (Fig. 2a). Seaward of the surfzone, vorticity176

is weaker and at larger length-scales.177

We next examine vorticity forcing by the breaking waves. Within the surfzone (𝑥 > −𝐿SZ), the184

curl of breaking wave forcing ∇×Fbr is non-zero in narrow cross-shore bands associated with the185

non-zero eddy viscosity due to wave breaking with magnitude generally varying ±0.3 s−2 (Fig. 2b).186
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Fig. 2. Model snapshots of (a) vertical vorticity (𝜔) and (b) breaking-wave vorticity forcing (∇×Fbr) versus

cross-shore (𝑥) and alongshore (𝑦) coordinates. (c) Hovmöller diagram of ∇×Fbr as a function of cross-shore

(𝑥) and time (𝑡) at the cross-shore transect shown in vertical dash-dotted black line in panel b. Model parameters

are beach slope 𝛽 = 0.02 and incident wave parameters: 𝐻𝑠 = 1.1m, 𝑇𝑝 = 8s, and 𝜎𝜃 = 20◦. The horizontal black

dashed line indicates the outer limit of the surfzone 𝑥 = −𝐿SZ, where 𝐿SZ = 172 m. Dashed box in (b) highlights

an individual breaking wave crest shown in Fig. 12.
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This ∇×Fbr pattern is similar to models of a laboratory surfzone Nuss et al. (2025). The ∇×Fbr187

varies significantly in the cross-shore direction. In the outer surfzone (𝑥 < −0.5𝐿SZ), wave breaking188

has just begun and the alongshore length of breaking wave crests are relatively short (Fig. 2b). In189

contrast, within the inner surfzone (𝑥 > −0.5𝐿SZ), the length of breaking wave crests is longer as190
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more of the wave crest has broken suggesting a larger net ∇×Fbr. We next examine the time- and191

cross-shore variability of ∇×Fbr in (Fig. 2). Non-zero ∇×Fbr occurs in narrow cross-shore and192

temporal bands that propagate onshore with decreasing speed in shallower water (Fig. 2c). The193

occurrence frequency of non-zero ∇×Fbr bands is consistent with the model 𝑇p = 8 s. The ∇×Fbr194

bands begin generally between 𝑥 = −𝐿SZ and 𝑥 = −(2/3)𝐿SZ as not every random wave breaks at195

the same location. Within each band, ∇×Fbr varies relatively rapidly as the breaking wave crest196

propagates onshore.197

We next highlight the effect of bathymetric slope and wave directional spread on the standard204

deviation of vorticity and vorticity forcing using simulations with the same incident 𝐻s and 𝑇p205

(Fig. 3). In all cases, 𝐻s shoals to a maximum (defining 𝐿SZ), slowly decreases in the outer surfzone206

and then rapidly decreases in the inner-surfzone (Fig. 3a,b). For fixed 𝛽, the cross-shore variation207

of 𝐻s (and 𝐿SZ) is essentially independent of 𝜎𝜃 . Consistent with previous modeling studies208

(e.g., Spydell and Feddersen 2009), the standard deviation of vorticity (std(𝜔)) is relatively weak209

seaward of the surfzone, increases onshore to a maximum in the inner-surfzone, decays towards the210

shoreline, and is stronger for increasing 𝜎𝜃 up to 20◦ (Fig. 3c,d). The increase in std(𝜔) with 𝜎𝜃 has211

also been observed in field studies (e.g., Dooley et al. 2024). Onshore of 𝑥 = −𝐿SZ, the standard212

deviation of ∇×Fbr (std(∇×Fbr)) increases rapidly to an inner-surfzone maximum (e.g., Johnson213

and Pattiaratchi 2006), with a subsequent decay towards the shoreline (Fig. 3e,f). As with std(𝜔),214

std(∇×Fbr) also is larger with increasing 𝜎𝜃 which further emphasizes the explicit role of 𝜎𝜃 in215

surfzone vorticity generation (Spydell and Feddersen 2009; Feddersen 2014; O’Dea et al. 2021;216

Nuss et al. 2025). Steeper bathymetry generally results in larger std(∇×Fbr) and std(𝜔) (Fig. 3217

left panels and right panels), likely due to the more intense wave dissipation with the larger 𝛽.218

3. The covariance of vorticity forcing219

a. Defining the covariance of vorticity forcing220

To understand how the statistics of ∇ × Fbr are affected by the incident wave field and the221

bathymetry, we focus upon the second order statistic of the lagged covariance of the breaking-wave222

vorticity forcing ∇×Fbr. This covariance will be made up of separable functions (discussed below)223

that have key defining parameters that will be scaled by the wave and bathymetry statistics. For224
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notational convenience, the vorticity forcing term is written as225

𝐺 (𝑥, 𝑦, 𝑡) = ∇×Fbr. (5)

Because the forcing is rotational, for mean normally-incident waves, the mean is zero, ⟨𝐺⟩ = 0226

where ⟨·⟩ indicates time and along-shore averaging. With the assumption that the statistics are227
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stationary in time and in the alongshore (𝑦), the space and time-lagged covariance of 𝐺 is 𝐶𝐺228

𝐶𝐺 (𝑥,Δ𝑥,Δ𝑦,Δ𝑡) = ⟨𝐺 (𝑥, 𝑦, 𝑡)𝐺 (𝑥 +Δ𝑥, 𝑦 +Δ𝑦, 𝑡 +Δ𝑡)⟩ . (6)

We now assume that the 𝑥, Δ𝑦, and (Δ𝑥,Δ𝑡) dependence of 𝐶𝐺 can be expressed as the product of229

separable functions of the form230

𝐶𝐺 (𝑥,Δ𝑥,Δ𝑦,Δ𝑡) = 𝐺0(𝑥)𝐺0(𝑥 +Δ𝑥)𝐶𝑌 (Δ𝑦;𝑥)𝐶𝑋𝑇 (Δ𝑥,Δ𝑡;𝑥), (7)

where 𝐺0(𝑥) is cross-shore dependent standard deviation of vorticity forcing magnitude (𝐺0 =231

⟨𝐺2⟩1/2), 𝐶𝑌 is the alongshore lagged (Δ𝑦) correlation, and 𝐶𝑋𝑇 is the time- (Δ𝑡) and cross-shore232

lagged (Δ𝑥) correlation. Note that 𝐶𝑋𝑇 = 1 at Δ𝑥 = 0 and Δ𝑡 = 0 and 𝐶𝑌 = 1 at Δ𝑦 = 0. Next, a233

Fourier transform of 𝐶𝐺 (7) in Δ𝑦 yields234

F [𝐶𝐺 (𝑥,Δ𝑥,Δ𝑦,Δ𝑡)] = 𝐺0(𝑥)𝐺0(𝑥 +Δ𝑥)𝑆𝑌 (𝑘𝑦;𝑥)𝐶𝑋𝑇 (Δ𝑥,Δ𝑡;𝑥), (8)

where 𝑘𝑦 is the alongshore wavenumber and 𝑆𝑌 (𝑘𝑦) is the normalized alongshore wavenumber235

spectra of ∇×Fbr so that at all 𝑥,236 ∫
𝑆𝑌 (𝑘𝑦) d𝑘𝑦 = 1,

integrated over all 𝑘𝑦. Note with the above definition, the vorticity forcing alongshore wavenumber237

spectra is238

𝑆∇×Fbr (𝑘𝑦, 𝑥) = 𝐺2
0(𝑥) 𝑆𝑌 (𝑘𝑦;𝑥). (9)

The function 𝐶𝑋𝑇 (Δ𝑥,Δ𝑡;𝑥) and 𝑆𝑌 (𝑘𝑦;𝑥) will depend parametrically on quantities that depend on239

𝑥 such as water depth ℎ(𝑥) or directional spread 𝜎𝜃 (𝑥), e.g., 𝑆𝑌 (𝑘𝑦;𝜎𝜃 (𝑥), . . .). These parametric240

dependencies will be derived from the modeled ∇×Fbr.241

b. Nondimensionalizing and fitting the alongshore wavenumber spectra of vorticity forcing242

We now examine the alongshore wavenumber spectra 𝑆∇×Fbr (𝑘𝑦), yielding insight into 𝐺0 and243

