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Chapter 1

Lecture: Review of Linear Surface Gravity
Waves

1.1

Definitions

Here we define a number of wave parameters and give their units for the surface gravity wave

problem:

1.2

wave amplitude a : units of length (m)

wave height H = 2a : units of length (m)

wave radian frequency w : units of rad/s

wave frequency f = w/(27) : units of 1/s or (Hz)

wave period 7" - time between crests: 7' = 1/ f : units of time (s)
wavelength A - distance between crests : units of length (m)
wavenumber k£ = 27/ : units of rad/length (rad/m)

phase speed ¢ = w/k = A\/T : units of length per time (m/s)

Statement of the full problem

Here we assume that readers have a basic understanding of fluid dynamics and particularly (irro-

tational) potential flow. The derivation here for linear surface gravity waves follows that of Kundu

(XXXX), but is found in many other places as well.

Consider:



e plane waves propagating in the +x direction only.
e The sea-surface 7 is a function of = and time ¢ : n(x, t)
e Waves propagating on a flat bottom of depth h.

Thus water velocity is 2D and is due to a velocity potential ¢
u= (u,0,w) =Vo
As from the continuity equation,
V-u=0

, this implies that in the interior of the fluid
V3¢p = 0. (1.1)

Next a set of boundary conditions are required in order to solve (1.1). These classic boundary

conditions are
1. No flow through the bottom: w = d¢/0z = 0 at z = —h.
2. Surface kinematic: particles stay at the surface: Dn/Dt = w at z = n(z, ).
3. Surface dynamic: surface pressure p is constant or p = 0 at z = n(z, t)

The solution to (1.1) with the boundary conditions is a statement of the exact problem for
irrotational nonlinear surface gravity waves on an arbitrary bottom. As such it includes a lot of
physics including wave steepening, the onset of overturning, reflection, etc. There are models that
solve (1.1) with these boundary conditions exactly. This does not include dissipative process such

as full wave breaking, wave dissipation due to bottom boundary layers, etc.

Simplifying Boundary Conditions: Linear Waves

Boundary conditiosn #2 and #3 are complex as they are evaluated at a moving surface and thus
they need to be simplified. It is this simplification that leads to solutions for linear surface gravity
waves. This derivation can be done formally for a small non-dimensional parameter. For deep
water this small non-dimensional parameter would be the wave steepness ak, where a is the wave
amplitude and £ is the wavenumber. Here, the derivation will be done loosely and any terms that

are quadratic will simply be neglected.



Surface Kinematic Boundary Condition

Lets start with the #2 the surface kinematic boundary condition.

Do _on . o0 _

Dt_8t+u8t_w (1.2)

z=n
Neglecting the quadratic term and writing w = 0¢/Jz we get the simplified and linear equation

on _ 99

ot 0z (1-3)

z=n
However, the right-hand-side of (1.3) is still evaluated at the surface 2 = 1 which is not convenient.
This is still not easy to deal with. So a Taylor series expansion is applied ot d¢/0z so that

96| _ 99 ¢
0z Oz "azz

zZ=n

(1.4)

z2=0 2=0

Again, neglecting the quadratic terms in (1.4), we arrive at the fully linearized surface kinematic

boundary condition

on _ 09

— 1.
ot 0z (1.5

z=0
Surface Dynamics Boundary Condition

The surface dynamic boundary condition of pressure is constant (or zero) along the surface is a
nice simple statement. However, the question is how to relate this to the other variables we are
using namely 7 and ¢.

In irrotational motion, Bernoulli’s equation applies

0 1
—(b+§|V¢|2+§+gz=0

5 (1.6)

z=n
where p is the water density and g is gravity. Again, quadratic terms can be neglected and if p = 0

this equation reduces to

d¢

— +gn=0 (L.7)

z=n
This boundary condition appears simple but again the term d¢/0t is applied on a moving surface

7, which is a mathematical pain. Again a Taylor series expansion can be applied

99| _ 09 Fo| 09
ot~ ot Totoz|_,~ ot

zZ="

(1.8)

z=0 2=0

z=

once quadratic terms are neglected.



Summary of Linearized Surface Gravity Wave Problem

Vi =0

%:O, at z = —h
%—%, at z=10
%:—gn, at z =0

(1.9a)
(1.9b)

(1.9¢)

(1.9d)

Now the question is how to solve these equations and boundary conditions. The answer is the

time-tested one. Plug in a solution, in particular for this case, plug in a wave

1.3 Solution to the Linearized Surface Gravity Wave Problem

Here we start off assuming a solution for the surface of a plane wave with amplitude a travelling in

the +x direction with wavenumber k and radian frequency w. This solution for n(z, t) looks like

Next we assume that ¢ has the same form in = and ¢, but is separable in z, that is

Thus we can write

n = acos(kx — wt)

¢ = f(z)sin(kx — wt)

& f

— {_ — k2f] sin(...) = 0.

dz?

The term in [| must be zero identically thus,

d>f
—= —k’f=0
72 f=0,

which as a linear 2nd order constant coefficient ODE has solutions of

and by applying the bottom boundary condition 0¢/0z = df /dz = 0 at z = —h leads to

f(2) = AeF* 4 Be

B = Ae ?kh

(1.10)

(1.11)

However we still need to know what A is. Next we apply the surface kinematic boundary condition

(XX)

on 09 B
ETi az,atz—O



which results in
awsin(...) = k(A — B)sin(...)

which give A and B. This leads to a expression for ¢ of

_ aw cosh[k(z + h)]

= e iy sinlhr = ) (1.12)

So we almost have a full solution, the only thing missing is that for a given a and a given &, we don’t
know what the radian frequency w should be. Another way of saying this is that we don’t know
the dispersion relationship. This is gotten by now using the surface dynamic boundary condition
by plugging (1.12) and (1.10) into (XX) and one gets

_a_chosh(k:h)__a cos(. )
k simh(kh 9] P

which simplifies to the classic linear surface gravity wave dispersion relationship
2 _
w” = gk tanh(kh) (1.13)

The pressure under the fluid is can also be solved for now with the linearized Bernoulli’s
equation: p = pgz + pd¢/0t. This leads to a the still and wave part of pressure p,, = pd¢ /0t
The full solution for all possible variables is

n(z,t) = acos(kz — wt) (1.14a)

d(x, 2,t) = %’"%W sin(kz — wt) (1.14b)
u(w, z,t) = aw%w cos(kz — wt) (1.14c)
w(z, 2,t) = aw%@)hﬂ sin(kz — wt) (1.14d)
pu(z, 2,) = L “I:’ : COS;L’;((ZICZ)M cos(kz — wt) (1.14e)

Implications of the Dispersion Relationship

The dispersion relationship is
w? = gk tanh(kh)



and is super important. To gain better insight into this, one can non-dimensionalize w by (g/h)'/?
so that

w?h
o f(kh) = khtanh(kh) (1.15)
So first we review tanh(z),
ef —e "
tanh(r) = — 1.16
anb() = S (116

and so for small z, tanh(z) ~ x and for large x, tanh(x) ~ 1.
Here we define deep water as that were the water depth A is far larger than the wavelength
of the wave ), ie A\/h < 1 which can be restated as kh > 1. With this tanh(kh) = 1 and the

dispersion relationship can be written as

2h
Y kb= W? = gk (1.17)
g
with wave phase speed of
W g
=—=,/= 1.18
=7 2 (1.18)

Similarly, shallow water can be defined as where the depth & is much smaller than a wavelength
A. This means that kh < 1, which implies that tanh(kh) = kh and the dispersion relationship

simplifies to
wh

2
- (kh)%, = w? = (gh)k* = w = (gh)"?k (1.19)
and the wave phase speed
c= % = \/gh (1.20)



1.4 Homework

l. In A =1mand h = 10 m water depth, what frequency f = w/(27) (in Hz) corresponds to
kh = 0.1, kh = 1, and kh = 10 from the full dispersion relationship? Make a 6-element
table.

2. Plot the non-dimensional dispersion relationship w?h/g versus kh. Then plot the shallow
water approximation to this (1.19). At what kh is the shallow water approximation in 20%

error?

3. For h = 10 m, plot f versus k for the full and shallow water dispersion relationship. At what

(f, k) is the shallow water limit in 10% error?

4. The shallow water approximation to the non-dimensional dispersion relationship (1.19) is
w?h/g = (kh)?. Derive the next higher order in kh dispersion relationship from the full
dispersion relationship w?h/g = kh tanh(kh). What is the corresponding phase speed c?

5. Plot this next-order in kh non-dimensional dispersion relationship. At what kh is this new
relationship in 20% error? Note the difference in the kh limit of usefulness relative to the

shallow water approximation.

6. Again, for h = 10 m, plot f versus £ for this higher-order in k/ dispersion relationship. At
what (f, k) is this in 10% error?

10



Chapter 2

Lecture: Mean Properties of Linear Surface
Gravity Waves, Energy and Energy Flux

Here, mean properties of the linear surface gravity wave field will be considered. These properties
include wave energy, energy flux, and mass flux, which is also known as Stokes drift. In a future
lecture we will consider wave momentum fluxes. These properties are important as they help us
understand how the wave field affects the circulation on time-scales much slower than the waves
themselves. Some of these wave properties will be depth averaged and others will not be, so keep
that in mind. Furthermore, aside from wave-energy, the wave-aveaged properties are all fluxes of

a sort - either energy, mass, or momentum. So without further ado!

2.1 Wave Energy

Wave energy F can be though of as the sum of kinetic (KE) and potential (PE) energy, £/ =
KE + PE. In this context wave energy is depth-integrated average energy of waves over a wave
period. As such it should then have units of Jm? so that by averaging wave-energy over an area,
one gets Joules (J).

Lets first calculate the potential energy (PE). This is defined as the excess potential energy due

to the wave field. Thus the instantaneous PE is

" 0 " 1 1
P9 l/ zdz —/ zdz} = pg/ zdz = =pgn* = =pga® cos*(wt). (2.1)
L L ! 2 2

Now we time-average (2.1) over a wave period and with the identidy that (1/7") fOT cos®(wt)dt =

1/2 we get
1
PE = Zpga2 (2.2)

11



Next we consider the Kinetic energy. The local kinetic energy per unit volume is p|ul|?, and so

depth-integrated this becomes

p/o lul*dz = p/o (u* + w?) dz (2.3)
—h —h
Using the solutions (1.14c and 1.14d) and depth-integrating and time-averaging over a wave-period
one gets

KE = }lpga2 / (2.4)

The first thing to note is that the the kinetic and potential energy are the same (KE = PE), that
is the wave energy is equipartiioned. This is a fundamental principle in also sort of linear wave
systems. But that is not a topic for here.

Now consider the total wave energy
1 2
E=KE+PE = SPga (2.5)

Now if one defines the wave height H = 2a, then the wave energy is written as

1
E = §P9H2 (2.6)

2.2 A Digression on Fluxes

A local flux is a quantity x velocity, so it should have unis of () m/s. For example,
e temperature flux: Tu
e mass flux: pu

e volume flux: u

Transport is the flux through an Area A. So this has units of Qm3s~! and transport 7" can be written

as

T = /u AQ dA 2.7)

An example of volume transport can be the transport of the Gulf Stream ~ 100 Sv where a Sv is
10% m3s~1. Or consider flow from a faucet of 0.1 L/s. Well a liter is 10~ m? so this faucet flow is
10~* m3s~!. A heat flux example is useful to consider. For example heat content per unit volume

is pc, T, where ¢, is the specific heat capacity with units Jm~3. This implies that by integrating

12



over a volume, one gets the heat content (thermal energy) which has units of Joules. So the local

heat flux is pcpTu which then has units of Wm™2. When integrated over an area,

/pcpTu ‘ndA (2.8)

gives units of Watts (W).

Here, with monochromatic waves propagating in the +x direction, we will typically consider
fluxes (but not always) in a constant yz direction. This means that the normal to the plane 7 is in
the +x direction, and that u - 7 = u, the component of velocity in the +x direction. This makes

the depth integrated flux of quantity ()
/ Qudz (2.9)

with units Qm?s~*.

Knowing flux is important for many things pratical and engineering. However, one funda-
mental property of flux is its role in a tracer conservation equation. A tracer ¢ evolves according
to

d¢

5 TV Flux =0, (2.10)

so that the divergence (V - ()) of the flux gives the rate of change. This equation can describe many
things from traffic jams to heat evolution in a pipe to the Navier-Stokes equations.

A key point to the flux is that through the divergence theorem, the volume integral of ¢ evolves

d
—/gde:/ F - hdA @.11)
dt Jy av

where the area-integrated flux F' into or out of the volume gives the rate of change. This concept

according to,

is useful in many physical problems including those with waves!

2.3 Wave Energy Flux

Now we calcualte the wave energy flux. The starting point is the conservation equation for mo-

mentum, which here are the inviscid incompressible Navier-Stokes equations,

V-u=0 (2.12a)

aa—;l +u-Vu=,p'Vp (2.12b)

Now, as before we consider only the linear terms and thus we neglect the nonlinear terms (u -

Vu). Then an energy equation is formed by multiplying (2.12b) by pu. The first terms becomes

13



(1/2)0|u|?/0t after integrating by parts. The pressure terms becomes u- Vp = V - (up) — pV - u,

and because the flow is incompressible (V - u = 0) we are left with

19u)*
L v (2.13)

which is in the form of a conservation equation being driven by a flux-divergence. In this case up
is the local energy flux. Note that this does sortof look like a classic flux (velocity times quantity)
with pressure having units of (Nm~2) which is Jm ™3, which is energy per unit volume!

So now the depth-integrated and time-averaged wave energy flux F'is

0
F= </ pudz> (2.14)
—h

The upper limit on the integral for (2.14) is z = 0 and not z = 7) because this is the /inear energy
flux and assumes that 7 is small.
Now we just need to plug in the solutions and average and we get the wave energy flux. The

pressure is the sum of the hydrostatic component p and the wave component p,, (1.14e). Because

0
</ U dz> =0 (2.15)
—h
0
F= </ pwudz> (2.16)
—h

Plugging in (1.14c) and (1.14e) results in

u (1.14c) is periodic and p is steady,

leaving

1 wl 2kh
F=_pga* |~ 1+ —1— 2.17
9P [m ( - sinh(%h)” @17)
Now the wave energy flux can can be rearranged to look like
1 2kh
F=Fc—- |1+ —— 2.18
“3 ( * sinh(?kh)) (218)

looks like a quantity times a type of velocity times a non-dimensional parameter » = (1/2)(1 +
2kh/ sinh(2kh)). Lets consider two limits, deep water: kh — oo then x — 1 and shallow water
kh — 0 gives x = 1/2.

So perhaps one could redefine the velocity associated with the flux as ¢,

1 2kh
=% (1 * sinh(2kh)> 2.19)

14



which we call the group velocity. Then the depth-integrated and time-averaged wave energy flux
is

F = FEc, (2.20)
which is analogous to the point fluxes discussed earlier.

Now how is the group velocity related to the dispersion relationship w? = gk tanh(kh)? Well

first the wave phase speed is
w  [gtanh(kh)]'/?

c=7= oy (2.21)
and
ow 1 ~1/2 -2
% =3 [gk tanh(kh)]” /" (g tanh(kh) + gk cosh™“(kh)) (2.22)
1 2kh

So ¢4, which we’d derived earlier the velocity associated with the wave energy flux, is also

0w

== (2.24)

Cg

This relationship for ¢, (2.24) can be derived in an entirely different way. Consider two waves

with slightly different frequencies
n = acos(kix — wit) + acos(kex — wot) (2.25)

where Aw = wy — wy is small. This results in wave groups that propagate with c,.

2.3.1 Hint of a Wave Energy Conservation Equation

Going back to the idea of a flux conservation relationship (2.10), we now have wave energy £ and
wave energy flux F'. Unless wave energy is created (by wind generation) or destroyed (by wave

breaking or bottom friction) we might expect that a wave energy equation such as

%—f +V-(EE) =0 (2.26)

applies for linear waves. This statement (2.26) can be more generalized as a wave-action conser-
vation equation. Such an equation can apply to a variety of linear wave situations from surface
gravity waves, to internal waves, to sound waves. This is a topic that deserves more discussion
but it belongs in a general linear waves course. But keep (2.26) in mind as it wil appear in various

guises later on.

15



2.4 Homework

1. Confirm for yourself that the units of (2.26) work out. What are the units of Fc,?

2. Assume linear monochromatic waves with amplitude a and frequency f are propagating in
the +x direction on bathymetry that varies only in z, i.e., h = h(z). If the waves field is

steady, and there is no wave growth or breaking then one can assume that

d
- (Ec,) =0. (2.27)

e In deep water, what is the wave height H dependence on water depth h?

e In shallow-water, what is the wave height H dependence on water depth h?
In both cases one can derive a scaling for H ~ f(h).

3. Directionality of the wave energy flux: Previously we considered the energy flux for waves
propagating in +x direction. Now consider waves propagating with an angle 6 to the +x

direction. What is the wave energy flux component in the +x and +y direction?

16



Chapter 3

Lecture: Wave-induced Mass Flux: Stokes
Drift

With linear surface gravity waves, at some point below the trough, the mean Eulerian velocity is
zero as (u) o (cos()) = 0. So the local Eulerian mass flux is zero below trough level. But htere is

a net wave-induced depth-integrated mass flux, (maintaining consistent notation) i.e.,

M5:<p/nudz>. 3.1
—h

This integral (3.1) can be broken down into two components

0
Msz<p/ udz>+<p/nudz>. (3.2)
—h 0

The first term of (3.2) is zero. For the second term, the linear solution only applies to z < 0 not to

z = n, however because 7 is small, we can use v at z = 0 and write

n
Mg = <P/ Ud2’> = (pnul.—o). (3.3)
0

When applying the linear solution (1.14a,1.14c) gives

1 h(kh 1 k k. FE
Mg = —pazwLH = —pga® d E.—=—.

- —_— 3-4
2 sinh kh 2 gk tanh kh w c 34)

This derivation was performed from an Eulerian point of view. With this perspective, one can
only get the depth-integrated wave-induced mass transport. One might think that the local mass
transport is zero, but it is not. What is the local mass flux at a particular depth? To answer this we
must use an Lagrangian perspective.

Consider a particle at z = 2y and x = x, how is this particle, on average, advected laterally in

the 4+ direction? The particle Lagrangian velocities are ug = dx /0t and wy = 0z/0t. Note here

17



we use the subscript “S” to denote the wave-induced Lagrangian velocities. These equations can

be integrated to give
t
z(t) = o +/ ug(wo, zo; ') dt’, (3.5)
0

and similarly for z(t). To solve for the time-averaged Stokes-drift velocity ug(z), we need to

Taylor series expand the instantaneous Lagrangian velocity around the Eulerian velocity,

9] 0
us(2) = (u(xo, 20, 1)) + <Axa—z + A28_Z> (3.6)

where Ax and Az are the orbital excursions. The first term in (3.6) is zero as this is the Eulerian

velocity. which can be derived from the linear solutions which for deep water are:

Ax = —aexp(kzo) sin(kz — wt) (3.7a)
Az = aexp(kzg) cos(kx — wt) (3.7b)
? = —akw exp(kzp) sin(kx — wt) (3.7¢)
x
? = akw exp(kzo) cos(kx — wt). (3.7d)
z

Evaluating the 2nd term of (3.6) gives for deep water
us(2) = (ak)’cexp(2kz), (3.8)

which as ak must be small, then it is clear that g < c. One can then depth-integrate over the

water column to get the mass transport

0 (ak)?c 1 w FE
M — 1 d — = — 2-—:— 3
S p/ us(2)dz = p>—— = Spga i (3.9)

—0o0

as g/w = cin deep water. Note that this is the same result as for the Eulerian derivation!

18



Homework

The arbitrary depth-dependent definition of the Stokes-drift velocity is

_ , cosh[2k(z + h))]
us = (ak)c 2 sinh?(kh)

(3.10)

1. Write out ug for shallow water (small kh). Is there another non-dimensional small parameter

that comes out?
2. Can you think of a limit on this new small parameter? Where would it be unphysical?

3. For shallow-water, what is the depth-integrated wave-driven transport M; = p fi]h ugdz?

Does it differ from the other wave-induced transport estimates (3.4?

4. For a shallow-water infinite re-entrant channel of depth 4 = 1 m and H = 0.1 m, what is

us? What is the depth-averaged Eulerian flow?

5. Same as 3., but for a finite channel where waves dissipate into a sponge layer. If there is no

piling up of water at the end of the channel what is the depth-averaged Eulerian flow?
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Chapter 4

Lecture: Wave-induced Momentum Fluxes:
Radiation Stresses

Here we derive the wave-induced depth-integrated momentum fluxes, otherwise known as the
radiation stress tensor S. These are the 2nd-order accurate momentum fluxes that can be derived
from the linear solutions for surface gravity waves. These solutions for radiation stresses were
derived in a series of papers my Longuet-Higgins and Stewart in 1960,1962. Here we follow the
derivation given in Longuet-Higgins and Stewart (1964).

First to review we’ve considered the wave-induced mass flux Mg (3.1)

7 0 E L?
Msz<p/ udz>:p/ ugdz = —, p[—]
—h —h C T

and wave-induced energy flux F' (2.14),

0 L4
F = </ pudz> = Fcg, p {ﬁ]
—h

What about momentum fluxes? Now these are derived directly from the inviscid Navier Stokes

equations, which have the form (in vector index notation),

aui
T

Thus, as with energy flux, to have a standard flux-gradient balance, we must also consider the

= —pV - (ugu; +p). 4.1)

pressure term.
The flux across a vertical (yz) plane at x = x, with normal to the plane of 7 = (1,0,0) is

pu? + p. Which vertically integrated and time-averaged becomes

< / Z(qu +p) dz> (4.2)
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which has units of pL3/T? or mass per time squared. As we are considering the wave-induced
mass flux, we have to subtract the mass flux from when there is no motion. Obviously, there is
no velocity component in still water, but there is a hydrostatic pressure component. As before, the
pressure

P = Po + Pw, (4.3)

is broken down into hydrostatic (py = —pgz, note we don’t use p any longer) and wave-induced

(pw) contriputions. Thus the wave-induced depth-integrated and time-averaged momentum flux is

0
Spz = </77 (pu® + p) dz> —/ o dz 4.4
“h —h

Note that this is one component of a 2D tensor. We will derive this component first and then derive
the others.

This definition of S, can be split into three parts

Spr = SWU + 52 1 5B where (4.5a)
n

S — < / pu? dz> (4.5b)
—h
n

S — < / Do dz> (4.5¢)
—h
n

S — < / pdz> (4.5d)

0
(4.5e)

where the first term is the momentum flux due to velocity, the 2nd term is the wave-induced pres-
sure change in the water column, and the third term is the contribution of total pressure from crest
to trough. These terms are evaluated separately using the linear theory wave solutions.

Now consider Sg(g},:), as it is a 2nd order quantity with u?, it means that the upper-limit of inte-

gration z = 7 is replaced with z = 0, and the mean is transfered inside the integral so that
0
S — / plu®) dz, (4.6)

which is essentially the depth-integrated Reynolds stress induced by waves. Similarly for Sgﬁ? the

averaging operator can be moved inside the integrand

n
Si,? = / (p) — podz 4.7)
—h

that this term arises from the change of mean pressure in the fluid. Longuet-Higgins and Stewart

(1964) have a trick to evaluating this term. In a hydrostatic case, the pressure supports the weight
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of the water above, i.e., p = pgz. However, in a general (non-hydrostatic) cases, it is that mean

vertical momentum flux that supports the mean weight, i.e.,

(p+ pw?) = —pgz = py (4.8)
or
(p) — po = p(w?). (4.9)

Thus the mean pressure in the water column with waves is less than the hydrostatic pressure and

one can write

0
S@ = / p{w?) dz (4.10)
—h
Combining the first two terms gives
0
S + 52 :/ p ((u®) — (w?)) dz 4.11)
—h

which is > 0 due to the linear surface gravity wave solution (1.14). One can use the linear wave

solutions to evalue (4.11) and one gets

kh 2kh
S 4 @ — pog2 P _ g 2R 4.12
wr T O = P9 sinh(2kh) sinh(2kh) (+12)

This has deep- and shallow water limits.... DISCUSS!
The third term S&2 is easily evaluated as near the surface pressure is approximately hydrostatic,
ie p = pg(n — z) and

E
— 4.13
5 (4.13)

K 1
S8 = </ pd2> = pg{n* = n*/2) = 5pg (") =
0
as (n?) = a*/2. Combining it all, one get

2kh 1
Spe = E [—sinh(%h) + 51 . (4.14)

In deep water (kh— > 00), 2kh/ sinh(2kh) — 050 S,, = E/2. In shallow water 2kh/ sinh(2kh) —
1so0S,, =3E/2.
Now, a similar exercise can be performed for the other diagonal component of the tensor S,

which results in
K 0 kh
Syy = Spz = / (pv? +p)dz —/ podz = B——mrr (4.15)
v . “h “h sinh(kh)
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as v = 0 when the wave propagates in the +a direction. Thus in deep water S,, — 0 and in

shallow water S,,, = E'/2. The off-diagonal component of the radiation stress tensor S, is written

Say = </77 uv dz> , (4.16)
—h

which again, keeping only terms up to 2nd order, we replace the upper-limit of integration with

as

z = 0, and move the time-average inside the integral to get

0
Sxy:/ (uv) dz. 4.17)

—h

For waves propagating in the +x as for waves (uv) = 0.
Now how to more compactly represent the radiation stress S? Recall that
1 { 2kh

cofe= 3 )+1], (4.18)

sinh (2%

so therefore

 (Sax S\ 2¢,/c—1/2 0
S_(Syx Syy>_E( 0 cg/c—1/2 (4.19)

For monochromatic waves propagating in the +x direction. What happens if the coordinate system
is rotated? If the coordinate system of a vector v is rotated counter-clockwise by an angle 6, then

the vector components in the new coordinate system can be written as
U; = Rijvj (420)

where

sinf  cosf @.21)

cosf) —siné
ij —
The rules for tensor transfomation under a rotated coordinate system are analogous and have com-

ponents
S’ = RTSR (4.22)
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Homework

1. For waves propagating at an angle 6 to +x, use the tensor transformation rules (4.22) to

calculate the off-diagonal term of the radiation stress tensor S,,.

2. Recall the the wave-energy flux (to 2nd order) is ' = E'c, for a monochromatic wave prop-
agating in the 4z direction in shallow water when the depth only varies in the cross-shore

direction h = h(z). In homework #2, you found that this gives a wave height dependence
on depth H < f(h).

(a) For the same situation (shallow water, h = h(x)), derive an expression for S, as a
function of depth.

(b) Now consider that h = Sz, where [ is the beach slope. What is the cross-shore gradient
of S, that is what is dS,, /dx.

(¢) Why does the momentum flux .S,, vary while the energy flux is uniform? What does

this imply about momentum?
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Chapter 5

Lecture: Wave Setup and Setdown

Radiation stresses can be applied in many cases where surface gravity waves generate flows on
time- and length-scales longer than waves. This is particularly true when there are spatial gradients
in the average wave properties (i.e., wave energy [), such as what happends when waves shoal,
refract, encounter a current, and break.

Here we shall consider the simplest such applications, but an extremely important one of what
happens when waves shoal as the water depth decreases, and briefly what happens when waves

begin to break. Other, more complex applications will be addressed later.

5.1 Derivation

Consider the case of no mean flow, waves approaching the shore with bottom slope dh/dx [FIG-

URE] To analyze what happends in this situation we consider

1. The wave induced momentum flux S, across two vertical planes separated by dz such that

the change in momentum flux is dsS,, /dz.

2. The response of the depth-integrated mean pressure p = pg(7 — z) to this change in S,,.
We now allow here the mean surface 7 to variable so that the surface can adjust to the wave

field. This term is vertically integrated to

" op "9 — ) NG
— —dz = — ——dz = — h)—. 5.1
i pg/_h an 42 = P9+ h)o (5.1)
Conservation of x-momentum then implies that
dn  dS..
—pg(n+ h)— = 5.2
pg(in+h)— + —= =0, (5.2)
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where note that this is a non-linear 1st order ordinary differential equation for the mean sea-surface
7). This equation can no be used to derive wave-induced setdown and setup which are the depres-
sion of the sea-surface during shoaling and the elevation of the sea-surface during wave breaking.
Sometimes this ODE (5.2) is simplified by assuming that 7 < h yielding
dn 1 dS,.
dr pgh dz

(5.3)

In order to solve the ODE for 7, one only needs to specify the wave field to estimate S,, and

specify a boundary condition for 7. Here, we will consider two regions

1. Shoaling, with conserved wave energy flux Fc,, which leads to set-down.

2. Surfzone wave breaking which leads to set-up.

5.2 Wave-induced set-down

There are many examples of solutions to the wave set-down problem and in particular the original
solution given by Longuet-Higgins and Stewart (1962) is most elegant yet complex. Here, we

shall consider the far simpler problem of the linear set-down problem in shallow water where

See = 3E/2.
Now in this case the local wave energy
Eoce 1 ho\
E =" = "pgal | — . 5.4
Cg 2pga0 < h ( )

where variables with subscript “0” indicate that they are at the location where the boundary condi-

tion comes in. Now the cross-shore momentum equation

di 1 dS,  3aZhy* 1d(h7'7?) 55)
de  pgh dx 4 h dx '
_ 3a3hy* 1 L spdh _ a3y () 56
4 2 dr 2 dr '
This equation can be integrated from offshore z( to onshore at x
dn 1 _
/ ! = q(x) — 7o = —5aohy”” (ff?’/2 — hy 3/2) . (5.7)

At this point we can redefine the sea-surface at x( to be zero, i.e., 7y = 0. Now if h < hy, this
implies that (hfg/ 2 — hg 8/ 2) > 0 which implies that

1 , )
i(z) = —§agh3/ 2 (h*m el 2) . (5.8)
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is negative for shoaling waves.

Note that this solution is relatively limited to shallow water situations. The beautiful and com-
plex solutions for 7 valid for any kh given in Longuet-Higgins and Stewart (1962) but the primary
point is made here. For shoaling waves, as the wave amplitude (or height) increases, the sea surface

is depressed.