𝑆𝑌 (9). To estimate the alongshore wavenumber spectra at a cross-shore location, at each time step,244

∇×Fbr is Fourier transformed in 𝑦 and the 𝑆∇×Fbr is estimated by averaging the square Fourier245
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transform magnitude over time. The fundamental wavenumber is 8.33×10−4 m−1 and the Nyquist246

wavenumber is 0.5 m−1. The spectra is then interpolated on to a logarithmically-varying 𝑘𝑦, i.e.,247

𝑘𝑦 ∈ [10−3.08, 10−0.6]m−1, with a 0.001 increment in the exponent. The interpolated model spectra248

are then smoothed with a moving average, whose window length increases logarithmically with249

wavenumber, yielding 𝑆∇×Fbr (𝑘𝑦). The variable window length increases degrees of freedom at250

large wavenumbers where the spectra can be noisy, yet preserves low wavenumber spectra shape.251

This interpolation and running average increases the smallest resolved 𝑘𝑦 to 0.0017 m−1.252

The model 𝑆∇×Fbr (𝑘𝑦) for all simulations and at five cross-shore locations (𝑥/𝐿SZ ∈253

[−0.75,−0.625,−0.5,−0.325,−0.25]) are shown in (Fig. 4a). The 𝑆∇×Fbr peak magnitude spans254

three order of magnitude, indicating significant variation in forcing magnitude. The spectra levels255

are smaller in the outer surfzone and increase in the inner-surfzone (black to yellow in Fig. 4a),256

consistent with the variation of std(∇ ×Fbr) (Fig. 3e,f). The spectra are relatively flat at low257

wavenumber and peak between 0.02 m−1 and 0.1 m−1, with peak wavenumber 𝑘𝑦0 that increases258

towards shore. This indicates that vorticity forcing alongshore length-scales vary with 𝑥. At higher259

wavenumber, the spectra decreases. The wavenumber dependence of 𝑆∇×Fbr at specific 𝑥-locations260

is similar to the surfzone-averaged 𝑆∇×Fbr from previous model studies on alongshore uniform261

bathymetries (Feddersen 2014; O’Dea et al. 2021).262

A functional form that represents 𝑆∇×Fbr with a reduced number of parameters is needed to269

compactly describe 𝑆∇×Fbr and develop scalings for it. The model spectra resemble a Weibull270

distribution that is described with three parameters. Thus, at each cross-shore location (𝑥), the271

alongshore wavenumber spectra are fit to a Weibull functional form of272

𝑆WB(𝑥, 𝑘𝑦) = 𝑆0(𝑥)
𝜇

𝜆(𝑥)𝜇 𝑘
𝜇−1
𝑦 exp[−(𝑘𝑦/𝜆(𝑥))𝜇], (10)

where 𝑆0(𝑥) and 𝜆(𝑥) are fit-parameters. The parameter 𝜇 is fixed over all simulations and cross-273

shore locations, and is discussed below. Note with 𝜇 = 1, the Weibull functional form in (10)274

becomes exponential distribution, and 𝜇 = 2 corresponds to Rayleigh distribution. In addition,275

with an accurate fit, 𝑆0 = 𝐺2
0 represents the variance of the vorticity forcing as by definition276 ∫ ∞

0

𝜇

𝜆𝜇
𝑘
𝜇−1
𝑦 exp[−(𝑘𝑦/𝜆)𝜇] d𝑘𝑦 = 1.
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Fig. 4. (a) Alongshore wavenumber spectra of breaking-wave vorticity forcing 𝑆∇×Fbr versus alongshore

wavenumber 𝑘𝑦 at five different surfzone locations (colors) for all 72 model simulations. Vertical dashed line

indicates spectra frequency cutoff of 0.2 m−1. Color indicates cross-shore locations 𝑥/𝐿SZ, where 𝐿SZ is surfzone

width. (b) Non-dimensional alongshore wavenumber spectra of vorticity forcing (17) versus non-dimensional

alongshore wavenumber (16). Red dashed line indicates Weibull fit analytical expression (15). Magenta error

bar indicates binned-mean and ± standard deviation of the spectra.
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The peak wavenumber of the fit Weibull spectra (�̂�𝑦0) is277

�̂�𝑦0(𝑥) = 𝛼𝜆(𝑥). (11)

where 𝛼 = [(𝜇−1)/𝜇]1/𝜇.278
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We choose the parameter 𝜇 by minimizing the the mean square error (MSE) between the model279

spectra and Weibull functional form as280

MSE(𝜇) = 1
𝑀𝑁

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

(𝑆∇×Fbr,𝑖, 𝑗 − 𝑆WB,𝑖, 𝑗 )2, (12)

where 𝑖 indicates simulations number (72 total) and 𝑗 indicates one of five surfzone locations281

(𝑥/𝐿SZ = {−0.75,−0.625,−0.5,−0.375,−0.25}). Overline ·̄ indicates a 𝑘𝑦 average from 0.001–282

0.2 m−1. The upper cutoff of 0.2 m−1 (indicated by the vertical dashed line in Fig. 4a) is chosen as283

we aim to represent well the vorticity forcing at scales greater than the water depth, which can be284

almost 3 m (Fig. 3g,h). The fits are performed over a range of 𝜇 from 1.1 to 1.7. We then estimate285

MSE(𝜇) (12), which is minimized with 𝜇 = 1.4, representing a distribution between exponential286

and Rayleigh. Alternatively, the fit parameter 𝜇 could be a function of 𝑥. However, this would287

introduce additional and unnecessary complexity in the scalings.288

The Weibull fit spectra in (10) can be non-dimensionalized using289

�̃�𝑦 = 𝑘𝑦/�̂�𝑦0 (13)

𝑆WB =
𝑆WB �̂�𝑦0∫ ∞

0 𝑆WB d𝑘𝑦
, (14)

yielding a self-similar Weibull distribution:290

𝑆WB = 𝛼𝜇(𝛼�̃�𝑦)𝜇−1 exp
[
−(𝛼�̃�𝑦)𝜇

]
. (15)

To evaluate the fit of the Weibull distribution to the model data spectra, the model spectra are291

non-dimensionalized similar to (13) and (14),292

�̃�𝑦 = 𝑘𝑦/𝑘𝑦0, (16)

𝑆∇×Fbr =
𝑆∇×Fbr �̂�𝑦0∫ ∞
0 𝑆WB d𝑘𝑦

, (17)

where the model spectra peak wavenumber 𝑘𝑦0 is used to normalize 𝑘𝑦 (16) and the Weibull spectra293

(𝑆WB) and peak wavenumber (�̂�𝑦0) normalize the model spectra (17).294
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Fig. 5. (a) Integrated alongshore wavenumber spectra of Weibull fit 𝐺0 (18) versus integrated spectra of

simulation 𝐺0 (A1) in the same domain. Squared correlation 𝑟2 between 𝐺0 and �̂�0 is 𝑟2 = 0.995 and root-mean-

square error of 0.001 s−2. (b) Weibull fit spectra peak �̂�𝑦0 versus model spectra peak 𝑘𝑦0. Squared correlation

𝑟2 between 𝑘𝑦0 and �̂�𝑦0 is 𝑟2 = 0.92 and root-mean-square error of 0.0054 m−1. The dashed line represents the

1:1 relationship.
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Across all simulations and all cross-shore locations, the non-dimensional 𝑆∇×Fbr largely collapse295

as a function of �̃�𝑦 (Fig. 4b) with generally a factor of 2–3 variation for �̃�𝑦 < 3. This variation296

is far less than the 2 decade variation of 𝑆∇×Fbr for a particular 𝑘𝑦 (Fig. 4a). The binned mean297

of 𝑆∇×Fbr follow closely the analytical Weibull distribution (compare magenta squares and dashed298

line in Fig. 4b) up to �̃�𝑦 ≈ 4, well beyond the spectral peak. The standard deviation of the299

binned 𝑆∇×Fbr (vertical bars in Fig 4b) are small relative to the binned mean, further indicating300

that the 𝑆∇×Fbr is well represented by the Weibull distribution. At high wavenumbers �̃�𝑦 > 4, the301

Weibull distribution drops off faster than 𝑆∇×Fbr . However, the variance contained at these high302

wavenumbers is generally low as shown in Appendix A. Within the inner surfzone (yellow in303