5.3 Surfzone

In order to describe the state of the sea-surface elevation 7 inside the surfzone where waves are
breaking, one has to first describe the waves. We will examine this in detail later, but for now let
us assume heuristically that v = H/h is a known constant applicable inside the surfzone. This

implies that a = «yh/2 and plugging into S, = 3F /2 results in

3
Sie = —pg7°h. 5.9
16797 (5.9)
Using this and plugging into the linear setup equation (5.3) one gets
dn 3 ,dh
N puiy 5.10
dz 8" dx (5.10)

Now if the beach slope dh/dx is monotonic and decreases farther onshore then dh/dx is negative
and so dn/dz is positive, that is the sea surface tilts up. Note that this can be integrated from the
breakpoint z; onshore and for a planar beach
3
An = —gnyAh. (5.11)
where Ah = h — hy. As Ah is negative, this implies that A7 is positive.
Now recall that this form for the wave-induced set-up assumes 7 < h. This will clearly not
be true near the shoreline where the still water depth goes to zero. The set-up problem can also be

examined with the full non-linear relationship (5.2), rewritten as
dij 1 dSu

dv — pg(n+h) dz’ (5.12)
and instead of (5.9), we write S,, = &pgy?(7 + h)?. With this we can write
Z—Z = _272 <j—z - Z_Z) (5.13)
T (14 272>_1 - (5.14)
% _ K% (5.15)
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Figure 5.1: Profile of mean water level 77 and the envelope of wave height for a typical experiment
with Hy = 6.5 cm, T" = 1.1 s, and beach slope § = 0.082. (from Bowen et al., 1968).

where
K= (1+3y*/8)7" (5.16)

Thus the effect on including the full nonlinear depth is to reduce the set-up. This can already be

seen from (5.12) that within the surfzone (77 + k) > h and so the setup slope will be smaller.
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Figure 5.2: The ratio of K = (dn/dz)/(dh/dz) as a function of v = H/h. The difrent symbols
represent different experiments and the solid line represents the theory (5.16). (from Bowen et al.,
1968).
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Figure 5.3: Locations of deeply buried pressure sensors used to measure setup (solid circles),
co-located unburied pressure sensors, current meters, and sonar altimeter (open circles), near-bed
pressure sensors (open diamonds), and the conductivity sensor (asterisk). The mostseaward 11
setup sensors were accurate Paroscientific gages. All pressure measurements were corrected for
temperature effects. The solid curves are selected beach profiles measured between 1 September
and 31 November The thick black curve is the 13 September profile. The x axis is positive offshore
with the origin at the location of the offshore sensor. (from Raubenheimer et al., 2001)
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Figure 5.4: Observed (a) offshore (r = 0 m) significant wave height and observed (dotted) and
predicted (solid) setup at cross-shore locations (b) x = 250 and (c) x = 375 m versus time. The
horizontal dotted line in (c) is the still water level (setup equal to 0.0 m). (from Raubenheimer
et al., 2001)
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Figure 5.5: (a) Observed significant wave height on 13 Sept, and observed (open circles) and
predicted (solid) setdown and setup on 13 September at (b) high tide and (c) low tide, and (d)
measured beach profile versus cross-shore location. The horizontal dotted lines in (b) and (c) are
the still water level. The horizontal dotted lines in (d) are tidal elevations during the two runs.
(from Raubenheimer et al., 2001)
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Homework

1. Suppose you have a planar beach profile with h = Sz. Consider an onshore wind with given
wind stress 7 (units of Nm~2). With the boundary condition that ; = 0 at & = 10 m, derive

an expression for the wind-induced setup onshore from 2 = 10 m.

2. Wind stress is often represented as 7¥ = pCy|U|U where the drag coefficient C; ~ 1.5 X
1073, and U is the “wind speed”. For a beach slope of 3 = 0.02, what is the total wind
induced setup in &~ = 0.5 m depth for cross-shore winds of U = 1 m/s, U = 10 m/s,

U = 50 m/s. Which one of these speeds is most consistent with a hurricane?

3. In h = 10 m water depth for normally incident waves with period of 7" = 18 s (shallow

water), calculate the expression for .S, as a function of wave height.
4. Calulate S, for different incident wave heights: H =0.5m, H =1m, H =2 m.

5. How big is the wave-induced momentum flux relative to the total wind-induced forcing?

This is a bit of a trick question - check your units!
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Chapter 6

Lecture: Random Waves, Part 1

Up to now we have been considering linear monochromatic waves that propagate in the +x direc-
tion, i.e.,
n(z,t) = acos(kx — wt). (6.1)

However, monochromatic waves do not exist in the real ocean. Waves in the ocean can be though
of as a superposition of a number of monochromatic waves each with their own phase. At first,
let’s assume that all this superposition of waves still propagate in the 4z direction. Using the tools

of Fourier analysis, this can be written as
n(x,t) = Z a; cos(k;x — wit + ¢;) (6.2)

where at each different radian frequency w;, there is an amplitude a;, a wavenumber k; that obeys
the dispersion relationship, and a phase ¢;. A common and simple example is two waves with
slightly different frequencies where the wave envelope propagates with ¢,. See lecture XX.

Equation (6.2) is also often written as a function of a continous process, i.e.,
n(x,t) = /a(w) expli(kw)xr — wt)] dw + c.c. (6.3)

where the amplitude a(w) is now complex, and c.c. represents the complex conjugate. Here, the

phase information is included in the complex wave amplitude a(w).

6.1 Random Waves as a Gaussian Processes

Random waves are often analyzed based on the assumption that the sea-surface is a Gaussian

process - that is that 7 has a Gaussian probability density function (pdf) of the form

_ 1 U
P(n) = Un\/% exp [—@} . (6.4)
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Figure 6.1: (a) Monochromatic sea-surface elevation 7 = 0.5 cos(wt) versus time for wave period
of T = 8 s which has variance (n*) = a2/2 = 0.125 m?. (b) Narrow-banded random wave
with frequency 7" = 8 s and same variance as in (a) . The red dashed curve represents the wave
envelope. (c) probability density function (pdf) of (a) - note the non-Gaussian nature. (d) pdf of
narrow-band wave field in (b). The blue is the pdf and the red dashed is the Gaussian pdf with the
variance of (n%) = 0.125 m?.

Now where it gets interesting is that the pdf for a monochromatic wave where 1 = a cos(wt)
where a = 0.5 mand 7" = 27/w = 8 s (Figure 6.1a) is not Gaussian. In fact it looks down-
right anti-Gaussian (Figure 6.1c). However, when one starts to linearly super-impose a number of
monochromatic waves with different frequencies, the resulting pdf rapidly becomes Gaussian as a
result of the Central Limit Theorem.

An example will make this concrete. Consider a narrow banded wave field with

N
n= Z a; cos[2n(f + f)t] (6.5)
i=—N
where f = 7! and
%
a; X exp [— 20;] (6.6)

where the frequency spread o; = 0.01 Hz, and f’ varies from i\/§af. For N = 175 and the

variance set to that for the monochromatic wave ({(n?) = 0.52/+/2), the narrow-banded random
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wave time series 1s groupy (Figure 6.1b). The resulting pdf is indistinguishable from Gaussian
(Figure 6.1d).

One important point to note here is that we’ve neglected wave nonlinearities. This will have
the tendency to make the pdf be non-Gaussian. However, for many applications, Gaussian pdf for

the sea-surface is a good approximation.

6.2 Wave spectra and wave moments

Now as random ocean waves result in a sea-surface with a Gaussian probability density function,
then spectra are the appropriate statistical tool to use to describe the statistical properties of the

random wave field. Specifically the spectrum S, of the sea-surface 7 is defined as

Sun(f) = (a(f)a*(f)), (6.7)

where for convencience we now use cyclic frequency f (as opposed to radian frequency w) () is

an ensemble averaging operator that normalizes by the frequency resolution so that

(n*) = /0 ) Spn(f) df. (6.8)

Now, this is not a course aobut time-series and spectral analysis - the tools that are used to
analyze ocean waves. However, we do need to use spectra going forward as a means to describe
random wave fields. Linear monochromatic waves are described by an amplitude a and frequency
. and it follows that linear random waves are defined by S,,,,( f). For monochromatic waves a wave
height H is defined as H = 2a so that (n?) = H?/8. As we’ve seen above for random waves the
wave height varies. The root-mean-square wave height is defined similarly to the monochromatic
wave height so that H2 /8 = (n?).

However, there is another wave height definition that is often used. This is called the significant
wave height H, and is defined so that H, = +/2H,,s or H2 = 16(n?). This wave height H,
is defined because the human eye tends to note or pick out the larger waves and think of that
as the “wave height”, thus the word “significant”. It has a long history in maritime and coastal
engineering circles prior to the ability to make good wave observations.

How else can can the wave field be described? Similar to monochromatic waves we can de-
scribe a bulk frequency. There are two common choices. The first is the mean wave frequency f,

defined via the first moment of the wave spectra

Fo LIS
Sl df
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Note that the H2 or (n*) definitions are based on the zero-th moment of the spectra, i.e.,

H52 - 16/Snn(f)df-

Thus bulk properties of the random wave field are often described via moments of the wave spectra.
As we will see, this is particularly true of the descriptors for wave direction later.

The other choice for bulk wave frequency is the “peak” frequency f, which is defined as the
frequency where the wave spectrum is maximum. This actually has a mathematical definition as

the infinity norm and can be written as

R 1/m
fp=lim {/fmsnn(f)df} (6.10)

m—>00

where Sy, (f) = Sy, (f)/(1?) is the normalized wave spectrum.
Now how does one use the wave spectrum to describe mean wave quantities such as wave
energy, wave energy flux, etc.? Recall for monochromatic waves, wave energy E = (1/2)pga® =

pg{n*) (2.5). The equivalent random wave representation for total wave energy is

E=pg [ Sn()df 6.11)

or in frequency space, E(f) = pgS,,(f). The wave energy flux can be similarly defined as

F = PQ/Snn(f)cg(f) df (6.12)

that is the energy flux is the linear sum of the wave energy flux of all the individual components.

Other quantities such as the Stokes drift velocity and the radiation stresses can be similarly written.

6.2.1 Rayleigh Distribution for wave heights

As noted previously, for a random super-position of linear surface gravity waves, the sea-surface
71 has a Gaussian pdf (6.4). For a narrow banded distribution, we saw that the wave amplitudes
slowly vary. Here we derive the pdf of the wave amplitude and thus wave heights. This derivation
comes from Tim Jannsen who kindly shared it with me.

Now, we’ve established that because of the central-limit-theorem that the sum of a number
of linear waves with varying frequencies will result in a Gaussian distributed sea surface n with

probability density function P(n) given by

_ 1 Ui
P(n) = \/Tagexp {—T‘Q} (6.13)
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Figure 6.2: (blue) probability density function of the (red-dashed) wave envelope in Figure 6.1b.
The red dashed curve is the theoretical Rayleigh pdf for the amplitude 6.19.

Now lets us assume that we have a narrow-banded spectrum of waves such that locally at one spot
n = A(et) cos(wt) (6.14)

where A varies on time scales much more slowly than the main wave frequency, i.e., ¢ < w. We

can then define the approximate Hilbert transform of 7 as
¢ = A(et) sin(wt), (6.15)
and note that ¢ will also be Gaussian distributed. Now one can combine 7 and ( in another form as
Z =n+i = A(et) explitp(t)] (6.16)

where 1(t) = wt is the phase. Now the phase is uniformly distributed over [0, 27|, which implies

that ) and ( are independent so that the joint pdf P(7, () becomes

1 2 2
f%n,C)=:2WO%exp {—gﬁigfil}. 6.17)

Now, this pdf can be re-written in polar coordinates (A, ) instead of cartesian coordinates

(n, ¢). Using the rules of coordinate transformation A? = n* + (2 and dnd¢ = AdAdv in order to
satisfy that

//PWQM@Z/PMMA:L (6.18)
where the integral over the uniformly distributed v is implicit. implies that
A A?
P(A) = —= —— 6.19
@)= Zew 5] (6.19)
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This pdf for the wave amplitude is a Rayleigh pdf. If you say that H = 2A, then (6.19) can be

P(H) = L oxp {—i} ,

rewritten as

- rc?] o 8o
and if we use H2 = 80% then this can be rewritten as a pdf for the root-mean-square wave height
Hrms- 9
2H H
P(H) = 72 &P {— 72 } ) (6.20)
Homework

1. Using the wave height pdf (6.20), calculate the 2nd moment of wave height. How is this
related to the H,,s?

2. A common empirical form for the deep-water wave spectrum is the Pierson and Moskowitz

(1964) spectrum where

Syn(f) o< f7exp [—Z (fi>_ ] (6.21)

where f, is the peak frequency. Is the mean frequency f (6.9) > or < f,? Qualitatively
describe why.

3. Extra credit: For this case calculate f and how it depends upon f,. Hint, the definition of the

I" function is useful:

[(x) :/ t" et dt
0
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Chapter 7

Lecture Random waves: Part 2: Directional

Now lets go back to monochromatic waves propagating in an arbitrary direction so that
n(x,y,t) = acos(kyx + kyy — wt + @) (7.1)

where the wavenumber vector k = (k,, k) such that |k| and w satisfy the dispersion relationship.

The angle of wave propagation 6 relative to +x is

6 — tan-! (%) | (7.2)

ky = |k|cos(0) , k, = |k]|sin(6).

so that

For random, directional waves, there can be waves at different frequencies propagating at a

variety of directions at the same frequency, i.e.,

n(x,y,t) = Z Z a;; cos(kliPx + kz(fj)y — wit + ¢;5). (7.3)

(13444

Note that the “i” index corresponds to frequency and the “j” index corresponds to direction, and
that (k)2 + (k{2 = |k;|? satisfies the dispersion relationship for all wave directions j. At each

(1344

frequency w; each “5” wave component has direction

kg(ﬁij)
Oij = tanfl ﬁ (74)
or

Now for random directionally distributed waves we also need a statistical description of the

frequency-directional content of the wave field. We define a frequency-directinoal spectrum S, (f, 9)
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so that N
_ / / Syn(f.0) 8 df. (7.6)
0 —pi

where the diagnostic directional variable is # - the direction the wave is propagating in. Another
possibility is to write the spectrum as a function of (k,, k,) which has the same information content
as (f, ). In coastal applications S,,(f,#) is more common whereas in air-sea interaction studies

Syn(kz, ky) is often used. Note that with (7.6), one can recover the frequency spectrum as
| suir.opa a7
Now the question is what statistical descriptors to use for direction at a specific frquency f.

Consider the directional distribution D(6) at a particular frequency,

(f, 9)
D(9) = Sy (7.8)
f Snn [0
which results in a normlized distribution such that
/ D(6)do = 1. (7.9)

This implies at at any frequency there can be an infinite number of wave directions. So how to
define a mean wave direction? One could use a standard first moment (or called a line moment by
Kuik et al. (1988)

0= /ﬂ 0D(0) db. (7.10)

and the directional spread oy, or the standard deviation of wave angles, could be defined as

o = / (0 —0)*D(0) db. (7.11)
This moments are called “line” moments and were used prior to the mid 1980s. However, they are
not suitable for wave direction because (1) they are not periodic. Wave energy near +7 and —m
may have small oy but this line estimator (7.11) would make it large, and (2) the physical quantities
(K, ky) are based on sin and cos. Intuitively wave angle in degrees is easy to understand, but
is always used in terms of sin and cos. Thus, Kuik et al. (1988) developed mean wave angle and
directional spread definitions based on “circular” moments - those that are weighted by sin(nf)
and cos(nd).