Fig. 4b), 𝑆∇×Fbr drops off faster in the high wavenumber compared to that in the outer surfzone304

(Black in Fig. 4b), Overall, this demonstrates that the Weibull distribution represents the overall305

𝑆∇×Fbr (𝑘𝑦) well with two parameters.306
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We next examine the Weibull distribution based fit parameters versus the spectral parameters.312

The Weibull distribution �̂�0 is estimated as,313

�̂�0 =

√︄∫ 0.2m−1

0.0017m−1
𝑆WB d𝑘𝑦 . (18)

As we are interested in forcing length-scales significantly larger than the water depth, we restrict314

the integration to 𝑘𝑦 ≤ 0.2 m−1. We estimate 𝐺0 over the same wavenumber limits which has a very315

small impact on 𝐺0 (Appendix A). The model-derived forcing magnitude 𝐺0 (A1) and fit-derived316

forcing magnitude �̂�0 (18) and are highly correlated (𝑟2 > 0.99) with very small (0.001 s−2) root-317

mean square errors (Fig. 5a). This demonstrates that the fit Weibull distribution represents well318

the magnitude of the vorticity forcing at scales appropriate for generating 2D turbulence. Next,319

the peak wavenumber (𝑘𝑦0) of 𝑆∇×Fbr also compares well to that of the Weibull fit �̂�𝑦0 (Fig. 5b)320

with 𝑟2 = 0.92 and root-mean-square error of 0.0054 m−1. For the few 𝑘𝑦0 > 0.07 m−1 the �̂�𝑦0321

overpredict 𝑘𝑦0 by ≈ 33%. Note that all the 𝑘𝑦0 ≤ 0.08 m−1, well below the cutoff wavenumber of322

0.2 m−1. The fit parameters (�̂�0 and �̂�𝑦0) will be nondimensionalized and scaled in Section 4.323

c. Cross-shore and time-lagged correlation324

We next examine the last term (𝐶XT) that makes up the covariance of the vorticity forcing 𝐶𝐺 (7).333

Based on (7), the cross-shore-(Δ𝑥) and time- (Δ𝑡) lagged correlation of vorticity forcing 𝐶XT is334

𝐶XT(Δ𝑥,Δ𝑡;𝑥) =
⟨𝐺𝑖 (𝑥, 𝑡)𝐺𝑖 (𝑥 +Δ𝑥, 𝑡 +Δ𝑡)⟩

⟨𝐺2
𝑖
(𝑥, 𝑡)⟩1/2⟨𝐺2

𝑖
(𝑥 +Δ𝑥, 𝑡 +Δ𝑡)⟩1/2

, (19)

where ⟨·⟩ denotes averaging in time and alongshore. The averaging is done over 4801 s of 1 Hz335

time series and 12 different alongshore locations evenly spaced every 100 m. The statistics are not336

homogeneous in the cross-shore direction so only averaging in time and 𝑦 is performed. The Δ𝑥337

and Δ𝑡 resolution of 𝐶XT is 1m and 1s respectively.338

We first examine 𝐶XT from a single simulation with 𝛽 = 0.02, 𝐻s = 1.1 m, 𝑇p = 14 s, and 𝜎𝜃 = 20◦339

at 4 different surfzone locations (𝑥/𝐿SZ = −0.625,−0.5,−0.375,−0.25) in Fig. 6. In all cases, 𝐶XT340

is essentially non-zero only along a diagonal band with magnitude that decays in Δ𝑥 and Δ𝑡. The341

slope of the non-zero 𝐶XT diagonal band is steeper farther offshore relative to onshore (Fig. 6) This342

slope is largely consistent with the shallow water phase speed
√︁
𝑔ℎ where ℎ is taken at Δ𝑥 = 0 m343
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Fig. 6. Examples of cross-shore and time lagged correlation of the breaking-wave vorticity forcing 𝐶XT (19) as

a function of cross-shore lag (Δ𝑥) and time lag (Δ𝑡) at cross-shore locations (a) 𝑥/𝐿SZ =−0.625, (b) 𝑥/𝐿SZ =−0.5,

(c) 𝑥/𝐿SZ = −0.375, and (d) 𝑥/𝐿SZ = −0.25 for a simulation with 𝛽 = 0.02, 𝐻s = 1.1m, 𝑇p = 14s, and 𝜎𝜃 = 20◦.

Red star symbol indicates the maximum of 𝐶XT at given Δ𝑡. Dashed line represents the characteristic of the

shallow water phase velocity
√︁
𝑔ℎ where ℎ is taken to be at Δ𝑥 = 0. Dash-dotted line represents the fitted velocity

𝑐 from extracted maxima 𝐶XT versus Δ𝑡 (red star symbols). Note dashed line and dash-dotted line overlaps in

(d). Blank space represents |𝐶XT | < 0.02 where it is statistically indistinguishable from 0 for a 95% confidence

interval.

325

326

327

328

329

330

331

332

(dashed line in Fig. 6). Farther offshore 𝐶XT decorrelates more rapidly in Δ𝑡 (Fig. 6a), whereas344

closer to shore it decorrelates more slowly (Fig. 6d). For a fixed Δ𝑡, the non-zero 𝐶XT band is345

wider in Δ𝑥 farther offshore relative to onshore. This indicates larger Δ𝑥 decorrelation scales in346

deeper water but larger Δ𝑡 decorrelation scales in shallower water. In addition, for a fixed Δ𝑡, the347

sign of 𝐶XT usually varies in Δ𝑥 from positive on the peak of the diagonal to negative off-diagonal.348

This 𝐶XT pattern is consistent with the vorticity forcing in relatively narrow cross-shore bands that349
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Fig. 7. (a) The diagonal component of lagged correlation 𝐶T (21) versus time lag Δ𝑡. (b) 𝐶T versus

nondimensional time lag (Δ𝑡/𝜏), where 𝜏 is the fit decorrelation time-scale and the red dashed line represents

exp(−Δ𝑡/𝜏). Both panels show five different surfzone locations for all 72 model simulations. The color legend

in (a) indicates cross-shore locations 𝑥/𝐿SZ, where 𝐿SZ is surfzone width.

357

358

359

360

propagate onshore at near the shallow water phase speed (Fig. 2). The 𝐶XT(Δ𝑥,Δ𝑡) structure for350

this example (Fig. 6) is consistent for all 72 simulations (not shown).351

To compactly describe 𝐶XT, we separate it into two functions352

𝐶𝑋𝑇 (Δ𝑥,Δ𝑡) = 𝐶T(Δ𝑡)𝐶X(Δ𝑥− 𝑐Δ𝑡), (20)

where 𝑐 is the slope of the diagonal-band, 𝐶T is time-lagged correlation along the diagonal, i.e.,353

𝐶T(Δ𝑡) =𝐶XT(𝑐Δ𝑡,Δ𝑡), and𝐶X represents off-diagonal component of𝐶XT. This decomposition can354

be interpreted as crest-following 𝐶T and cross-crest (𝐶X) correlations, respectively, the functional355

form of which will be derived from the simulations.356

To extract the diagonal 𝐶T, at each Δ𝑡 we pick the local maximum Δ𝑥max (red stars in Fig. 6)361

requiring that |𝐶XT | > 0.02 in order to avoid fitting to noise. This defined 𝐶T(Δ𝑡) as362

𝐶T = 𝐶XT(Δ𝑥max(Δ𝑡),Δ𝑡). (21)
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With the finite Δ𝑥 resolution, uncertainty in the true Δ𝑥max is present. We least-squares fit a line363

to (Δ𝑥max,Δ𝑡) to obtain fit slope 𝑐 (dash-dotted line in Fig. 6). We require at least three Δ𝑥max(Δ𝑡)364

to estimate the slope. The Δ𝑥max are nearly always located along the fit slope within the limits of365

the finite Δ𝑥 resolution and the root-mean-square fit error (1.29 m) is near the Δ𝑥 resolution. In366

the examples, 𝑐 is close to the linear shallow water phase speed
√︁
𝑔ℎ (compare dash-dotted and367

dashed lines in Fig. 6). The off-diagonal component of the cross-correlation becomes368

𝐶X(Δ𝑥′) =
𝐶XT(Δ𝑥−Δ𝑥max(Δ𝑡),Δ𝑡)