To describe the periodic D(#), we write it in terms of a Fourier series,

= Z a, cos(nf) + b, cos(nh), (7.12)
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where the Fourier coefficients a,, and b,, are defined in the standard way

a, = % ' D(0) cos(n®) do (7.13)
by — % " D(6) sin(nf) d6 (7.14)

—T

7.1 Mean angle and directional spread

Now we ahve the possibility of defining a mean wave angle with the Fourier coefficients, in partic-

_ . [T D(0)sin(0) db A
01(f) = tan (f_ﬂﬂ D0 cos(0) d@) = tan (a_1> : (7.15)

ular

This is called 6, because it is based on the 1st Fourier modes. One could also define a mean angle
6, based on 2nd moments (e.g., Herbers et al., 1999),

- 1 b

f2(f) = = tan™" <—2> : (7.16)

2 ag

Now we can redefine §’ = 6 — 6 so that
/ D(#')sin(#")dd' =0 (7.17)

and now to define the directional spread oy, we drop the ’ from ¢’ to keep a clean nontation. By anal-
ogy with the standard 2nd moment definition (e.g., that used to calculate variance) f mZP(x)dx,
we ask how to define this quantity for circular moments? Well with small angle approximation,
sin(#) ~ 6 and sin?(#) ~ 62, and so a natural defnition for o2 is

0f = / sin®(0)D(0) db. (7.18)
The minimum and maximum range for oy can be calculated from D(#) = §(#) and for a uniformly
distributed D(6) = (27)~! limits. For the former, one gets o3 = 0 and for the latter, 5 = 1/2

1/2

and oy = 27 /2 which in degrees corresponds to ~ 40.5°. Via trigonometric transformations, the

directional spread can be written as
oa = (1/2)(1 — ag cos(20) + by sin(260)). (7.19)
Another possibility is to define o} as

i 0
oh = / 4 sin® (E) do (7.20)

as 2sin(f/2) ~ 0 is more accurate to large 6.
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7.2 Digression on how to calculate leading Fourier Coefficients

7.3 More

Note that there are directional Fourier coefficients at each frequency. That is they are functions of
frequency, i.e., a1(f), bi(f), etc. Now recall that that for monochromatic incident waves at angle
6 to +x the linear wave energy flux is /' = E¢, cos(f) (This comes from the Homework question
2 in 2.4). For directionally spread random waves, the linear wave energy flux is straightforwardly

written as,

F = /000 /7r pgSyn(f,0)cq(f) cos(9) db df. (7.21)

For the moment assume that we have waves of a single frequency f but directionally spread.

Then we can write
F = Ecg/ D(6) cos(0) do (7.22)
— Ecgal (7.23)

where F is the wave energy and c, is evaluated at f. Instead what one often sees is F' = Ec, cos(f),
that is an monochromatic-like wave field is created. But a; # cos(f) (Confirm this for yourself for

extra credit).
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7.4 Homework

1. The definition for .S, term for general random waves is

_ [T ¢(f) .
Sey = pg/o /_7r Son(f,0) (f) sin (@) cos(0) d6 df. (7.24)

Consider uni-frequency directionally spread wave field so that pgS,,(f,0) = ED(6), where D(6)
is symmetric about §. This means that for ¢ = 0 — 0, D(0') = D(—#¢").

Now this term for S, is often approximated as

Sg(jzb) = ng@ sin(6) cos(#), (7.25)
c

where the superscript “(nb)” denotes “narrow-banded” in direction. For a symmetric D(6') show

that the ratio of
Sazy

S(”b)

zy

=1-20; (7.26)

That is, the commonly used approximation (7.25), over-estimates the actual momentum flux.

2. For directionally narrow spectra shoaling on a beach with straight and parallel depth con-

tours, Snell’s law says that

in(0 = o(f) sin(f
sin(0()) = 25 5@ ) (.27

where the subscript represents the incident properties at depth hy. Now assume that the mean wave

angle is normally incident fy(f) = 0 and so for all z, §(f) = 0. However, the incident directional
spread ogo(f) # 0. Derive an expression, based on Snell’s law, that describes the cross-shore

evoloution of oy( f) for a narrow directional spectrum, that is

oo(f) = ... (7.28)

that is a function of the incident directional spread oy ( f) and other wave properties.
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Chapter 8

Lecture: Using Linear Wave Theory in the
Surfzone

In order to model the cross-shore distribution of wave heights, we have to have (1) faith in linear
theory in the nearshore and surfzone where wave nonlinearity may become important and (2) a
way to represent wave breaking. If linear theory is reasonable to use then we’ve already seen how
it can be used to shoal waves into shallow water. The first issue (1) was addressed by (Guza and
Thornton, 1980) who compared “local” and “shoaled” wave properties within and seaward of the
surfzone. We define “local” properties first.

For monochromatic waves, the relationships between 7, p, and u are given in (1.14). For
random unidirectional waves propagating in the +x direction one has a similar relationship but in

frequency space, i.e.,

Spp(f) - [%&;)hﬂ} Sml(f) (8.1)
Suulf) = {w%@)m] Sun(f) (8.2)

(8.3)

Using these spectral relationships (8.1), one can convert pressure and velocity spectra to sea-
surface elevation spectra S, (f).

Guza and Thornton (1980) compared all three spectra at locations within and seaward of the
surfzone from 6 m to 1 m depth. Very good agreement was found between all three spectra in the
sea-swell (0.05 < f < 0.03 Hz) frequency band. Thus, locally the linear theory relationships are
valid. This agreement is so well understood that it forms the bases for quality controlling surfzone
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velocity measurements (Elgar et al., 2001, 2005) where the ratio

Z*(f) = Oppl/) (8.4)

2
w cosh[k(h+zp)
(EW) (Suu(f) + va(f))
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Figure 8.1: Sea-surface elevation S, ( f) (solid) and converted horizontal velocity spectra (dashed)
versus f at three depths: (a) 4.6 m, (b) 1.8 m, and (¢) 1.1 m. (from Guza and Thornton, 1980)
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Figure 8.2: Significant wave height derived from velocity (/1) versus wave staft (/). The solid
line indicates the 1:1 relationship. (from Guza and Thornton, 1980)
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Figure 8.3: Ratio of pressure variance to (a) horizontal and (b) vertical velocity variance converted
to pressure variance using linear theory [Eqs. XX and Y'Y, respectively] vs ratio of significant
wave height Hsig [based on pressure fluctuations in the band 0.05 < f < 0.30 Hz ] to water depth
h. The 51.2-min records from AD4D, AD3U, and AD5D were sorted into 0.05-wide Hsig/h bins.
Variance ratios are shown for the power spectral primary peak frequency ( f, ) and its first two
harmonics (2f, , 3f, ). Mean values for each bin and frequency are shown as symbols, with 1 std
dev bars shown for the values for f, (std dev for the harmonics 2, , 3 f, are similar). Linear theory
predicts the ratios = 1.0. Note the different vertical scales in (a) and (b). (from Elgar et al., 2001).
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Figure 8.4: Deviation from linear theory of the phase difference be tween pressure (P) and velocity
fluctuations at f,, vs ratio of significant wave height Hsig (0.05 < f < 0.30 Hz) to water depth
h. If linear theory is accurate, the phase deviation is 0. The 51.2-min records from AD4D were
sorted into 0.05-wide Hy/h bins. Mean values for each bin are shown as symbols, with +1 std
dev bars shown for the deviations of the phase difference between pressure and cross-shore ve-
locity (U, filled circles). Std dev for phase deviations between pressure and vertical velocity (W,
open squares) and between cross-shore and vertical velocity (asterisks) are similar. At harmonic
frequencies 2f, and 3 f, phase deviations between P and U are similar to those at fp, deviations
between P and W are less than +3°, and deviations between U and W are about half those at f.

(from Elgar et al., 2001).
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Chapter 9

Lecture: Cross-shore Wave
Transformation: Shoaling and Breaking

Here we will describe the process of wave shoaling as waves enter decreasing depths. We will then
discuss how the waves transform in the cross-shore across the surfzone and how wave breaking is
represented. Essentially we will want to know how to transform S, ( f, §) or H, across the shoaling

and surfzone regions.

9.1 Wave shoaling

Here, initially let us assume that we have monochromatic waves. We will also assume the rela-
tively simple situation of alongshore (y) uniform conditions. This means that the bathymetry is
alongshore uniform (h = h(x)), and that the statistics of the wave field are also alongshore uni-
form (i.e., 9, = 0). For these situations we can use a number of theoretical results for linear waves
that will not be derived here. They come out of the conservation of wave-action. The first is that
the frequency does not change, which is a statement that the bathymetry does not vary in time.
It also is only strictly true for linear waves. This means that if the depth and wave frequency are
known, | k|, the wavenumber magnitude is also known via the linear dispersion relationship (1.13).

Second, that as the waves shoal the curl of the wavenumber is zero, or

ok, Ok
k=—"Y4_- %=
VX ox oy

0 9.1)

which is also a result of geometric optics (or ray tracing). If we assume alongshore uniform
conditions then this means that 0k, /0y = 0, which in-turn implies that the alongshore component

of the wavenumber &, = |k|sin(#) is conserved in the cross-shore. As the frequency is constant
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this implies that w/k, is constant which can be rewritten as

w o sin(f)
K[sin(0) _ sm(@) ¢ oot ©-2)

This result is known as Snell’s law, and governs the process of wave refraction on plane, parallel
bathymetry. As the phase speed c is known at all depths from the dispersion relationship, Snell’s
law implies 0(x) can be derived if § = 6y at h = hy is prescribed.

In homework (2.4), we used 0(E'¢c,)/0x = 0 to derive a wave height scaling. However, if the

waves are steady and they do not dissipate then wave-action conservation tells us that
V-F=0 9.3)

where F is the vector wave energy flux. As d, = 0, this implies that

dix [Ecycos(f)] =0 9.4)

Thus this gives us our prescription for how to transform waves in the cross-shore given knowledge

of h(x) and the offshore boundary condition.
1. Use the dispersion relationship to solve for ¢(x) and ¢, (z) (applies to shoaling and surfzone).
2. Use Snell’s law to solve for 6(z) (applies to both shoaling and surfzone)
3. Use wave energy flux conservation (9.4) to calcuate F'(x). (shoaling zone only)

This was all derived for monochromatic waves put it also applies to random waves. Step #1
is straightforward to generalize for random waves. Step #2 requires a; to be transformed in the
cross-shore, where a,(f) = [7_cos(0)D(0) df. If D(6) is known, it can be refracted shoreward
using Snell’s law giving a;(x, f). The third step is then to use wave energy flux conservation in

each frequency band,

d

(el far () = 0. ©3)

Note that using linear waves assumes explicitly that there is no energy transfer across frequencies.
This cannot occur using linear theory, but it does occur with nonlinear waves. So (9.6) may not
be a good assumption. What is often done instead is to focus not on the entire spectrum but on the

frequency integrated spectrum,

d

[ rnetnamna| o ©6)
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9.2 Surfzone Wave Breaking Type - The Irrabaren Number

Before we describe the cross-shore transformation of H(x) across the surfzone, we first discuss
teh qualitative features of depth-limited wave breaking. Note that this type of wave breaking is very
different from deep-water wave breaking. The later is a result of nonlinear interactions and wind
resulting in overturning waves. Depth-limited wave breaking is a result of linear and nonlinear
wave steepening. For example, in linear shallow water shoaling i ~ h~'/* yet clearly for a linear
wave H < 2h, as wave amplitude a cannot exceed h. This implies that at a maximum in a linear
sense H/h < 2.

But wave breaking generally begins much much before that, typically in a range of v = H/h of
v = 0.51t0 0.7. A related posultate in the surfzone is that  is a constant. This is a useful postulate
and it’s effectiveness will be examined later.

A common non-dimensional parameter to describe the type of surfzone is the Irrabaren number
Ib = 3/(Hy/Lo)"/?, where 3 is the planar beach slope, H, is the wave height at breaking, and
Ly is the deep water wave height and wavelength, respectively. Note that this can be written
as the ratio of the beach slope to the (quasi deep-water) wave-steepness. Using the deep-water
dispersion relationship 72 = Ly2m/g, Ib can also be written as a function of wave period. Also
a “deep-water” Irrabaren number of also often defined using the deep water wave height H, so
that Iby = 3/(H,/Lo)"/%. Note that with these definitions, Ib is essentially a monochromatic wave
quanitity.

This parameter /B is also known as the surf-similarity parameter (Battjes 74 add ref), and
comes from laboratory experiments with planar beaches, where it was first used to define if labo-
ratory wave breaking occurs. For large Ib, laboratory waves are reflected, which makes sense as
for § — oo one has a vertical wall which would reflect waves.

This parameter is also is useful for thinking about different classifications of surfzones. When

wave breaking is initiated, three types of the initiation of wave breaking have been described

e Spilling : Ib < 0.4 (Ibg < 0.5) : where the wave breaking is initiated by the top of the wave

spilling over without any noticable overturning (or a tube).

e Plunging: 0.4 < Ib < 2.0 (0.5 < Iby < 3.3) : where wave breaking is initiated by overturn-
ing of the top of the wave (a tube). Note that this only describes the initiation of the wave

breaking.

e Surging: Ib > 2.0 (Iby > 3.3) These waves may be breaking or not but are largely reflected.
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These limits on Ib are laboratory derived, and only describe breaking initiation. If there is enough
room before the wave reaches the shore, both spilling and plunging breakers will evolve into a
bore, often referred to as a self-similar bore.

Now what sets the breaking type? Why are some wave spilling or plunging? It has to do with
how rapidly a wave is forced to shoal. If it shoals slowly (i.e., over many wavelengths as in WKB)
then it will break as a spilling breaking. If it shoals more rapidly then wave breaking will begin as
a plunging breaker. If it shoals very rapidly then it will mostly reflect (surging).

How can this be quantified on a planar beach where h = Sx? Wave breaking begins at H, =
~vhy, thus wave breaking begins at a distance L, = h;,//3 from the shoreline. A wave with period
T will have at h;, (shallow water) a dispersion relationship L,, = (ghb)l/ 2T, where Ly, is the local
wavelength at breaking.

Now consider the ratio of the local wavelength at breaking to the width of the surfzone L.,/ L.
This is a measure of how many wavelength fit over a region of significant depth change. Expanding

this ratio (using H, = vhy so L, = Hy/(7f3), we get
Ly _ (gh)'?THB _ (g0)'/2BT

= 9.7
Ly H, ,)"* O
This can be converted to use a deep water wavelength so that this is written as
L s
= = 2P = (27) V%I 9.8
Lb ( ny) (Hb/LO)1/2 ( 77-,-}/) ( )

Using a v ~ 0.5, this means that (277)'/2? ~ 1.8. This implies that for spilling breaking, the local
wavelength at breaking has to be slightly larger than the width of the surfzone. Of course as the
waves get into shallower water, the local wavelength continues to decrease but this gives a sense
of why spilling breaking occurs. Similarly, if the local breaking wavelength is > 4 the surfzone

width, then one will get largely wave reflection - think Marine street.

9.3 The concept of constant v = H/h

9.3.1 Laboratory

e McCowan (1891) : Solitary wave theory, wave breaking begins when breaking wave height
Hy = 0.78hy,.

e Miche [1954]: Dependence on wavelength L; or period such that H, = 0.142L;, tanh(27h,/ Ly,),

which for shallow water reduces to H, = 0.89h;,.

e Many laboratory observations suggest v range between 0.7-1.2
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9.3.2 Field
e Thornton and Guza (JGR, 1982): H,,s = 0.42h inside the saturated (self-similar surfzone).

e Raubenheimer defined v; = H,/h and found that 75 o< §/(kh), which represents the frac-

tional change in water depth over a wavelength.

9.4 Surfzone Cross-shore wave transformation

In order to represent the bulk effects of wave breaking we must specify something about the wave
dissipation D,, in order to solve for Hy(x). The wave dissipation comes into the wave energy
equation (for normally incident waves),
dEc,
dx

where the question is now how to represent the wave dissipation due to wave breaking.

=D, 9.9)

9.4.1 Fraction of waves breaking

Bore dissipation must be applied to the waves that are breaking in the surfzone. Recall that the
wave height distribution even in the surfzone is Rayleigh. TG83 found that this did a good job of
representing H distributions in the surfzone.