𝐶T(Δ𝑡)
. (22)

However, for simplicity and to reduce fitting to noise, 𝐶X is assumed to be independent of369

Δ𝑡, resulting in 𝐶X(Δ𝑥′) where Δ𝑥′ = Δ𝑥 − Δ𝑥max. Thus 𝐶X(Δ𝑥′ = 0) = 1. We seek func-370

tional forms for 𝐶T(Δ𝑡) and 𝐶X(Δ𝑥′) that are compactly represented by a few parameters. Us-371

ing the definitions above, 𝑐, 𝐶T, and 𝐶X are extracted from 𝐶XT at 5 cross-shore locations372

(𝑥/𝐿SZ = −0.75,−0.625,−0.5,−0.375,−0.25) for all 72 simulations. Note 𝐶X is extracted only373

at Δ𝑡 = 0 s, i.e., 𝐶X(Δ𝑥′) = 𝐶XT(Δ𝑥,Δ𝑡 = 0).374

For all simulations and cross-shore locations, the function 𝐶T(Δ𝑡) exhibits a decaying behavior,375

indicating rapid decorrelation, as the great majority of 𝐶T < 0.2 for Δ𝑡 ≥ 2 s (Fig. 7a). At large Δ𝑡,376

𝐶T never decays fully to zero due requiring |𝐶XT | > 0.02 in defining Δ𝑥max. The decay time-scale is377

shorter for the outer surfzone relative to the inner-surfzone (colors in Fig. 7a). A simple decaying378

autocorrelation, consistent with a first-order autoregressive (AR1) stochastic process (Jenkins and379

Watts 1968), is380

𝐶T(Δ𝑡) = exp (−Δ𝑡/𝜏). (23)

where 𝜏 is the decorrelation time-scale. We fit 𝐶T to (23) with the fit parameter 𝜏. We require381

that the fit skill > 0.98, which rejects 3% of 𝜏. The resulting 𝐶T collapse when plotted against the382

non-dimensional time-scale Δ𝑡/𝜏 (Fig. 7b). This indicates that the extracted 𝐶T are consistent with383

(23) and that 𝜏 is well estimated (23). Overall, this suggests that the stochastic vorticity forcing384

following a wave crest can be represented by an AR1 process.385

We next consider the off-diagonal component 𝐶X (22). For all simulations and cross-shore391

locations, 𝐶X decays rapidly (within 1–3 m) to a negative minimum between -0.2 to -0.5, often392

goes to a secondary positive maximum and eventually decays to near-zero (Fig. 8a). Although393
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Fig. 8. (a) Off-diagonal 𝐶X (22) at Δ𝑡 = 0 versus cross-shore lag Δ𝑥′ at 5 different surfzone locations for

all 72 model simulations. Color indicates cross-shore locations 𝑥/𝐿SZ, where 𝐿sz is surfzone width. (b) 𝐶X

versus non-dimensional cross-shore lag (Δ𝑥′/(𝑐𝜏)) where 𝑐 is the fit diagonal slope and 𝜏 is the fit decorrelation

time-scale in (23). Magenta error bar indicates binned-mean and ± standard deviation of 𝐶X. Red dashed line

indicates the fit function in (24).

386

387
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389

390

the Δ𝑥′ resolution is poor, the decay is more rapid in shallower water closer to shore (yellow394

colors in Fig. 8). This sign switch suggests a coherent sign change of vorticity forcing across the395

breaking wave crest. As 𝜏 represents the decorrelation time-scale and 𝑐 the slope of the diagonal,396

a decorrelation length scale can be given 𝑐𝜏. When plotted against the nondimensional Δ𝑥′/(𝑐𝜏),397

the 𝐶X generally collapses over all cross-shore locations and simulations (Fig. 8b). The binned398

meaned 𝐶X reveals the decaying and oscillatory pattern and the binned standard deviations (≈ 0.15,399

magenta in Fig. 8b) are generally much smaller than the variability of𝐶X(Δ𝑥) (Fig. 8a). The binned400

mean 𝐶X(Δ𝑥′/(𝑐𝜏)) can be fit to a decaying and oscillating function401

𝐶X = exp [−𝐶1Δ𝑥
′/(𝑐𝜏)] cos[𝐶2Δ𝑥

′/(𝑐𝜏) +𝐶3]/cos (𝐶3), (24)

where 𝐶1, 𝐶2, and 𝐶3 are fit parameters with 𝐶1 = 3.57, 𝐶2 = 1.82, and 𝐶3 = 1.24. By definition402

𝐶X(Δ𝑥′/(𝑐𝜏) = 0) = 1. The functional form (24) fits very well the binned means (compare dashed403

red and magenta squares in Fig. 8b). Here, we only calculate 𝐶X for Δ𝑥′ ≥ 0, but as the 𝐶X width404

is narrow relative to the cross-shore variation in the statistics, we expect (24) to be applicable for405
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negative Δ𝑥′. These 𝐶X results imply that no new parameter is needed to describe 𝐶X. With the406

functional forms of 𝐶T (23) and 𝐶X (24) together with the fit diagonal slope 𝑐 and decorrelation407

time-scale 𝜏, the complete 𝐶XT(Δ𝑥,Δ𝑡) can be now be described.408

4. Scaling the parameters describing the vorticity forcing covariance409

We have extracted, for all simulations and at five cross-shore locations, the four dimensional410

parameters (�̂�0, �̂�𝑦0, 𝑐, and 𝜏) that compactly describe components of the covariance 𝐶𝐺 (6). We411

expect these parameters to depend parameterically upon 𝑥 through model parameters such as beach412

slope 𝛽, water depth ℎ(𝑥), or wave directional spread at the breakpoint 𝜎𝜃𝑏. The next step is to413

nondimensionalize each of these four parameters and scale them with non-dimensional parameters.414

We first address the vorticity forcing standard deviation �̂�0 (18). To establish a scaling for �̂�0,415

we use the relationship between wave-averaged (e.g., COAWST, DELFT3D) momentum forcing to416

mean wave-dissipation 𝐷w and phase speed 𝑐, (e.g., Smith 2006),417

|Fbr | =
𝐷w
𝑐

. (25)

We estimate 𝐷w from the cross-shore gradient of the model-estimated wave energy flux. Assuming418

shallow water wave conditions (i.e., 𝑐 =
√︁
𝑔ℎ) and considering that (25) is the depth-integrated force419

for the entire water-column, a general dimensional scale of depth-normalized breaking force (units420

ms−2) can be421

𝐷w

(𝑔ℎ)1/2ℎ𝑏
,

where ℎ𝑏 is the water depth at the breakpoint. We then use the 1/ℎ𝑏 as an inverse length scale to422

represent the derivative in the curl operator to arrive at a dimensional scale for vorticity forcing423

magnitude 𝐺0, i.e.,424

�̂�0 ∝
𝐷w

(𝑔ℎ)1/2ℎ2
𝑏

, (26)

where 𝐷w and ℎ are functions of 𝑥. This implies that the ratio425

�̂�0(𝑔ℎ)1/2ℎ2
𝑏

𝐷𝑤

(27)
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should only be a function of non-dimensional parameters. In fact, this ratio is largely a function426

of only beach slope 𝛽 and wave directional spread at the breakpoint 𝜎𝜃𝑏, as shown below. First we427

define the nondimensional parameter,428

�̃�0 :=
�̂�0(𝑔ℎ)1/2ℎ2

𝑏

𝐷𝑤

𝛽. (28)

This parameter �̃�0 is largely a linear function of 𝜎𝜃𝑏 and collapses (𝑟2 = 0.68) the variability of429

the vorticity forcing at all five 𝑥 locations and over the 72 simulations (Fig. 9a). The best-fit linear430

scaling (red dashed line in Fig 9a) is431

�̃�0 = 0.041𝜎𝜃𝑏 +0.059. (29)

The largest deviations from a collapsed scaling occur closest to shore (𝑥/𝐿SZ = −0.25) and for432

the steepest slope (𝛽 = 0.04, yellow triangles in Fig. 9a). Other choices for nondimensional �̃�0433

also have high skill. For example using (27) as �̃�0 results in squared correlation of 𝑟2 = 0.61434

(not shown). Clearly, the wave directional spread plays a significant role in the magnitude of the435

vorticity forcing.436

We next examine the parameter �̂�𝑦0 representing the peak wavenumber of the vorticity forcing442

spectra (Section 3a). We have already seen that �̂�𝑦0 is larger in shallower water (Fig. 4a). Thus,443

we nondimensionalize the peak wavenumber with the local water depth �̂�𝑦0ℎ, which should be a444

function of nondimensional parameters. We define a nondimensional �̃�𝑦0 that includes the breaking445

Irribaren number Irb (4),446

�̃�𝑦0 := �̂�𝑦0 ℎ Irb. (30)

The �̃�𝑦0 is also a linear function of 𝜎𝜃𝑏 and collapses (𝑟2 = 0.77) the variability of 𝑘𝑦 at all five447

𝑥 locations and over the 72 different simulations (Fig. 9b). The best fit linear scaling (red dashed448

line in Fig. 9) is449

�̃�𝑦0 = 9.5×10−4𝜎𝜃𝑏 +1.9×10−3. (31)

Overall, the deviation from the scaling is positive for steepest slopes and negative for the shallowest450

slopes. As with vorticity forcing magnitude, the wave directional spread clearly plays a significant451

role in setting the alongshore length-scales of vorticity forcing.452
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Fig. 9. (a) Non-dimensional breaking-wave vorticity forcing magnitude �̃�0 (28) and (b) non-dimensional

peak alongshore wavenumber �̃�𝑦0 (30) versus directional spread at break point 𝜎𝜃𝑏. ℎ is local water depth, ℎ𝑏

water depth at break point, 𝐷𝑤 local wave dissipation, and Irb Iribarren number evaluated at break point (4).

Red dashed line indicates the best linear fit. Color indicates cross-shore locations 𝑥/𝐿SZ, where 𝐿SZ is surfzone

width. Symbols indicates beach slope (𝛽 = 0.02, circle; 𝛽 = 0.03, square; 𝛽 = 0.04, triangle).
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We next examine the𝐶XT fit diagonal slope 𝑐. The dimensional slope 𝑐 is linearly related with high457

correlation (𝑟2 = 0.92) and near-one slope to the linear shallow water phase speed
√︁
𝑔ℎ (Fig. 10).458

This makes the statistical case for what was seen in Fig. 6, that the non-zero diagonal slope of 𝐶XT459

is the result of onshore wave propagation. Generally 𝑐 is slightly larger than
√︁
𝑔ℎ and the deviations460

from a 1:1 relationship are largest at the most offshore location (𝑥/𝐿SZ = −0.75, dark symbol in461

Fig 10). Over all five cross-shore locations the binned mean 𝑐/
√︁
𝑔ℎ is largely consistent varying462

from 1.08 to 1.11. This value just greater than one is consistent with phase speed of a nonlinear463

shallow water wave. No 𝑐/
√︁
𝑔ℎ scaling that depended on other non-dimensional parameters was464
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Fig. 10. The fit slope 𝑐 of the non-zero diagonal of 𝐶XT versus shallow water phase velocity
√︁
𝑔ℎ at five

different surfzone locations for all 72 simulations. Dashed represents a 1:1 relationship. Color indicates cross-

shore locations 𝑥/𝐿SZ, where 𝐿SZ is surfzone width. The squared correlation is 𝑟2 = 0.92. Symbols indicates

beach slope (𝛽 = 0.02, circle; 𝛽 = 0.03, square; 𝛽 = 0.04, triangle).
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found that improved upon the dimensional scaling. Thus, here we use the dimensional scaling of465

𝑐√︁
𝑔ℎ

= 1.10. (32)

The last dimensional parameter we examine is the forcing decorrelation time-scale 𝜏. We473

nondimensionalize 𝜏 with the time-scale
√︁
𝐻sb/𝑔,474

𝜏 = 𝜏
√︁
𝑔/𝐻sb, (33)

where 𝐻sb is the significant wave height at breaking. In the outer half of the surfzone (𝑥/𝐿SZ ≤475

−0.5), the binned-mean 𝜏 are largely uniform near 2 with standard deviations of 0.35 (Fig. 11a).476

In the inner-surfzone (𝑥/𝐿SZ > −0.5), 𝜏 increases by 35% in the inner-surfzone, with standard477

deviation of 1.1. In general, longer decorrelation time-scales are associated with larger 𝜎𝜃𝑏 (lighter478

color in Fig. 11a). However, 𝜎𝜃𝑏 alone cannot scale 𝜏. Here, neither 𝛽 nor Irb has skill in479
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Fig. 11. (a) Non-dimensional decorrelation time-scale 𝜏 (33) versus non-dimensional cross-shore location

(𝑥/𝐿SZ), where 𝐿SZ is surfzone width. Magenta error bar indicates binned-mean and ± standard deviation of 𝜏.

Color legend indicates wave directional spread at breaking 𝜎𝜃𝑏. (b) Nondimensional 𝜏 versus non-dimensional

forcing magnitude �̂�0/�̂�max at five surfzone locations (colors) and for all 72 simulations. The �̂�0 is the forcing

standard deviation at the location of 𝜏 and �̂�max is the cross-shore maximum of �̂�0. Color indicates cross-shore

locations 𝑥/𝐿SZ, where 𝐿SZ is surfzone width. Symbols indicates beach slope (𝛽 = 0.02, circle; 𝛽 = 0.03, square;

𝛽 = 0.04, triangle).
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scaling 𝜏. Nondimensionalizing 𝜏 with peak wave period 𝑇p also does not yield a good scaling.480

The cross-shore variation of 𝜏 resembles the cross-shore variation of forcing standard deviation481

(Fig. 3e,f), suggesting a scaling using �̂�0. At all five cross-shore locations and simulations, 𝜏482

largely collapses as a function of the normalized vorticity forcing magnitude �̂�0/�̂�max (Fig. 11b),483

where �̂�0 is evaluated at the location where 𝜏 is calculated and �̂�max is the cross-shore maximum484

for that simulation (see Fig.3e,f). For �̂�0/�̂�max < 0.7, the 𝜏 are largely near 2 with small variability.485

For larger �̂�0/�̂�max, 𝜏 increases with increased variability. Here, the relationship between 𝜏 and486

�̂�0/�̂�max is represented with an exponential function487

𝜏 = 4.6×10−3 exp (5.61 �̂�0/�̂�max) +1.90. (34)

This fit exponential (red dashed line in Fig. 11) begins to increase for the 𝑥/𝐿SZ > −0.5 matching the488

inner-surfzone increase of 𝜏. The skill of an exponential fit between 𝜏 and �̂�0/�̂�max is reasonable489
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at 𝑟2 = 0.22, but is reduced relative to the other scalings because at larger �̂�0/�̂�max the variability490

of 𝜏 is large. Lastly, we note that the off-diagonal 𝐶X decays with Δ𝑥′/(𝑐𝜏). This implies that the491

cross-crest decay length-scale goes like ∼
√︁
𝑔ℎ(𝑥) ×

√︁
𝐻sb/𝑔 =

√︁
𝐻sbℎ(𝑥), which is a few meters at492

most and gets shorter onshore.493

5. Discussion494

a. Recapitulation and relationship to prior work495

We have described the vorticity forcing covariance 𝐶𝐺 (6) in terms of separable functions496

governing its magnitude and alongshore, cross-shore, and time lagged structure across the surfzone.497

We have shown that the local vorticity forcing standard deviation �̂�0(𝑥) is a function of local wave498

dissipation, water depth, beach slope, and wave directional spread at the breakpoint 𝜎𝜃𝑏 that varies499

from 2◦ to 13.5◦ (Fig. 9a). Thus, if these quantities are known across the surfzone then �̂�0(𝑥) can500

be estimated, a first step to a potential parameterization. The �̃�0 increase with 𝜎𝜃𝑏 is consistent with501

the increase in surfzone averaged ∇×Fbr variance with wavemaker generated 𝜎𝜃 from 0◦, 10◦ and502

20◦ (O’Dea et al. 2021). In contrast, in a modeling study of a laboratory barred-beach surfzone, the503

mean vorticity forcing magnitude |∇×Fbr | averaged over all breaking crests increased with 𝜎𝜃𝑏 up504

to a maximum near 10◦ and decreased for larger 𝜎𝜃𝑏 (Nuss et al. 2025). This inconsistency could be505

due to several factors. First, perhaps our modeled 𝜎𝜃𝑏 is not large enough. Second, the Nuss et al.506