Now of the wave height distribution, only a certain fraction are breaking. Let p,(H) be the

“conditional probability” that a wave of height H is breaking, such that

/pb(H)dH =Q (9.10)

where () is the fraction of waves breaking which is < 1. The pdf of breaking waves can be thought

of as a conditional probability written as
po(H) = W(H)p(H) (9.11)

where W (H) is the probability that waves of a certain height H are broken. It seems clear that
larger waves are more likely to be broken, but to keep things simple we choose W (H) to be a

constant so that

Hrms "
W(H) = Ay = ( 5 ) . (9.12)

This implies that W is larger for larger waves and shallower water, controlled through the ~y
paraeter - which is the same empirical parametre we have been examining throughout. Note that

this means that W (H) < 1 which is not apriori clear that this must be so!
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9.4.2 Digression on Bore Dissipation
9.4.3 Applying the model
Thornton and Guza (1983) define the bore energy dissipation per unit length for a bore to be

b LB

q
oA 9.13)

To convert this to be applicable to random waves we have to apply this only to the waves that are

breaking. By integrating over the conditional probability p,(H ) we get

This can be integr ated r GSllltiIlg in

37 FBHLD
16 ahntiyn

(D) = 9.15)

Thornton and Guza (1983) liked n = 4 An analytic solution could be found

Homework

1. For alongshore parallel contours and alongshore uniform conditions, show that the surfzone

alongshore wave forcing is
sin 80

dS,,/dz = D, (9.16)

Co

where 6y and ¢, are deep water quantities.

2. For normally incident, monochromatic waves, with wave breaking beginning at H, = ~hy,
solve for the surfzone wave height distribution H(z) using (9.9) and D = pgfH?®/(4h)
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Chapter 10

Depth-integrated model for nearshore
circulation

The depth-integrated and time- (wave) averaged equations of motion - the conservation of mass
and momentum - are often used in the nearshore and surfzone to explain a variety of circulation and
low-frequency phenomena. The idea is to average over the sea-swell waves (also known as short
waves) that leaves equations describing “long” (infragravity, tsunamis) waves, setup, alongshore
currents, and rip currents. The resulting equations look a lot like the shallow water equations but
with a few twists. Getting to that point is also not straightforward.

For notation purposes, horizontal velocities will be written in index notation so that the instan-
taneous velocity u; = (u, v) for i = 1,2 and the vertical velocity is written as w. We also define a

(sea-swell) wave velocity as u; and the short-wave averaged velocity as ;.

10.1 Mass Conservation Equation

Starting with the mass-conservation equation for an incompressible fluid, V - u = 0, we depth-

integrate resulting in

K 8ul
/_h 8xidz+w”7_ w|_, =0. (10.1)
We take advantage of the surface and bottom kinematic boundary conditions (see Eq. 1.2)
o In
— +uy = 10.2
ot oz, (102)
oh
ui@xi = w|_, (10.3)
results in the depth-integrated continuity equation,
on 0 g
— idz| =0 10.4
ot " o, Uh“ Z} (10.4)
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This equation (10.4) must now be split into mean and wave terms (u and ) and time-averaged (),

an 0 o 0 K B
E—i_axi </_huidz>+&z:i </_huidz>—0 (10.5)

The term < ffh U; dz> = M?¥ is the wave-induced (Stokes) depth-integrated mass transport (3.1).

The other term < ffh U; dz> = MP¥ is the Eulerian mean depth-integrated mass transport. This

</77 i clz> = /77 i;dz = (h+7)UF (10.6)
—h —h

where U is the depth-averaged mean Eulerian velocity. The depth-integrated continuity equation

term can be rewritten as

(10.5) can then be written as

an 0

oMS
(91:i n

[(h+7) U] +

0 (10.7)

It is also possible to write this equation in a quasi-Lagrangian form if one defines

_ 1 K
Ul = —— </ u dz> (10.8)
h+ n —h

then 5 5
n 7L
—_— . pr— 1 .
8t+8xi [(h+7)U ] =0 (10.9)
Thus
Ul =0F 4+ U’ (10.10)

when U = M? /(h + 7).
These two formulations have impliations for how cross-shore flow is represented. Consider
steady (0/0t = 0) and alongshore uniform (0/0y = 0) conditions with normally incident waves

on a beach. Then

%[(“Wﬂ] =0 = (h+7) 0" =0, - U"=0 (10.11)

But of course this implies that that the mean Eulerian flow balances the wave-induced (Stokes)
flow, i.e., UF = —U? (see HW in 3). Note that what a current meter measures is the Eulerian flow.
Both Eulerian and quasi-Lagrangian forms are correct and useful, but one has to take care not to

confuse.
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10.2 Conservation of Momentum Equation

Here we start with the Navier-Stokes equation

ou;  O(uu;)  O(wu; 0

| Huiy) | Owws) 2 0p (10.12)
ot Oz 0z ox;

~ ——
A B C D

Now when vertically integrating we will deal with terms separately.

10.2.1 Depth-Integrated & Time averaging the LHS

First consider terms A, B, and C, and integrate by parts:

(" Ou; , 0 K on
A o dz = T [/huzdz] uz|Z:77 T (10.13)
" O(uguy) 0 " on Oh
B i) gy = 9 ) dz| — (ww)|_ 2L~ (g, =L (1014
[ 25t g [[ooma] - e - o 028
U .
c:/ O) 1. (o) — (w0)] o (10.15)
_h 82

The boundary terms here can be collected. First at the surface z = 7,

n on
— (u;) {——Fu»——i—w] =0
N E)t ]8%- 2=

which equals zero due to the surface kinematic boundary condition. Similarly the terms evaluated

at the bottom (z = —h) when collected are
oh
(us) ,—— {Uaa—% - w} - 0

as the terms in the [] is the bottom boundary condition of no flow normal to the boundary (i.e., w =
udh/0z). Note that in the linear wave problem (Chapter 1) we assumed the depth to be constant
so the bottom boundary condition is w = d¢/0z = 0). The net result is that the LHs of the depth

integrated momentum equation is

9, K 0 K

Now we time-average these terms, to get (for A)

O 0 [N+ 0 gy OMS D ]
ot </h(uz + ;) dZ> = ET [(h+77)UZE] + o - > [(h+77)UiL] (10.17)
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and for B+C, evaluting the term inside the derivative,

n n n n
</ U dz> = / u;uj dz + </ Uit dz> + </ UiUj dz> (10.18)
—h J=h PR 7

s

g g ~~

I II II1

To evalute things further, we will make a crucial assumption that u; is vertically uniform, that
is that 0u;/0z = 0. This simplifies the equations significantly and allows us to proceed in a

straightforward manner. With this assumption, the term I in (10.18 becomes
u o
/ sty dz = (h+ ) USUP (10.19)
—h

Note that this neglects potential shear dispersion terms. The term III can be evaluated as

n _ n _ n _ _
</ i dz> =U’ </ ; dz> +0UF </ i dz> = UM} + UM (10.20)
] gl ]

These terms III are at times been historically neglected in nearshore dynamics. However, they are
important and will be discussed further below. The term II will be dealt with later as it makes up

part of the radiation stress (Remember Chapter 4!).

Pressure Term

The process of vertically-integrating the pressure term (D in Eq. 10.12) is similar to the other terms,

"9 o [ [ ) oh
p‘l/ Pz =p U de] —p! {plz_na—; + Paei (10.21)

h 31‘2 8351 —h axz

Here we assume that the pressure at the surface z = 7 is zero. Thus the first boundary term
(p~'p|.=,0n/0x;) disappears . Atmospheric pressure is of course not zero and subtle distinctions
can be made of this term [Smith et al. 2006], but this is not relevant for our purposes here.

Recall from the discussion of radiation stresses that the pressure when waves are present can

be broken into a hydrostatic and wave pressure (4.3)

p=p"+p"
where p = pg(7] — z). Then the boundary term at 2 = —h can be evaluated as
_ w oh
[pg (71 + h) + p*lo=n] 5 (10.22)
Ly
Now we time average the pressure term. Recall also that (p¥) = —p(w?) (See Chapter 4).
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The vertical integral term also is broken down into hydrostatic and wave terms when time-

averaged,

</1sz> = /Zpg(n—z)dz+ </1pwdz> = %pg(h—l—n)Q—F </1pwdz> (10.23)

Thus the entire pressure gradient term (LHS of EQ. 10.21) becomes

an 0 K
— 4 + w 10.24
9(h 77)(91:1- ox; </_hp da:> (1029

Note that we can combine term II in (10.18) and the 2nd term inside the derivative in (10.24) to get

Si; = </77 (pitsii; + p®) dz> (10.25)
—h

which is the definition of the radiation stress given in (4.4)!

Total Nonlinear Terms: Eulerian or Lagrangian Form

This topic was discussed nicely by Smith (2006). The momentum equation has terms of the form

% [(h+DUSUF + (UF M} + U M) + Sy (10.26)
J

Using the relationship of M7 = (h + 1)U and UF = UF + U7, the nonlinear terms can be

rewritten in terms of the total (Lagrangian variables) as

0 o
s [(h+)ULUS + (Syy — M M)] (10.27)
J
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Chapter 11

Lecture: Edge Waves

11.1 Infragravity Waves

e Low frequency short waves with period 17" > 25 sec

e Included in wave-averaged dynamics

Start with the time- and depth-averaged continuity and momentum equations

877 a — FE a s __
0 0 _ . on
E(h +7)(UE) + B [(h+0)UFUF] = —g(h+ n)a; + waves
J 7

Take away waves and we have the shallow water equations. Now with the fact that %—? =0 we

get
_ 0, on 0 _ _ 0 an
i, im j i——u; = —g(h
0 0 !
U; g4l + +7)u;| by continuity (%)
8xj
ou; aui on

divide by (h+7) — (Inviscid shallow water equation)

E * UJ 8xj N _gﬁxz

Add rotation and one gets Kelvin, Rossby, QG, etc.

The linear shallow water equations are similarly used to find wave solutions here.
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Linearize:

h+7 = h
ou;
ujaxj = 0
%Jraii(h )—OOr%+§<hu>+%(hv)_o
ou; on  Ou 87) ov 877
o~ Yo, "ot T Yar a Yoy

How do we get wave solutions?
(1) Combine continuity and momentum into single equation for
(2) Assume solutions periodic in time: 7 oc ¢!

(1)

A) time derivative of continuity

0?n 0 ou;
o2 o, (hat) =0

B) substitute 9% —> % + a%i [gh (_g;]i)] =0

For a flat bottom, we get % — gh% = 0 which looks like a standard wave equation with
c? = gh.
What happens on a slope?
)
Let n = fe™! and let h = Sz
.0 0 01
—w') = o= {gﬂx 77} ghes s =0
x dy
o*n 0%
— T4y Z 7 —p
w 77+96 +gﬁ [(% +ay2
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Step #1  Alongshore uniform standing wave solution. a% =0.

o?n  10*) w?
+ = N =
ox?  x0x? gfx

Solution using Bessel function:
n(x,t) = AJy(2kz)e™"

Linear standing wave solutions. Full nonlinear solutions were done by Carrier and Greenspan
1950s.

Step #2  Alongshore propagating wave

n(zr,y,t) = Aﬁ(a:)eikyew
0%n  10m w? .
st -0 -

0z ' 10z

Pick a solution that is bounded at the shoreline and decays offshore.

This has solutions
H(x) = e * N(x)

and with substitution:

0 daN aN 1 dN 2 0
W—%EJF +E{—kN+—1+{w N =0

da? dx g%
d®*N 1 dN w?k
ok | I N =0
da? Lc } dz * L]B:E x}
multiply by z
d’N dN w?
1— 2k 4+ |2 — k| N =
xdx2+[ }dx—i_[gﬁ } 0
define ¥ = 2kx x:%
d®’N dN w?
2% 1—#)2%k— + | = — k| =
kxdi*2+< x)kdi"—i_{gﬁ k} 0
~d2N+(1_~>dN w? 1
Yz w298k 2] T
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LaGuerre Polynomials!

where n = integer has solution

L, (z) where Ly = 1

lel—x

1
Ly= 2> —-2r+1

2
etc.
So the solution to (*x) is

Now from momentum %

w(e,y,t) = AL D
w

_ 0
= —g3. 0

vy’ + (1 —2)y +ny=0

w2

1
298k 2

1
w? = 298k <n + 5)

w? = gk(2n +1)8

1, 1) = Ae T Ly ()l

(e‘kwLNka) elky—wt)

k |
v(z,y,t) = AL ko L (2hz)eikv—w)
w



Homework

1. Consider the edge wave dispersion relationship w? = g8k, (2n + 1) on a slope of 5 = 0.02.

(a) At a edge wave period of T = 30 s, what is the alongshore wavenumber k, for n =
0,...,37

(b) At a edge wave period of 7' = 60 s, what is the alongshore wavenumber k, for n =
0,...,3?

2. In order for linear monochromatic incident waves to force an edge wave the frequency w
and k, must match. Consider a period of 7' = 20 s, at what (if any) deep water wave angles
does the alongshore wavenumber k,, of the incident wave match that of the edge waves at the

same period?

3. (EXTRA CREDIT) Consider a sloping beach and shelf with h = Szx. Now we include

rotation into the shallow water equations.

Ju an

ov on

on  O(hu)  O(hv)

5t or T oy = (11.3)

where f is constant (no [ plane)

(a) Combine the above equations to get a single PDE for 7. The trick is to take a time-

derivative of (11.1.3) and substitute and maybe even do it twice

(b) Assume a propagating edge wave solution

n = i(x) expli(k,y — wt)] (11.4)

Derive an ODE for 7)(x).

(c) Assume 7 is finite at the shoreline and decays as z — oo, find a solution for 7 and a
dispersion relationship. The trick is similar to edge waves, and recall the solution to
zy” + (1 — )y’ + ny = 0 might be relevant.

(d) How are these modes similar or different from edge waves?
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Chapter 12

Lecture: Bottom Stress Formulations for
Depth-Averaged Models

12.1 Deriving the Stress Terms

ou; n 1 0p n 1] 0 (7)) + 0
=== | — (1) + =7
ot pOx; plov; " Oz ’
N ) N~
lateral vertical

Now we have to vertically integrate as before - same trick:

"9 a9 an oh
/_ha—%(ﬂ'j)dz = a—xl/ Ty dz — sz|z=na_xi - 7'13|Z=—h%

—h i

9 p
/_ha(ﬂz) z —Ti3‘z:17 _Ti3|z:—h

Now time-average the linear terms

4 /nrdz +75 78
Oasi T 1] 7 7

What about other terms that are quadratic?

oh Oh
Tijlamn— ) = (Tijlemn) 5

Other term:
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12.1.1 Lateral, Surface, and Bottom Stress Terms

Thus the lateral stress terms become:

0 g [
8:15-(7_”) = 03:4/ Tijdz (12.1)
7 1 J—h

lateral
the surface stress is simply written as 7° and the bottom stress is 72. Note that all of these terms
have units of Iz N

12.2 Parameterizing the Lateral Stress Term

Now the lateral stress divergence terms must be parameterized in terms of the dependent variables
7, UE, etc. One way to do that is via the same stress - rate of strain relationship that we use for

Newtonian fluids, that is

U _
—h
where F;; is the depth-averaged rate of strain tensor, i.e.,
_ ouF  oUF
E;,; = : : 12.4

Thus as we are depth uniform, the term becomes in the depth uniform momentum equation,

O (ihsn oUF oUF
p@xi Y g 81‘]‘ al‘l

This is an ad-hoc turbulence closure, but it does the job. It still requires that the eddy viscosity be

specified!
We can also just use a slightly simpler form
g oUF
/ Tij dz = pry(h +1) - (12.5)
—h Lj

12.3 The surface stress

The surface stress, is typically given as the wind stress, which can be parameterized as
TS = paircd|Uair’Uair (126)

Because of the strength of wave forcing, we often neglect the wind stress in the surfzone. But it is

crucial farther offshore.
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12.4 Representing the Bottom Stress

The bottom stress must be parameterized as a function of the dependent variable 7, UF in order to
close — to actually use the equation.