(2025) |∇×Fbr | metric is only averaged over crests that have sufficiently long-enough lateral extent.507

As breaking crests would get shorter with larger 𝜎𝜃𝑏, there may be a bias as the shortest crests are508

the most numerous (Nuss et al. 2025). Third, the |∇ ×Fbr | metric resembles a L1 norm whereas509

variance is a L2 norm. These norms do not necessarily vary in the same manner. Fourth, here,510

on a planar bathymetry the 𝐺0(𝑥) profiles are largest in the mid- to inner-surfzone (Fig. 3e,f). As511

discussed by Nuss et al. (2025), their barred-beach configuration may result in different cross-shore512

structures of wave dissipation and other relevant parameters on the non-monotonic profile that may513

impact vorticity generation in ways not yet understood.514

At a particular cross-shore location, the vorticity forcing spectra 𝑆∇×Fbr (𝑘𝑦) wavenumber depen-515

dence is well described by a specific Weibull distribution depending upon the peak wavenumber516

𝑘𝑦0 (Fig. 4b). The structure of 𝑆∇×Fbr (𝑘𝑦) is similar to previously estimated cross-surfzone av-517

eraged 𝑆∇×Fbr (𝑘𝑦), revealing vorticity forcing over a broad range of 𝑘𝑦 (Feddersen 2014; O’Dea518
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et al. 2021). The nondimensional peak wavenumber �̃�𝑦0 is also a specific linear function of 𝜎𝜃𝑏519

(Fig. 9b), consistent with the increasing 𝑆∇×Fbr peak wavenumber in O’Dea et al. (2021). Nuss520

et al. (2025) examined alongshore variability through breaking-wave crest length 𝜆𝑐 and crest-end521

density 𝑑ce statistics, which were consistent between the model and laboratory study of Baker et al.522

(2023). Mean 𝜆𝑐 decreased and 𝑑ce increased with increasing 𝜎𝜃𝑏 which is consistent with shorter523

alongshore scales (increased 𝑘𝑦0) with 𝜎𝜃𝑏. The �̃�𝑦0 scaling implies that with known Irb (4), 𝜎𝜃𝑏,524

ℎ(𝑥), �̂�𝑦0 can be estimated, as can entire 𝑆𝑌 (𝑘𝑦).525

At a particular 𝑥 location, the cross- and time-lagged correlation 𝐶XT is strongly diagonal (Fig. 6)526

and can be decomposed into diagonal 𝐶T(Δ𝑡) and offdiagonal 𝐶X(Δ𝑥 − 𝑐Δ𝑡) components. The527

slope of the diagonal is consistent with the shallow water phase speed (Fig. 10), implying - as528

expected - that the vorticity forcing propagates onshore with the wave crests. Scaling 𝑐 with a529

nonlinear phase speed (e.g.,
√︁
𝑔(ℎ+𝐻s)) did not improve the fit. The 𝐶T(Δ𝑡) is well represented by530

an exponential decay with time-scale 𝜏, consistent with an AR1 random process (Fig. 7). The 𝜏 is531

short (mostly between 0.5–1.25 s) relative to the wave period, indicating rapid decorrelation. The532

nondimensional time-scale 𝜏 = 𝜏
√︁
𝑔/𝐻sb can be scaled by �̂�0/�̂�max (Fig. 11). The off-diagonal533

portion of the covariance 𝐶X is well represented by a decaying oscillating function (24) with the534

cross-shore decorrelation length-scale 𝑐𝜏 (Fig. 8b), which is a few meters at most, much shorter535

that the separation between successive wave crests. The 𝐶XT results suggest a parameterization536

with narrow cross-crest structure that get smaller in shallower depths, propagates onshore with537 √︁
𝑔ℎ and time-decorrelates with 𝜏.538

The cross-shore or temporal- structure of ∇×Fbr has not been previously examined. A clear539

feature of 𝐶XT is the off-diagonal (Δ𝑥′) negative correlations. This indicates a consistent forcing540

sign switch across the wave crest, as seen in a blow up (Fig. 12) of the ∇×Fbr example shown in541

Fig. 2b. This outer-surfzone breaking crest spans about 30 m in the alongshore. At the center of the542

crest ∇×Fbr is relatively weak and is largest at the crest ends (Fig. 12). In between the crest center543

and end, alongshore bands of cross-shore alternating sign ∇×Fbr are evident. Such features are544

consistent across most breaking wave crests. Analogous cross-crest variation in |∇×Fbr | is seen in545

Nuss et al. (2025). We qualitatively explain how this pattern occurs. The alongshore component546
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Fig. 12. Zoomed in view of the modeled breaking-wave vorticity forcing ∇×Fbr from the dashed box in

Fig. 2b versus cross-shore (𝑥) and alongshore (𝑦) coordinates. Model parameters are beach slope 𝛽 = 0.02 and

incident wave parameters: 𝐻𝑠 = 1.1m, 𝑇𝑝 = 8s, and 𝜎𝜃 = 20◦.
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553

of Fbr has a term that goes like547

(ℎ+𝜂)−1 𝜕

𝜕𝑥

(
𝜈𝑏

𝜕 (ℎ+𝜂)𝑣
𝜕𝑥

)
, (35)

where 𝜈𝑏 is the breaking eddy viscosity which is non-zero in the breaking wave crest. Right at the548

breaking wave crest, ∇×Fbr introduces a 𝜕𝑥 in (35) resulting in terms like 𝜕3𝑣/𝜕𝑥3. This derivative549

will generate cross-shore sign changes around the maximum of 𝑣 and 𝜂 at the breaking wave crest.550

b. Limitations554

Here, we have described and scaled the second order statistic, i.e., lagged covariance 𝐶𝐺 , of the555

vorticity forcing. However, we have neglected third (skewness, asymmetry, or bispectra), fourth556

(kurtosis), or higher order statistics that may be important in describing the structure of ∇×Fbr. For557

example, the 𝑆𝑌 (𝑘𝑦) doesn’t capture any phase information. Breaking wave crests are alongshore558

coherent with their own particular statistics (e.g., Baker et al. 2023; Nuss et al. 2025). These559

statistics are neglected with the focus on covariance. In the analysis of 𝐶𝐺 , we have made a number560

of assumptions, including that 𝐶𝐺 is separable (7), that 𝐶XT(Δ𝑥,Δ𝑡) is also a separable function561

of 𝐶T(Δ𝑡) and 𝐶X(Δ𝑥′). Only on planar beaches has 𝐶𝐺 been described and scaled and over a562

relatively limited range of beach slope and incident wave statistics spanning 72 simulations. Planar563

beach slope 𝛽 is a key parameter for �̂�0 and is also important, through Irb, for �̂�𝑦0. But outside564

of idealized situations, most beach profiles have variable slope. For monotonic beach profiles,565
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presumably the local 𝛽 can be used in the scalings. However, on non-monotonic (such as barred566

beach) profiles, 𝛽 can be locally negative which is not permitted in the scalings for �̂�0 (28) or �̂�𝑦0567

(30). In contrast, parts of the modeled surfzone of Nuss et al. (2025) had negative local beach568

slope. This may also explain why the vorticity forcing magnitude relationship with 𝜎𝜃𝑏 is different569

betweeen our planar and their barred profiles. Lastly, we have only analyzed simulations with mean570

normally incident waves, i.e., 𝜃 = 0◦. For mean obliquely incident waves, the statistics of ∇×Fbr571

will change and at a minimum involve a new parameter of 𝜃.572

c. A pathway to parameterizing vorticity forcing in the surfzone573

We conclude by sketching out a ∇×Fbr parameterization pathway with an alongshore uniform574

bathymetry utilizing the functional form and parameters of 𝐶𝐺 (6). A ∇×Fbr parameterization575

would be useful as 3D nonhydrostatic models that resolve the surfzone such as CROCO (Treillou576

et al. 2025) are too computationally expensive to simulate large model domains. A parameterization577

should generate stochastic realizations of ∇×Fbr that have appropriate second order statistics such578

as variances, alongshore wavenumber spectra, and cross- and time-decorrelation scales. We take579

inspiration from the stochastic forcing of 2D turbulence models (e.g., Maltrud and Vallis 1991;580

Srinivasan and Young 2014), where typically stochastic forcing is prescribed only by a stochastic581

amplitude with a time-scale forced on a specific wavelength. We take an analogous approach where582

the stochastic forcing results in a covariance matching 𝐶𝐺 .583

We write parameterized 𝐺 as an inverse Fourier transform in 𝑘𝑦584

∇×Fbr = 𝐺 (𝑥, 𝑦, 𝑡) = �̂�0(𝑥)
2𝜋

∫ ∞

−∞
𝑎(𝑘𝑦, 𝑥− 𝑐𝑡) exp(i𝑘𝑦𝑦) d𝑘𝑦, (36)

where �̂�0(𝑥) sets the vorticity forcing magnitude, and the amplitude 𝑎(𝑘𝑦, 𝑥 − 𝑐𝑡) propagates585

onshore with speed 𝑐. We can decompose these Fourier amplitudes into separable functions586

𝑎(𝑘𝑦, 𝑥− 𝑐𝑡) = �̃�(𝑘𝑦;𝑥)𝑊 (𝑥− 𝑐𝑡)𝑏(𝑡),

where �̃�(𝑘𝑦;𝑥) represents the alongshore variability, the non-stochastic envelope function𝑊 (𝑥−𝑐𝑡)587

represents the onshore propagating cross-shore structure of the vorticity forcing propagating at588

𝑐(𝑥) = 1.10
√︁
𝑔ℎ(𝑥) (32), and 𝑏(𝑡) is a stochastic process representing variability moving with the589
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breaking-wave crest. We ensure that this parameterized 𝐺 (36) results in a 𝐶𝐺 form of (7). Taking590

⟨𝐺 (𝑥, 𝑦, 𝑡)𝐺 (𝑥 +Δ𝑥, 𝑦 +Δ𝑦, 𝑡 +Δ𝑡)⟩ results in the parameterized covariance,591

𝐶𝐺 = �̂�0(𝑥)�̂�0(𝑥+Δ𝑥)
[∫

|�̃�(𝑘𝑦) |2 exp(i𝑘𝑦Δ𝑦)d𝑘𝑦
]

︸                               ︷︷                               ︸
𝐴

⟨[𝑊 (𝑥− 𝑐𝑡)𝑊 (𝑥 +Δ𝑥− 𝑐(𝑡 +Δ𝑡))𝑏(𝑡)𝑏(𝑡 +Δ𝑡)]⟩︸                                                          ︷︷                                                          ︸
𝐵

,

(37)

where the angle brackets represent a phase average. This form matches that of (7), where 𝐴 is592

𝐶𝑌 (Δ𝑦), and 𝐵 is 𝐶XT(Δ𝑥,Δ𝑡). The two �̂�0 terms go outside the ⟨⟩ operator as long as �̂�0(𝑥)593

varies slowly relative to the cross-shore decorrelation length-scale 𝑐𝜏. The magnitude of ∇×Fbr594

is set by the scaling of �̂�0(𝑥) (28 & 29).595

Now we choose the expressions �̃�(𝑘𝑦;𝑥), 𝑊 (𝑥− 𝑐𝑡), and 𝑏(𝑡) so that the parameterized 𝐶𝑌 (Δ𝑦)596

and 𝐶XT(Δ𝑥,Δ𝑡) match the derived functional forms. First we choose �̃�(𝑘𝑦;𝑥) with random phases597

from the Weibull spectral form with the peak wavenumber �̂�𝑦0 derived from the scaling (30 & 31)598

giving the implicit 𝑥 dependence. To prevent very large �̂�𝑦0, we limit to �̂�𝑦0 = 0.15 m−1 at depths599

ℎ < 0.75 m. The �̃� phases are set to be cross-shore uniform.600

We next ensure that the parameterized 𝐶XT has diagonal slope that matches 𝐶T(Δ𝑡) (23). We601

define 𝜃 = 𝑥 − 𝑐𝑡 for convenience. We can decompose 𝐵 for 𝜃 = 0 and Δ𝑥 − 𝑐Δ𝑡 = 0, representing602

the diagonal portion of 𝐶XT which by definition is 𝐶T(Δ𝑡). As 𝐶T(Δ𝑡 = 0) = 1, we require that603

both ⟨𝑊 (𝜃)𝑊 (𝜃)⟩ = 1 and ⟨𝑏(𝑡)𝑏(𝑡)⟩ = 1. Analogous to previous forced 2D turbulence studies604

(e.g., Maltrud and Vallis 1991), we make 𝑏(𝑡) be a continuous AR1 stochastic process that evolves605

with unit variance, i.e.,606

d𝑏
d𝑡

= −𝑏

𝜏
+
√︂

2
𝜏
𝜒(𝑡) (38)

where 𝜏 is the 𝐶T-decorrelation time-scale and 𝜒 is a zero-mean, stationary, white noise process607

with variance ⟨𝜒(𝑡)𝜒(𝑡 +Δ𝑡)⟩ = 𝛿(Δ𝑡). The 𝜏 is derived from the scaling (33 & 34), where we608

use the scaled �̂�0 (28 & 29) instead of 𝐺0. The resulting 𝐶T = ⟨𝑏(𝑡)𝑏(𝑡 +Δ𝑡)⟩ = exp(−𝑡/𝜏) by609

definition for an AR1 process (Jenkins and Watts 1968) and matches the derived 𝐶T(Δ𝑡) form (23).610

Next, if we instead restrict 𝐵 to Δ𝑡 = 0, it becomes 𝐶X(Δ𝑥), allowing us to determine the611

functional form of 𝑊 (𝑥 − 𝑐𝑡). For Δ𝑡 = 0, as a unit-variance AR1 process ⟨𝑏2(𝑡)⟩ = 1, and then612

𝐶X = ⟨𝑊 (𝜃)𝑊 (𝜃 +Δ𝑥)⟩ where the average is now over 𝜃 from −Λ/2 to Λ/2, where Λ is the cross-613

shore separation between wave crests, scaling as 𝑇p
√︁
𝑔ℎ, which is ≈ 24 m for 𝑇p = 8 s and ℎ = 1 m.614
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We choose the functional form for 𝑊 (𝜃) to be615

𝑊 (𝜃) = 𝐴1
cos 𝐴4

exp
(
−𝐴2

|𝜃 |
𝑐𝜏

)
cos

(
𝐴3

|𝜃 |
𝑐𝜏

+ 𝐴4

)
(39)

with 𝐴1 = 3.16
√︁
Λ/𝑐𝜏, 𝐴2 = 3.57, 𝐴3 = 1.82, and 𝐴4 = 1.10. Representing the breaking wave616

region (Fig. 2b,c), 𝑊 (39) is narrow. The crest separation scale is much larger than the 𝑊 width617

(Λ ≫ 𝑐𝜏). As shown in Appendix B, with this form and parameters, 𝐶X matches the derived618

functional form (24), i.e.,619

⟨𝑊 (𝜃)𝑊 (𝜃 +Δ𝑥)⟩ = 1
Λ

∫ Λ/2

−Λ/2
𝑊 (𝜃)𝑊 (𝜃 +Δ𝑥)d𝜃 =

exp
(
−𝐶1

Δ𝑥
𝑐𝜏

)
cos

(
𝐶2

Δ𝑥
𝑐𝜏

+𝐶3

)
cos(𝐶3)

, (40)

where the 𝜃-integration is a dummy for 𝑥 integration. In practice, 𝑊 repeats at the peak period620

𝑇p to represent a continuous train of wave crests and the crest separation Λ decreases in shallower621

water and is a function of 𝑇p and 𝑐, consistent with linear wave theory.622

We demonstrate an example parameterization (Fig. 13) for a case with the same parameters628

as in the example in Fig. 2 with parameters 𝛽 = 0.02, 𝐻sb = 1.18 m, 𝑇p = 8s, ℎ𝑏 = 3.44m, and629

𝜎𝜃𝑏 = 13.13◦. For each wave 𝑏(𝑡) is calculated by numerically solving (38) with high temporal-630

resolution. The elements �̂�0(𝑥), �̃�(𝑘𝑦), 𝑊 (𝜃) and 𝑏(𝑡) within (36) are combined to yield the631