In turbulent flows, drag or stress is often written as quadratic in velocity
T = pepliu)d (star)

For example, the drag of your car or bike all follow a law similar to (star). For simplicity’s sake,

one can also use a simple linear drag law where
75 = prUF (12.7)
How to represent 75 = (|u|w)?
w; = U; + U; current and wave

U:T)‘F’&Z

I
I
+
<

or u
(|@]v) = <[a2 + 20l + @2 + 02 + 200 + %7 (@ + a)>
Now consider the following approximations:
1) small angle — @ > v
2) weak current = U >> (1, 0)

non-dimensionalized:

quadratic
. - (AP
linear: <|u| (1 + :) (a+ u)>
i
0
=(|afa) + 2(|ala) = 2(jal)a  this is linear in @

Repeat for y term: ~
<|11| (1 + 3) (v+ f))> but v is small
U



v > — small quadratically

2 2

(Ial
Leave:

(|a]) v also linear

Note that this leaves a factor 2 difference in mean cross-shore and alongshore bottom stress.

This is a bit strange.

How to evaluate (|u|)

1) Monochromatic waves U = u, cos(wt)
Gal) = <0 [ |eostwt)) dt
T Jo
2 2
= cos(t) dt
2 jus
2
AT 2
= ZDin(t
o sin(t) B
2

2 2v2
= —up or —\/_cru where o, 1s std of w.
T s

2) What about random waves? We said it was Gaussian with Rayleigh u( such that

Then

. o0 1 /T 2
(Jal) _/0 o P (1) duy T/O | cos(wt)| dt = \/;ou
T 2
/3o ;

3) What about Gaussian %?

r/“Me GE,  Tiw
o Ry Lo i
§ = ——

2 o;
= \/jau/ e’ = \/—0,-1 “
T 0 T



Same answer as before with Rayleigh distributed wave heights.

Now what if we have v > u?

<l

Then we have (|i|v) = |0]

Weak current (|i|v) = \/gau@

The relevant weak to strong current parameter is Z’;‘ Note that |0t = Ll o

o

How to smoothly transition from weak to strong?

1

. 2 GRE
= — u_ 1 E——
(|u]v) \/;0'0{ +a§]

has appropriate limits.

12.5 Homework

1. Some folks have used a form of
vi(h +7)V2UF (12.8)

to represent the lateral mixing in these shallow water equation based models, i.e., RHS starts
with O[(h + 7)UF] /ot + ...,

(a) Verify for yourself that this is dimensionally correct

(b) Multiply the term (12.8) by UZ (form an energy equation) and decide whether this is a

good or bad form for an irreversible lateral mixing term.

2. For monochromatic waves, the weak current and small wave angle approximation says that

(|t]v) = (2/ W)UOVE. Rewrite this expression for (|i|v) in terms of wave amplutide.

3. For random waves with weak currents and small wave angles, (|i|v) = (2/7) 20, V" .

Rewrite this expression as a function of significant wave height H.

12.6 OLD STUFF

In turbulent channel flows (think rivers) the bottom stress is often written as a quadratic so that

T, = pcgluju (12.9)
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where ¢, is a non-dimensional drag coefficient. In fact in many turbulent flows, such as the turbu-
lent wake behind a cylinder, quadratic drag laws are appropriate. This is an empirical parameteri-
zation but it comes from dimensional analysis. If the stress only depends on the fluid density p and
the velocity u, then (12.9) is the simplest grouping that gives the right dimensions. The resulting
non-dimensional drag coefficient c, is then considered a function of other non-dimensional param-
eters, such as the Reynolds number or in nearshore situations the depth-normalized bed roughness
k./h.

12.6.1 Application to the Nearshore

We are interested in applying the bottom stress to understand nearshore circulation. With waves
creating an oscillatory flow in the nearshore, the quadratic bottom stress (12.9) is assumed to apply
instantaneously. This implies that the time-averaged bottom stress can be written as (separated out

into cross-shore x and alongshore i) components,

The = pcql|t|u) (12.10)
Toy = pca(|ulv) (12.11)

where (-) represents a time average over a wave period. As we will see, this representation (12.11)
works well in the nearshore region. However, it is depends on averages of instantaneous velocities,
not upon the indepdent variables of the shallow water equations (the depth- and time-averaged
Eulerian mean flow).

To obtain solutions for the longshore current the bottom stress must be written as a function
of the mean longshore current. If there is no mean cross-shore current (v = 0, the simplifying

assumption of 1.2), the cross-shore flow is sinusoidal
u = u, cos(wt) cos O

and the longshore flow is
v =T+ u, cos(wt) sin f
then the bottom stress is written
7, = pca((u?cos?(wt) cos? O + 12 + 20u, sin 0 cos(wt) + u, sin® 0 cos* (wt))z

(U + up sin 0 cos(wt))) (12.12)

Assuming that (i) the mean longshore current is weak relative to the wave orbital velocity (v < u,)
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and (ii) that the wave angle is small (sin § < 1) so that (u, sin # < v), equation (12.12) becomes

1
T, =~ pca(u, cos(wt)v) = pcdu,ﬁ? / cos(wt)dt
T
2

= pPCq—UyV (12.13)
T

where the integral is over a wave period 7'. This is the common linearization of the bottom stress.
Various other parameterizations of the bottom stress exist, based on different assumptions. There is
no observational verification that (12.13) accurately represents the true bottom stress, and it turns
out that often the weak current and small angle assumptions are violated in the field. However,
(12.13) is used because it provides a simple 7, which is linear in v. The cross-shore orbital wave
velocity u, can be related to the wave amplitude by shallow water linear theory, u; = —gn, gives
Wi, = gka — u, = a\/g/_h by the the shallow water dispersion relationship, ¢ = v/gh.

71



Chapter 13

Simplified Nearshore Dynamics:
Alongshore Uniform

It has long been known that the direction of the mean (time-averaged) surfzone alongshore cur-
rents V¥ depends on the incident angle 6 of wave propagation. The modern theory of surfzone
alongshore currents was developed in the late 1960’s/ early 1970’s by (Longuet-Higgins, 1970;
Bowen, 1969) and Ed Thornton (1970 conference proceeding) after the concept of the Radiation
stress (Longuet-Higgins and Stewart, 1964) became established. As seen earlier, propagating sur-
face gravity waves have a mean momentum flux associated with them. When waves propagate
obliquely incident (i.e., not normally incident) to the beach there is a mean shoreward flux of
alongshore momentum, gradients of which act as a driving force for the mean alongshore current.
Simple alongshore current models that assume alongshore uniform conditions and steady flow have
succeeded at reproducing observations on a range of beaches from planar to barred. Here, a simple
alongshore current model will be developed and historical comparisons of model to observations

will be presented

13.1 Alongshore Current Models: Momentum Balance

Two assumptions are necessary to get a simple equation for V. The first is that the flow is steady
so that time derivatives can be neglected. Second, assume that all variables have no longshore (y)
dependence (i.e. 9, = 0). This means that the bathymetry and forcing, as well as u, V', and 7, are
only functions of the cross-shore coordinate, x.

Assuming alongshore uniform conditions (9, = 0), weak currents, and small wave angles.

Ol(h+mVE] 0 _\FTETrE SY7E S{TE 108
G 19 M MSUF) = —
5 +8$(( +UPVE + M2VE + MJU") p . i
(13.1)

ox
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Now to deal with the nonlinear terms: Recall from continuity that (h + 7)U¥ = —M? so this
means that we are left with 8(]\41*,9 UE)/Ox, which is the cross-shore gradient of the cross-shore
advection of alongshore wave momentum. This can also be written as (M) M /(h + 1)) /0.

Now assume steady (0, = 0) and we get

0 Mfo _1,05ay o O _OVE
%< ht ) =—r (5, ) — i)V + o (vt(h+n)ﬁ) (13.2)

which is a closed form 2nd order ODE for the mean Eulerian alongshore current VZ(z). Further-
more, we can neglect the term 9, (M; M7 /(h + 7)) as it goes like E* not like E, ie it is higher
order. Now in reality with a nonlinear surfzone this may not be a good assumption, but we can
always put it back in as it is just an inhomogeneous forcing term.

This leaves us with a simple equation for predicting the alongshore current on a beach,

_ 1054y
ox

_ ) ovE
—Cd<|ﬁ|>vE+% (Vt(h+77)%) =0 (13.3)

Or stated another way, the depth-integrated and time-averaged alongshore momentum equation
can be represented as
Fy—77 4+ R, =0 (13.4)

which is a one-dimensional balance between the depth-integrated alongshore force exerted by the
waves on the water column (£, = —p0dS,,/0x), the bottom stress (7,, or drag or friction) felt
by the water column, and the cross-shore mixing of momentum (12,), which carries momentum
down gradients. The alongshore wave forcing results from gradients of the mean wave-induced
momentum flux (radiation stress) due to breaking waves propagating at an angle towards the shore
imparting a mean body force to the water column. The alongshore component of the wind stress
could also be included in this formulation, but for simplicity won’t be.

An equation similar to (13.3) or (13.4) is used by the U.S. Navy and coastal engineers around
the world. To solve for the alongshore current given the offshore wave conditions (i.e. wave angle,
amplitude, frequency), the transformation of wave amplitude across the surfzone (e.g. equation
(13.8)). In addition the values of ¢; and v must be known. In reality, c; and v are chosen to best
fit some observations, and more developed and complicated parameterizations of the three terms
(forcing, bottom stress, and mixing) are often used. The functional forms of these three terms is

specified next.

73



13.1.1 Lateral Mixing

Several mechanisms have been proposed to mix momentum inside the surfzone. They are mostly
based on the conventional idea that turbulent eddies carry mean momentum down mean momentum
gradients. Depending on the proposed mechanism, these eddies have length scales from centime-
ters to the width of the surfzone (100’s of meters) and time scales both shorter (less than 5 sec)
and much longer ( 100’s of seconds or longer) than surface gravity waves. However, there really
are no estimates of how much mixing of momentum actually goes or even what the dominant
length and time scales of the mixing are. Some even argue that mixing is negligible. Historically,
As mentioned above, the mixing of alongshore momentum usually is written in an eddy viscosity
formulation 5 T
R, = Par (ut(h + n)%) (13.5)
Note that the eddy viscosity v, has the same dimension as the kinematic viscocity and can take
a number of forms depending on assumptions about velocity and length scales of the turbulent
eddies. If equation (13.5) is used, then two boundary conditions for VE are needed. These are
typically chosen to be VE = 0 at the shoreline (z = 0) and far offshore (x — 00). These choices
for the boundary conditions are convenient analytically but often have limited observational merit:
VE may be smaller seaward of the surfzone but it is (almost) never zero. Although the wind
forcing is weaker than wave forcing in the surfzone, the wind usually drives some alongshore
current outside the surfzone and across the continental shelf. V¥ can also be strong right at the
shoreline, especially at steep beaches.
For the moment to get an analytical solution we are going to set the eddy viscosity to zero

(v = 0) to proceed giving us
-1 aS{ry

Ox
Physically, this means that the alongshore wave forcing (05,,/0x) is balanced by the bottom drag.

= —callily V" (13.6)

Some folks call this type of hydrodynamic balance a “slab” model and such things are also used
for wind-driven shelf circulation or mixed layer models. With v; = 0, we also don’t need any

boundary conditions, which is convenient

13.1.2 Monochromatic Waves: Longuet-Higgins (1970)
Theory

OLD:

To parameterize the radiation stresses, we assume monochromatic waves (e.g. waves of only one
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frequency) and use results from linear theory (e.g. Snell’s law and the dispersion relation) to write
the radiation stresses in terms of wave heights. Needless to say, these assumptions may not hold
water in the real world. This will be addressed a bit more later. For linear waves approaching the

beach at an angle 0, the off-diagonal component of the radiation stress tensor is written as
Cq .
Sy = E—sinf cost
c
where ¢, & c are the group and phase velocity of the waves, and F is the wave energy
E = pga®/2

where a is the wave amplitude. Snell’s Law (lecture 2) governing the linear wave refraction (which
is assumed to hold throughout the surfzone) is, k sin # = constant, which is written after dividing

by w (also conserved for linear waves)
(sinf)/c = constant (13.7)

A result for shoaling (nonbreaking) linear waves on slowly varying bathymetry is that the
onshore component of wave energy flux (Fc, cos 6) is also conserved. With Snell’s law (13.7) this
also means that S, is conserved outside the surfzone (i.e. 05,,/0x = 0). In shallow water, the
group velocity becomes nondispersive (¢, = v/gh) with the assumption that 6 is small (cos 6 ~ 1)

and Snell’s law the Radiation stress becomes

S~ E /_gh sin 6,

Co
where sin d,/c, are the values for the wave angle and phase speed outside the surfzone. The wave
amplitude inside the surfzone (z < x;, where z; is the breakpoint location) is empirically written

as (see also last lecture)

a=~yh/2 (13.8)

Since 1970, more complicated formulas for the wave transformation across the surfzone have
appeared, but like (13.8) they are all empirically based.
NEW:
First define the depth where wave breaking begins as h;. Recall that S,,, = (Ec, cos#)sinf/c and
that seaward of the surfzone (i.e., h > h;) these quantities are constant. Also recall that
0Syy  O0(Ecgcosf)sinf  sinf

or ox c = Do c (13.9)
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Now as the wave angle is small, let us assume that cos ¢ = 1. Also, assume that the wave height

H = ~h where + is a constant. Then, we can write
O(Ecy) _ , _ 0(1/8)pgH?(gh)'* _ 0(1/8,9°**h""
ox s ox ox
where = dh/dzx.

For monochromatic waves cq(||)VE = c4(2/7)uoVE. For linear shallow water waves ug can

= (5/16)pg**y*n**B  (13.10)

be related to the wave amplitude a (See Chapter 1) quite simply. A quick derivation is

ou on
= — 13.11
ot gax ( )
—wuy = —gka (13.12)
uy = (gk/w)a (13.13)
H
up = (g/h)a = (g/h)'< (13.14)
h
o = (g/h)l/”7 (13.15)
where the last line utilizes the H = ~yh relationship. We can now write (13.6) as
0, h>hy\ 2 rg\/2vh -
(5/16)g"/ 22020 nt b < hb} == (3) 3V (1310
This gives a solution for surfzone alongshore current V7,
_ O h > hb
Y= sin 13.17
v { (57T/16>97h5 910/2 Cd1> h < hy (13.17)

Holy smokes! An anlytic solution with only a single non-wave tunable parameter (c;). Not terrible.
This was first derived about the same time (1969 to 1970) by a group of folks including (Longuet-
Higgins, 1970; Bowen, 1969) and a conference proceeding by Ed Thornton. The Bowen (1969)
derivation utilized a linear drag law with a Rayleigh drag coefficient fyB = prVF wheras Longuet-
Higgins (1970) utilized the weak current small angle bottom stress form.

What does the solution look like? It has V7 is linear with h and zero offshore of the surfzone.
This implies a discontinuity at h = h;. Wierd. Nature does no like discontinuities. How should

this be resolved?

13.1.3 Results

What Longuet-Higgins (1970) did was smooth out the discontinuity with lateral mixing term by
setting v; o (gh)'/%2x. Longuet-Higgins (1970) solved equation (13.3) with the eddy viscosity
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parameterization v o< Px+/gh on a planar beach. Eddy viscosities are typically parameterized as
proportional to the product of the typical eddy length scale I’ multiplied by a typical eddy velocity
scale v/, i.e., v, o< u'l’, known as mixing length concept. The Longuet-Higgins (1970) form for v
uses a length scale proportional to the distance from shore (I’ o< z) and a velocity scale proportional

to the phase speed of gravity waves (v’ o< y/gh), which a non-dimensional coefficient P.

1.5 20

Figure 13.1: Nondimensional V¥ solutions for a sequence of values of the mixing parameter P.
The breakpoint is at x = 1. (from Longuett-Higgins, [1970])

A nondimensional family of theoretical solutions for V¥ for varying strengths of mixing are
shown in Figure 13.1. As the strenght of the mixing (P) increases, the flow gets weaker, smoother,
and extends further offshore. As mixing becomes negligible (P — 0), the the longshore current
takes a triangular form, with a discontinuity at the breakpoint. Longuett-Higgins compared his
model to the available laboratory observations at the time (Figure 13.2) with drag coefficients (c;)

selected to fit the data. The theoretical curves for V£ do fall close to the observations for P =~ 0.2.

One could take objection to these eddy mixing scales. For example, on a beach with slope
3 = 0.02, in h = 2 m depth at z = 100 m from shore and with P = 0.2, v, = 0.2(20)/2100 ~
100 m? s~ 1. Ummmm this is BIG. It is actually far too big to make sense. Furthermore, v; keeps
increasing farther offshore! So, although it is dimensionally correct and it does smooth the profile,
it is not valid. The eddy viscosity needs to be big to smooth out the discontinuity, but what if there

really isn’t a discontinuity?
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LONGSHORE CURRENTS, 2

Figure 13.2: Comparison of V¥ measured by Galvin & Eagleson (1965) with the theoretical pro-
files of Longuett-Higgins. The plotted numbers represent V% data points. (from Longuett-Higgins,
[1970])

13.1.4 Narrow-banded Random Waves: Thornton and Guza (1986)

In the Longuett-Higgins model, the monochromatic waves driving the longshore current all break
at the same cross-shore location, which is defined as the breakpoint (z;). This introduces a dis-
continuity in 95,,/0x at x,. Eddy mixing is thus required to keep the modeled longshore current
continous at the breakpoint, and severe amounts of eddy mixing are required to fit the observations.

The more physical solution is to switch from monochromatic waves (which break at the same
exact location each time) to narrow-banded random waves which have a smooth cross-shore dis-
tribution of wave breaking.

Unlike monochromatic laboratory waves, ocean waves are random rather than deterministic. In
the laboratory, all waves can be made to have the same wave heights, whereas in the ocean the wave
height is variable from wave to wave, and is appropriately defined by a probability density function.
Since the wave heights vary, not all waves break at the same location so there is no discontinuity in
0S;,/0x. Random wave transformation models turn the breaking on gradually (i.e. progressively
more waves break as water shoals). At any one water depth only a certain percentage of waves
have broken. This makes S, a smooth function of the cross-shore and removes the discontinuity
in 0S,,/0x, which decreases the need for so much eddy mixing to smooth out the longshore

current profile. Applying this to alongshore current models was pioneered by Thornton and Guza
(1986).
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Theory

Here we first modify the bottom stress term to reflect random waves,

(Jilv) = (2/m)" 20, V" (13.18)
where o, = (g/h)?c, = (g/h)"/? Hyms/2. The radiation stress terms becomes
0S4y sin Oy
—— =D 13.1
Ox (Dw) Co (13.19)

where the wave dissipation (D,,) is a smooth function of z or A, thus this will remove the discon-
tinuity in V¥, Recall that a form for (D,,) is (9.15)) with n = 4 (Thornton and Guza, 1983),

37 fB3H
VT2 Pims (13.20)
16 4hd5~*

This leads to a solution for V¥ of (Thornton and Guza, 1986)
VE_§B3fg1/QSin90HfmS (13.21)
I '

where H,.,s (or H,) are solved for with a wave transformation model. In the inner-surfzone where

(Dw) = pg

H,ps = 7vh, this expression can be written as 1V oc h3/2 similar to but slightly different than the
monochromatic case. Seaward of the surfzone where waves are not yet broken, H,,,; < vh and it
follows that VE — 0.

Results

With a random wave formulation for S,,, and (D,,), (13.3) and no mixing was used by (Thornton
and Guza, 1986) to predict alongshore currents observed at a beach near Santa Barbara CA. The
comparison between the model and observations is shown in Figure 13.3 and 13.4. The model
appears to reproduce the observations on the planar beach. Small amounts of lateral mixing was
also included in some model runs, but did not significantly alter the V¥ (z) distribution, indicating

that eddy mixing in the surfzone may be negligible.

13.1.5 Alongshore current adjustment time: Neglecting the time-derivative
term

Here, we examine the adjustment time for the alongshore current V¥ and examine how good is the
assumption that we neglect the /0t term. It is useful to consider the simple spin-down problem
of an initially nonzero V¥ under the influence of bottom stress. The balance is

olth + V¥ _

5 —ca{a)VE (13.22)
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Figure 13.3: Analytic solution for planar beach with no mixing (solid line) and measurements (+)
of VE (4 Feb 1980, from Thornton and Guza (1986).

As this is a linear 1st order ODE we can approximately write this as

ovE _
(h+0) =~ —cafla) V" (13.23)
~ — 13.24
5 rV (13.24)

where aD
Cqllu

— 13.25
T hrq (1325)

Thus r has units of an inverse time-scale [7~!] and the solution of (13.22) with an initial condition
ViE is

VE(t) = Vi exp(—rt) (13.26)
Note that as both the waves get larger (bigger (|@|)) or the drag coefficient ¢, gets larger, r is larger

and the time-scale 7! is shorter. For deeper depths 7 get smaller implying a longer time-scale.

13.1.6 Further Refinements: Barred Beaches and Wave Rollers

The prediction and understanding of alongshore currents was a problem thought solved in 1986.
However, when these models were applied to a barred (with one or more sandbars ) beach (Duck
N.C., see beach profile in Figure 13.5) they did not work very well. The comparison between
model and observations (from the DELILAH field experiment) are shown in Figure 13.5. The
modeled alongshore current has two maxima, one outside of the bar crest and one near the shore-
line. This is contrary to what is repeatedly observed, a single broad maximum inside of the bar

crest. In fact, the two maxima V' Z this model predicts is never observed. This discrepancy between
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Figure 13.4: Comparison of modeled and observed V¥ for other days in Febuary. No mixing
(solid) & with mixing (dashed). The location of the breaker line is denoted as B.L. from Thornton
and Guza (1986)

models and observations led to a resurgence in alongshore current modeling in the 1990s, a care-
ful examination of the many assumptions taken along the way, and even more assumptions and
parameterizations. Many reasons or mechanism have been proposed for the discrepancy shown
in Figure 13.5, including wave rollers (which just alter the cross-shore distribution of the wave

forcing) and neglected alongshore pressure gradients, ie —g(h + 7)97/Ou.

13.1.7 Final Comments

It may strike the reader that alongshore current models incorporate assumption upon assumption
before becoming useful. There are two distinct types of assumptions that go into deriving (13.21),
beyond all the assumptions used to derive the depth-integrated and time-average nearshore circu-
lation equations. The first is the assumption of alongshore homogeneity ( J, = 0) that makes the
longshore momentum balance one dimensional (13.4). The second type of assumptions are in the
parameterizations of (13.4). The consequences of these assumptions are different. If the first as-
sumption holds (i.e. J, = 0) then the appropriate forms for the forcing, bottom stress, and mixing
need to be found to accurately solve for V¥ across a wide range of conditions. However, if the first
assumption (9, # 0) doesn’t hold, no amount of manipulation of the forcing, bottom stress, and
mixing parameterizations in 1-D models will yield consistently accurate predictions of V. Does
0, = 0 hold in the surfzone? The answer to this question is site and condition specific, but during

the 1990’s and 2000’s we have learned that it works reasonably well.
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Figure 13.5: Observations of VZ (black circles) and model V7 (three lines) with different param-
terizations of the bottom stress. The barred beach bathymetry is shown below. (from Church &

Thornton, [1993])

13.1.8 Homework

1. Assume that lateral mixing is negligible (v = 0) and that the flow is steady and stable. For
waves which in deep water have an angle of ten degrees (¢ = 10°) and a period of ten
seconds, inside a saturated (self-similar) surfzone (where H = ~yh), what is the alongshore

current in depth 2~ = 1 m depth on a planar beach with
(a) 1/50 slope (8 = 0.02)
(b) 1/100 slope (8 = 0.01)

Necessary info: v = 0.5 & ¢4 = 0.002

2. Time-scale of alongshore current response. Evaluate r for a self-similar surfzone where
H,s = vh and ¢ = 2 x 1072 and either

@@ h+7=1m
(b) h+17 =10 m.

How long is the adjustment time relative to three other relevant time-scales (i) sea-swell

waves O(10) s and (ii) tides O(12) hours and (iii) inertial frequency f?
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Chapter 14

Cross-shore Momentum Balance: Setup
Revisited

o(h+mUE 0 _\FTE{TE SF+E _on
AU/ Ve oM _ an_
5 +a$ ((h+m)UPU" +2MJU"+) g(h+n)a$ pH(

0Sus _p, O

ox v Ox

(14.1)
Steady 9; = 0 implies that (h + 1)U + M? = 0 and with UL = U® + M?/(h + 1)) the nonlinear
term can be written as

O (s moror +ans0ry = (e oot - aga) = ()
as UL = 0 for steady alongshore uniform conditions and the term M2 M? can either be incorpor-
tated into the radiation stress or neglected as it is higher order (as with the alongshore momentum
equation leading to simple 1D alongshore current model).

Utilizing a weak current and small angle bottom stress relationship 7, = pcg2(|a|)U* This
leaves us with a simple cross-shore momentum balance

oU*

il el + 2 (whr ) s

0=—g(h+ ﬁ)% —

aSJ:x
ox

ox ox

Now recall that UF is prescribed by the depth-integrated continuity (mass-conservation equation)
such that UF = —M?/(h + n). Thus we have a simple 1st order ODE for 7 that looks like the
simple setup and setdown balance that we used earlier.
In our simple world, the lateral mixing term is annoying and it is arguably small. So we are
going to ignore it and we have:
o

0=—g(h+n)5" - P

ana:
ox

) — ca2(|a|)U" (14.3)
which is the original setup balance plus the cross-shore bottom stress term!
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Another way that folks have written this is with a strong current approximation for the bottom

stress so that o7
_\on -1
O = — h _—
glh + ) = p~(

0Szq

5 ) — ca|UE|UF (14.4)
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Chapter 15

Inner-shelf Cross- & Alongshore
Momentum Balance: Including Rotation

Here we assume mixing is weak and continue using the alongshore uniform assumption J, =
0. With that, U = 0. Here, we will now include the effect of earth’s rotation on the time-
and depth averaged Eulerian flow (U?, V¥) and also assume the flow is unstratified. However,
because we also want to include the effect of wind forcing we now include the wind stress 7;° term.

The resulting time-averaged and depth-integrated alongshore and cross-shore momentum balances

become
a(h—l—ﬁ)UE N{E — aﬁ -1 ana: -B _S
a0 f(h+n)V= = —g(h+n)% — ( g -7, + 7)) (15.1)
d(h+n)VE = .. 08, _ _
%H(Hn)lﬂzp (G -7+7) (15.2)

Herein, we can identify the classic cross-shore balance of pressure gradient, wave forcing, and
bottom stress (e.g., Longuet-Higgins and Stewart, 1964; ?) and the class alongshore momentum
balance of wave forcing balancing bottom stress.

We want to now modify these equation so that they are suitable for use on the inner-shelf where
there is no wave breaking. Oon the inner-shelf we are typically dealing with deeper water depths
than the surfzone , assume that 7j < h and with Oh /0t = 0, thus d(h +7)VE /0t = hoVE Ot. We
also and that the waves are steady so 9M;° /0t = 0. On the inner-shelf, there is no wave breaking
so 0S,,/0xr = 0 but because there is wave shoaling 05,,/0x # 0. Thus, we can rewrite the

depth-normalized equations for the inner-shelf to

GUE ) 87? 1 aSJ:J: -B =S

W_fv __ga_m_p_h(W_T”m (155)
ovFE _ 1

Tl fUF = p—h(—ff +7)) (15.4)



where now note that the equation (?? units are [L/T?] and not [L?/T?] as for (15.1). Note also that
we’ve taking out the 077 /0y term on the shelf which means that there are no alongshore propagating
wave type solutions allowed. This is ok, and it can always be put back in. Also, note that we keep
the time-derivative term as it’s scaling importance goes linearly with the water depth.

Next is dealing with bottom stress. Here we follow ?? and assume a linear bottom stress so that
7B = prUE, where r is a linear Rayleight drag coefficient that is typically best-fit to observations

i =

of the momentum balance.

oUu¥ _ on 1 ,0S r . OVE _ 1 T
— — VP = g (B U+ U == - -VE (155
ot / T ph( ox ) h ot +f phTy> h (155)
Inner- and mid-shelf solutions with no waves
Here, we consider the situation with no waves (i.e., £ = 0). Since 7 < h, by continuity

O(hUF)/0x = 0 and so UF = 0 on the inner- and mid-shelf. Thus the cross-shore and alonghsore

momentum balance reduce to

~ on 1
— E = —Q— — —_S
fv 95 pth (15.6)
ovVE 1 ¢ r-op
_ = — 77 - — 1 .
ey phTy hV (15.7)

Now consider this simplified cross-shore momentum balance (15.6),
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Chapter 16

Lecture: Wave Bottom Boundary Layers
and Steady Streaming

In the derivation of linear waves, it was assumed that they were inviscid and so the only bottom
boundary condition was that w = 0 (on a flat bottom). However, in reality a no-slip boundary
condition must be satisfied, resulting in what is known as the “wave boundary Layer”. This has
implications that are important for wave dampening over wide continental shelves and for sediment

transport due to a steady flow generated within it.

16.1 First order wave boundary layer

Lets start with linear waves propagating over a flat and smooth bottom with a viscous boundary
layer. Here we will change notation and use z = 0 at the bed and increasing upward (previously

z = 0 was the still water level). The full (Navier-Stokes) x momentum equation is,

ou  Ou ou  _,0p Pu  0%u
- - = —- — 4 — 16.1
ot Yar TV TP 8x+y<8m2 02 (6.

where v is the kinematic viscosity of water.

We assume that the wave boundary layer is active over some vertical scale J,,. We can non-
dimensionalize the various hydrodynamic variables using the linear wave solutions u = aw/,
x = k™'2', t = w i, p = pgap’, where the primed variables are non-dimensional. To non-
dimensionalize the vertical coordinate we now use the (yet to be specified) boundary layer width
as z = 0,7

ou’ ou’ L, op vk?\ 0%u/ v\ 0%
2 | OW ouw _ 19P°
aw” | = + ak8$’ [tanh(kh)] 5 + ( - ) 57 + (W(S%U) 82’2] (16.2)
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Next each of these terms is examined individually in order to determine which ones to keep in
the subsequent analysis. The nonlinear term can be considered small due to ak. On contintental
shelves and in the nearshore where a wave boundary layer is important, kh will be relatively small
and so this term must be included. The factor vk?/w is considered small, removing 9%u from

considertaion. This leaves the v0?u term which will be non-negligible when z < ¢, where
O ~ (v]w)Y2 (16.3)

which gives the vertical scale of the wave boundary layer.