𝐺 (𝑥, 𝑦, 𝑡) =∇×Fbr. An example snapshot (Fig. 13) is qualitatively consistent with the WR-extracted632

∇×Fbr (Fig. 2b,c). The parameterized forcing is in narrow alongshore-bands that propagate onshore633

and get narrower in shallow water, similar to the model (Fig. 2b). The alongshore variability is634

mostly at 10-30 m length-scales that get shorter in shallower water and there is a consistent cross-635

crest sign change, also similar to the model (Fig. 2c). However, there are distinct differences, the636

most important of which is that we no longer have alongshore coherent breaking-wave crests. A637

second difference is that our forcing bands occur every 𝑇p, whereas in the model they are more638

random. Whether these differences would result in different vorticity distributions in the surfzone639

is unknown.640

To use such a parameterization, the rotational forcing F(rot)
br is estimated by solving for the forcing641

streamfunction ∇2𝜓𝐹 = ∇×Fbr and then F(rot)
br = ∇×𝜓𝐹 . This F(rot)

br would be vertically distributed642

as surface intensified body force as for wave-averaged forcing (Kumar et al. 2012). A parameteri-643
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Fig. 13. Schematic example of the stochastic spectral parameterization 𝐺 (𝑥, 𝑦, 𝑡) = ∇×Fbr via (36): (a)

snapshot of the parameterized breaking-wave vorticity forcing (∇×Fbr) versus cross-shore (𝑥) and alongshore

(𝑦) coordinates. (b) Hovmöller diagram of parameterized ∇×Fbr as a function of cross-shore (𝑥) and time (𝑡)

at the cross-shore transect shown in vertical black dash-dotted line in panel a. The horizontal black dashed line

indicates the outer limit of the surfzone 𝑥 = −𝐿SZ, where 𝐿SZ = 172 m.

623

624

625

626

627

zation could be evaluated by comparing WR-model and WA-model with parameterization vorticity644

statistics across the surfzone and inner-shelf, as was done for one-way coupling (Kumar and Fed-645

dersen 2017a). As WR-models generate appropriate surfzone eddy (vorticity) fields (Feddersen646

et al. 2011; Clark et al. 2011; Hally-Rosendahl and Feddersen 2016), WA-models with a validated647

parameterization would also do so (Kumar and Feddersen 2017a). Such a parameterization would648

enable broad study of the interacting rip current and inner-shelf processes over larger regions and649

longer time-scales than presently possible.650
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APPENDIX A658

The effect of neglecting high wavenumbers in estimating 𝐺0659

We are interested in forcing length-scales greater than the water depth which force 2D turbulence.663

As the model surfzone depths can be ℎ = 2.5 m, our interest corresponds to wavenumbers up to664

𝑘𝑦 = 0.2 m−1, corresponding to 5 m length-scales. Here, we examine the effect of neglecting665

wavenumbers above 𝑘𝑦 = 0.2 m−1 on𝐺0 by comparing the vorticity forcing magnitude𝐺0 calculated666

by integrating 𝑆∇×Fbr only up to 𝑘𝑦 = 0.2 m−1,667

𝐺0 =

√︄∫ 0.2m−1

0.0017m−1
𝑆∇×Fbr d𝑘𝑦 , (A1)
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to that over all wavenumbers668

𝐺full =

√︄∫ 0.5m−1

0.0017m−1
𝑆∇×Fbr d𝑘𝑦 . (A2)

The 𝐺0 neglecting high wavenumbers (A1) is slightly smaller than but is highly correlated (𝑟2 =669

0.98) with the full vorticity magnitude 𝐺full (Fig. A1). The root-mean-square error is small670

(0.0032 s−2) relative to the variance of 𝐺full. Thus, the variance at 𝑘𝑦 > 0.2 m−1 is small and 𝐺0671

is representative of the vorticity forcing standard deviation.672

APPENDIX B673

The breaking wave vorticity forcing width function and relationship to 𝐶X674

We demonstrate the lagged-covariance of a single width envelope function 𝑊 (𝜃) in the domain675

from −Λ/2 to Λ/2, where Λ is the separation between wave crests. We assume that Λ≫ 𝑐𝜏. Let676

the functional form for 𝑊 (𝜃) be677

𝑊 (𝜃) = 𝐴1
cos 𝐴4

exp
(
−𝐴2

|𝜃 |
𝑐𝜏

)
cos

(
𝐴3

|𝜃 |
𝑐𝜏

+ 𝐴4

)
(B1)

With (B1), we have678

⟨𝑊 (𝜃)𝑊 (𝜃 +Δ𝑥)⟩ = 1
Λ

∫ Λ/2

−Λ/2

𝐴2
1

cos2 𝐴4
exp

(
−𝐴2

|𝜃 |
𝑐𝜏

)
cos

(
𝐴3

|𝜃 |
𝑐𝜏

+ 𝐴4

)
exp

(
−𝐴2

(
|𝜃 |
𝑐𝜏

+ Δ𝑥

𝑐𝜏

))
× cos

(
𝐴3

(
|𝜃 |
𝑐𝜏

+ Δ𝑥

𝑐𝜏

)
+ 𝐴4

)
d𝜃

=
𝑐𝜏 𝐴2

1
Λcos2 𝐴4

exp
(
−𝐴2

Δ𝑥

𝑐𝜏

) (
𝐵1 cos

(
𝐴3

Δ𝑥

𝑐𝜏
+ 𝐴4

)
−𝐵2 sin

(
𝐴3

Δ𝑥

𝑐𝜏
+ 𝐴4

))
=
𝑐𝜏 𝐴2

1

√︃
𝐵2

1 +𝐵
2
2

Λcos2 𝐴4
exp

(
−𝐴2

Δ𝑥

𝑐𝜏

)
cos

(
𝐴3

Δ𝑥

𝑐𝜏
+ arctan(𝐵2/𝐵1) + 𝐴4

)
, (B2)
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where679

𝐵1 =

∫ Λ/2

−Λ/2
exp(−2𝐴2𝜃) cos(𝐴3𝜃 + 𝐴4) cos(𝐴3𝜃)𝑑𝜃, (B3)

𝐵2 =

∫ Λ/2

−Λ/2
exp(−2𝐴2𝜃) cos(𝐴3𝜃 + 𝐴4) sin(𝐴3𝜃)𝑑𝜃, (B4)

where 𝜃 =
|𝜃 |
𝑐𝜏

is the dummy variable for integration. To calculate the free parameters (𝐴1, 𝐴2, 𝐴3,680

𝐴4), we note that ⟨𝑊 (𝜃)𝑊 (𝜃 +Δ𝑥)⟩ = 𝐶X(Δ𝑥). Therefore681

⟨𝑊 (𝜃)𝑊 (𝜃 +Δ𝑥)⟩ =
𝑐𝜏 𝐴2

1

√︃
𝐵2

1 +𝐵
2
2

Λcos2 𝐴4
exp

(
−𝐴2

Δ𝑥

𝑐𝜏

)
cos

(
𝐴3

Δ𝑥

𝑐𝜏
+ arctan(𝐵2/𝐵1) + 𝐴4

)
=

1
cos (𝐶3)

exp
(
−𝐶1

Δ𝑥

𝑐𝜏

)
cos

(
𝐶2

Δ𝑥

𝑐𝜏
+𝐶3

)
. (B5)

Matching the coefficients yields682

𝐴1 =

√
Λcos 𝐴4√

𝑐 𝜏 cos𝐶3(𝐵2
1 +𝐵

2
2)1/4

(B6)

𝐴2 = 𝐶1 (B7)

𝐴3 = 𝐶2 (B8)

𝐴4 + arctan(𝐵2/𝐵1) = 𝐶3. (B9)

Note with (B6) and (B9), ⟨𝑊 (𝜃)𝑊 (𝜃 +Δ𝑥)⟩ (Δ𝑥 = 0) = 𝐶X(Δ𝑥 = 0) = 1. Solving (B6) - (B9) results683

𝐴1 = 3.16
√︁
Λ/𝑐𝜏 (B10)

𝐴2 = 3.57 (B11)

𝐴3 = 1.82 (B12)

𝐴4 = 1.10. (B13)
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