Now the wave boundary layer equation can be dimensionally re-written as

ou  _,0p u

= = +rv—. 16.4
ot " or Vo2 (104
However, if we now assume that the solution for pressure does not vary in the vertical then we can

rewrite (16.4) as
ou ®u Ous
—_—— Y — = ——
ot 022 ot
where u, is the invisicid orbital wave velocity solution outside the boundary layer. The boundary

(16.5)

conditions on u are thus u = 0 at z = 0 and u = Uy, aS 2 > 0,,.
To solve (16.5), we assume that u,, = U exp(iwt) and that the solution for w has a simular

form u = G exp(iwt), resulting in

2 A
iwi — 1/% = iwiiy, (16.6)

which is a 2nd order linear and inhomogeneous ordinary differential equation. In order to solve

this one must consider the homogeneous solutions (where the right-hand-side is zero) and the

inhomogeneous solutions. Consider first the homoegeneous solutions. Let & = A exp(Az), then
(iw —vA)A =0 (16.7)
resulting in A\ = 4(w/(2v))"/2(1 + ). Thus, we explicitly define
5= (2v/w)'/2. (16.8)

With the requirement that the u — wu, as z — oo we get the homogeneous solution u; =
Aexp(—(1 +4)z/0). The inhomogeneous solution is straightforward and gives 4; = . Com-

bining these two solutions gives,
u= (Aexp(—(1+1)z/0) + us) exp(iwt), (16.9)
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and to satisify that u = 0 at z = 0, we get that A = —u,,. The full boundary layer solution can

now be written as (replacing complex exponentials with cosine),
u(z,t) = ue [cos(wt) — e™*/° cos(wt — z/0)] . (16.10)

This (16.10) implies that due to the action of viscocity, there is not only a vertical decay in the
velocity but also a phase shift. This kind of 1st order wave boundary layer solution also applies in
many oscillatory flow environments such as tidal boundary layers.

Comparison between this laminar wave bottom boundary layer solution (16.10) and observa-

tions is shown in Figure 16.1 for the parameters shown in Table 16.1.

CASE A B C D
T (s) 133 150 1.80 220
H@m) 008 0.13 0.16 0.16
L (m) 239 282 357 453
B(m~Y) 1439 1355 1237 1119
up/u;  0.021 0.049 0.199 0.269

Table 16.1: Wave conditions (period T', wave height H, wavelength L, and 8 = §~1)for the four
(A-D) Moauze et al. wave bbl cases. Also shown is a nonlinearity parameter usy/uq, the ratio of
the harmonic to principal velocity.

16.2 Stress and Energy Loss

With this solution for the oscillatory velocity, the stress can be calculated as

Tez = pyg—u = prsed e 0 [cos(wt — z/8) — sin(wt — z/6)] (16.11)
z

which implies that the stress is not in phase with the oscillating velocity u. This can be made more
explicit by noting that cos(a) — sin(a) = v/2cos(a + 7/4) so that

o = PPUsd e /2 cos(wt — 2/8 + 7 /4) (16.12)
= p(wv)Puse */2V/2 cos(wt — 2/8 + /4) (16.13)
(16.14)

Note that the stress is maximum at the bed, here z = 0, and decays with height above the bed.
The local wave energy dissipation is the result of turbulent shear production from the wave

field. This local wave dissipation is written as,
ou
=( =Tz 16.15
()= Gomee) 16.15)
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Figure 16.1: Height above the bed (z) versus horizontal velocity u for 4 (top to bottom) wave
bottom boundary layer cases in Moauze et al. Measurements are shown as points, and the lines
represent second order theory. The left panel shows phases from 0, 7/4, /2, 37 /4, 7, and the
right hand panel shows 7 to 27r. The right-most line in each left hand plot corresponds to the phase
of the wave crest (phase of 0).
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and the vertically-integrated wave energy dissipation D due to friction in the wave boundary layer

D, = dz = — — Ty ) dZ. 16.16
f /0 €(z)dz /0 <aZT > z ( )

This has units of p[L.?/T?], just as the breaking wave dissipation.

can be calculated via

The trick to evaluate Dy (16.16) is to integrate by parts so that

> Ju o * asz
Dy =— < i %Tm dz> = —([Teu]°) + </0 U 5, dZ> : (16.17)

The first terms on the right hand side of (16.17) [7,.u]3° is zero because u = 0 at z = 0 and

the stress is zero far outside the boundary layer. Now recall from (16.5) (with some minor re-

arrangement using 7., = —v0du/0z) that

O(u —Us)  OTgs
ot 9z

and so (16.17) is re-written in sequence as

Dy = </Owuw dz> (16.18)
B o O(u — Uso) © O(u — Uso)
= </0 (u— uoo)—at dz + Use /0 — > (16.19)

> 18 - Yoo 2 00
_ </O ! (u 8tu ) >+<uoo Tyl (16.20)
= —(UosT) (16.21)

where we now use the notation 7, for the bed (z = 0) wave-induced shear stress. This result is
interesting as it states that the total wave energy loss due to friction in the bottom boundary layer
can be estimated from the invisicid free stream velocity and the bed shear stress.

Using the definition of 4., = ., cos(wt) and from (16.12) at z = 0

= p%uoo cos(wt + m/4) (16.22)
and so .
Dy = —(uxm) = 5 %ugo(check) (16.23)

16.3 Bounday layer induced flow: Steady Streaming

An additional property of wave boundary layers is that the z dependent phase lag in the velocity
coupled with the vertical velocity, induces a vertical momentum flux (uw) that drives a vertically

sheared horizontal mean flow u(z).
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From the first order solution for the horizontal velocity u, the leading order vertical velocity

solution can be found through the continuity equation Ou/dx + dw/dz = 0 which when vertically

integrated yields
(2,1) / oy (16.24)
w(z,t) = ——dz .
’ o Ox
asw = 0 at z = 0. From (16.10) (reverting back to complex exponential notation for convenience),
0 , .
L = ihuset [1 — /017 (16.25)
ox
and so
t) = iktog —(i+i)z/6 _ 1) | giwt 16.26
w(z,t) = iku {z+1+i(e )| e ( )
= tkue |2+ R (e*/°(cos(z/0) —isin(z/8)) — 1) | e (16.27)

From this solution for w, it is clear that (uw) # 0 in contrast to the standard linear surface gravity
wave solution. Now if we can write u = (u, + iu;) exp(iwt) and similarly for w, then (uw) can be
calculated via

(uw) = u,w, + uw;. (16.28)

We evaluate these terms but there is a ton of algebra

Uy = Uoo [1 + €*/° cos(—2/0)] (16.29)

Ui = Uno [€*/° sin(—2/0)] (16.30)
0 —z/d :

wy = ks {E (e 3[cos(z/d) + sin(z/d)] — 1)} (16.31)

w; = Ko {z + % (e7*/°[cos(z/5) — sin(z/5)] — 1)} (16.32)

After a butt-load of algebra, I think one gets
(uw) = uZ k {e_z/‘s[(z/é) sin(z/9) + cos(z/9)] — %(6_22/6 - 1)} ...... (16.33)
Actually nevermind. What you are going to get is
(uw) ~ u2 k§ (16.34)

which can be dimensionally re-written as

(uw) ~ ———=. (16.35)



Now the vertical momentum balance for the mean flow can be written as

ou

"oz

— (uw), (16.36)

and using the full solution means that the streaming velocity can be written as

U2

u= 4_000 [3—2(z/0+ 2)e /% cos(2/6) — 2(z/6 — 1)e*/?sin(z/6) + exp(—2z/6].  (16.37)
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Chapter 17

Stokes-Coriolis Force

Up to now, we have neglected the role of rotation on surface gravity waves and the circulation it
drives. Here, we address the question: What are the implications of a rotating earth (f-plane) and

Stokes drift on the mean flow?

17.1 Kelvin Circulation Theorem

Recall, Kelvin’s circulation theorem for an non-rotating, inviscid, constant density fluid that states
that the circulation I' around a closed curve that moves with the fluid must remain constant in time,

ie.,
DI B

Dt
where D /Dt represents the material derivative, and the circulation is defined as

0 (17.1)

I(t) = ]{ wdl. (17.2)
C

The circulation can be re-written using Stokes theorem as
['(t) = /(V xu)-ndS (17.3)
A

i.e., the area integral through the surface A bounded by C'.

However, on a rotating earth, this theorem must be extended to include rotation which makes it
r(t) = /(v X+ fk) -ndS (17.4)
A

where the Coriolis vector is in the vertical direction k.
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Figure 17.1: Diagram of Ursell’s argument. If there was a steady Lagrangian mean, denoted by U,
then the area projection of A of a circuit would increase unboundedly adn so would the number of
planetary vorticity filaments, denoted by {2 = 2 f, which would lead to an infintiely large relative
circulation around the circuit ba’d’cb, which initially coincided with badc, thus violating the Kelvin
Circulation theorem. From Xu and Bowen (1994)

17.2 Application to Stokes Drift: A problem

Now consider waves in deep water propagating in the +x direction. At some time ¢ = 0, the
material surface badc that lies in the yz plane (Fig. 17.1) has no net circulation on that material
contour, ' = 0. Under the influence of Stokes drift u,, which is stronger at the surface, the
material surface is moved to ba’d’c, and no longer lies in the vertical yz plane, but is now at an

angle. Because the material surface is no longer vertical, planetary vorticity filaments fk will go
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through the area A projected onto the horizontal plane of aa’d’d. This implies that either

1. For I to be conserved: [, V x udS = — [, V x wdS, implies that vorticity must increase
in an unbounded manner on area A or that the circulation must increase in an unbounded

manner. OR
2. With rotation and surface gravity waves, the material surface always stays vertical. If this is

the answer then how?

17.3 Re-derivation of surface gravity wave equations with ro-
tation

Here we answer the question above by re-deriving the surface gravity wave equation in deep water

on a rotating f-plane.

17.3.1 Statement of Problem in Deep Water

The equations for continuity, and z, i, and z momentum on an f-plane are, respectively,

ou 0
a_z n a—f —0 (17.52)
ou 0
o= fv= _p—1£ (17.5b)
ov
ow 0
= _p—la_i _g (17.5d)

These equations (17.5) are valid for any kh, but here we solve them in deep water. The deep-water

boundary conditions are :
1. w=0atz = —o0,
2. p=0at z = n, but applied at z = 0.
3. On/0t = w at z = 7, but also applied to z = 0.

Note that these equations with boundary conditions are very similar to the irrotational linear equa-

tions used to derive non-rotating surface gravity waves.
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17.3.2 Solution procedure

1. First we remove hydrostatic pressure so that p = p — pgz and the z momentum equation

becomes ~
ow  _,0p

E_pﬁz

2. Next we assume a solution where n = a exp[i(kz — wt)]. This then implies that we have

(17.6)

3. Subsitute the above into into the equations of motion (17.5) gives

ikt + ob _ 0 (17.7a)
0z
—iwl — fo = —p Yikp (17.7b)
—iwd + fi =0 (17.7¢)
—iw = —p*lik@. (17.7d)
0z

This (17.7) is a set of 4 ODE:s for 4 variables.

4. Next we use our experience with the non-rotating deep-water wave solutions and write,

where [ is the inverse vertical decay scale. Note that here, we allow it to be different than the
horizontal wavenumber k! Also this form of the solution means that the boundary condition
w = 0 at 2 = —oo is automatically satisfied. We also write the surface kinematic boundary
condition (On/0t = w) as

—wa = wy (17.8)
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5. Plugging in & = ug exp(lz) (etc) to the four ODEs (17.7) gives

’ikUO + lwo =0
—iwug — fvg = —ikga
—iwvo + fUO =0

—iwwy = —gla
6. Now we start re-arranging. First we can write v9 = —ifug/w. Then we can write the

2
—iw (1 — %) ug = —tkga

which when re-organized gives a relationship between v and a,

r-momentum equation as

kga

wit— e
From the z-momentum equation we can relate w to a.
—ial
wy = —24 (17.10)
w
Combining (17.10) with the surface boundary condition (17.8) yields w = gl/w or
w? =gl (17.11)

which looks a lot like the deep-water non-rotating dispersion relationship. There remains
just one thing missing, how to relate the horizontal wavenumber k to the inverse vertical

length-scale [. Here we use the continuity equation

iku0+lw0 =0 =

.k2 . l2 . k2
? ga2 _tgal® _ iga
NI

which implies that [ = k(1 — f2?/w?)~'/2. This means that rotation changes the inverse

— 12] =0 (17.12)

vertical decay scale from the horizontal wavenumber by a factor related to f2/w?.

7. Now the problem is completely solved. The full solution is

kga

u = ———=exp(lz) cos(kz — wt) (17.13)
w (1 — %)

_ it 12) sin(ka — wi 17.14

v=0 05 aexp(lz)sin(kx — wt) (17.14)

w = aw exp(lz) sin(kx — wt) (17.15)
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where the dispersion relationship is

w? = gl, I =k(1 - f2/w?)~1/? (17.16)

8. How big is f2/w? for typical surface gravity waves? Typically f = 10~* s~1. For waves
with period 7' = 20 s, w = 27 /T = 0.3 rad/s. Thus f?/w? ~ 10~". For waves of shorter
period, f%/w? is even larger. Therefore, the change to the dispersion relationship is minor.

This means we can replace all the [ with k in the full solution.

9. Note that v is non-zero due to rotation.

17.4 Application to forcing the mean flow

So this solution is very similar to the non-rotating wave solution. The principal difference is the
non-zero v term for waves propagating in the +x direction. Is there not still a wave-induced (Stokes
drift) mass flux (M*)?

To address this we will consider the steady mean horizontal momentum balance in the x and y

direction, respectively,

—fp = _ Ofuw) (17.17)
0z

Ju = _Ovw) (17.18)
0z

where % and v are the mean currents in the x and y direction, respectively, and the (2nd-order)
Reynolds stresses are calculated from the rotating wave solutions (17.13).

Now, for non-rotating linear surface gravity waves, the wave induced Reynolds stress is zero.
For rotating linear surface gravity waves, (uw) = 0 because u o cos(kx — wt) and w o sin(kx —
wt) are 7/2 out of phase. However, with rotation v # 0 and (vw) # 0, because v and w o sin().

Using the solutions (17.13) we can calculate (vw) as
1
(vw) = §a2fw62kz. (17.19)

Can this result in a significant vertical flux of along-crest momentum ({vw)) that can be dynami-
cally impactful? Again taking f = 10~ s, w = 0.5 rad/s, a = /2 m gives p(vw) = 0.05 Pa.
This is equivalent to a small wind stress.

With the expression (17.17), we can write the Eulerian mean flow @ as

~ _, 0{vw) 1
1 _ 1 2 ke
u=—f 5 2(ak) ce”™*. (17.20)

There are a few things to note here.
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1. The mean Eulerian flow @ is in the opposite direction of the direction of the wave propagation

2. The expression for the Eulerian flow (17.20) is the same as that for Stokes drift (3.8) but
opposite signed! So this means that « = —ug, and that there is no net Lagrangian flow (in

the steady deep water case).

3. We can see now that if there is no net Lagrangian flow then there is no issue with overall cir-
culation conservation (17.1) and I' is conserved. That is that the material surface (Fig. 17.1)

that is originally vertical in the yz plane, stays vertical.

4. For general primitive equations for mean Eulerian flow with rotation one has a left-hand-
side term fk x u. With the addition of waves, there is an additional term that is written
as fk x ug, where ug is the vector wave-induced Stokes velocity. This force is called the

Stokes-Coriolis force.

5. These solutions can be generalized to any water depth (Xu and Bowen, 1994).

17.5 Effect of the Stokes-Coriolis force
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