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Chapter 1

Lecture: Review of Linear Surface Gravity
Waves

1.1 Definitions

Here we define a number of wave parameters and give their units for the surface gravity wave
problem:

• wave amplitude a : units of length (m)

• wave height H = 2a : units of length (m)

• wave radian frequency ω : units of rad/s

• wave frequency f = ω/(2π) : units of 1/s or (Hz)

• wave period T - time between crests: T = 1/f : units of time (s)

• wavelength λ - distance between crests : units of length (m)

• wavenumber k = 2π/λ : units of rad/length (rad/m)

• phase speed c = ω/k = λ/T : units of length per time (m/s)

1.2 Statement of the full problem

Here we assume that readers have a basic understanding of fluid dynamics and particularly (irro-
tational) potential flow. The derivation here for linear surface gravity waves follows that of Kundu
(XXXX), but is found in many other places as well.

Consider:
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• plane waves propagating in the +x direction only.

• The sea-surface η is a function of x and time t : η(x, t)

• Waves propagating on a flat bottom of depth h.

Thus water velocity is 2D and is due to a velocity potential φ

u = (u, 0, w) = ∇φ

As from the continuity equation,
∇ · u = 0

, this implies that in the interior of the fluid

∇2φ = 0. (1.1)

Next a set of boundary conditions are required in order to solve (1.1). These classic boundary
conditions are

1. No flow through the bottom: w = ∂φ/∂z = 0 at z = −h.

2. Surface kinematic: particles stay at the surface: Dη/Dt = w at z = η(x, t).

3. Surface dynamic: surface pressure p is constant or p = 0 at z = η(x, t)

The solution to (1.1) with the boundary conditions is a statement of the exact problem for
irrotational nonlinear surface gravity waves on an arbitrary bottom. As such it includes a lot of
physics including wave steepening, the onset of overturning, reflection, etc. There are models that
solve (1.1) with these boundary conditions exactly. This does not include dissipative process such
as full wave breaking, wave dissipation due to bottom boundary layers, etc.

Simplifying Boundary Conditions: Linear Waves

Boundary conditiosn #2 and #3 are complex as they are evaluated at a moving surface and thus
they need to be simplified. It is this simplification that leads to solutions for linear surface gravity
waves. This derivation can be done formally for a small non-dimensional parameter. For deep
water this small non-dimensional parameter would be the wave steepness ak, where a is the wave
amplitude and k is the wavenumber. Here, the derivation will be done loosely and any terms that
are quadratic will simply be neglected.
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Surface Kinematic Boundary Condition

Lets start with the #2 the surface kinematic boundary condition.

Dη

Dt
=
∂η

∂t
+ u

∂η

∂t
= w

∣∣∣∣
z=η

(1.2)

Neglecting the quadratic term and writing w = ∂φ/∂z we get the simplified and linear equation

∂η

∂t
=
∂φ

∂z

∣∣∣∣
z=η

(1.3)

However, the right-hand-side of (1.3) is still evaluated at the surface z = η which is not convenient.
This is still not easy to deal with. So a Taylor series expansion is applied ot ∂φ/∂z so that

∂φ

∂z

∣∣∣∣
z=η

=
∂φ

∂z

∣∣∣∣
z=0

+ η
∂2φ

∂z2

∣∣∣∣
z=0

(1.4)

Again, neglecting the quadratic terms in (1.4), we arrive at the fully linearized surface kinematic
boundary condition

∂η

∂t
=
∂φ

∂z

∣∣∣∣
z=0

(1.5)

Surface Dynamics Boundary Condition

The surface dynamic boundary condition of pressure is constant (or zero) along the surface is a
nice simple statement. However, the question is how to relate this to the other variables we are
using namely η and φ.

In irrotational motion, Bernoulli’s equation applies

∂φ

∂t
+

1

2
|∇φ|2 +

p

ρ
+ gz = 0

∣∣∣∣
z=η

(1.6)

where ρ is the water density and g is gravity. Again, quadratic terms can be neglected and if p = 0

this equation reduces to
∂φ

∂t
+ gη = 0

∣∣∣∣
z=η

(1.7)

This boundary condition appears simple but again the term ∂φ/∂t is applied on a moving surface
η, which is a mathematical pain. Again a Taylor series expansion can be applied

∂φ

∂t

∣∣∣∣
z=η

=
∂φ

∂t

∣∣∣∣
z=0

+ η
∂2φ

∂t∂z

∣∣∣∣
z=0

' ∂φ

∂t

∣∣∣∣
z=0

(1.8)

once quadratic terms are neglected.
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Summary of Linearized Surface Gravity Wave Problem

∇2φ = 0 (1.9a)
∂φ

∂z
= 0, at z = −h (1.9b)

∂η

∂t
=
∂φ

∂z
, at z = 0 (1.9c)

∂φ

∂t
= −gη, at z = 0 (1.9d)

Now the question is how to solve these equations and boundary conditions. The answer is the
time-tested one. Plug in a solution, in particular for this case, plug in a wave

1.3 Solution to the Linearized Surface Gravity Wave Problem

Here we start off assuming a solution for the surface of a plane wave with amplitude a travelling in
the +x direction with wavenumber k and radian frequency ω. This solution for η(x, t) looks like

η = a cos(kx− ωt) (1.10)

Next we assume that φ has the same form in x and t, but is separable in z, that is

φ = f(z) sin(kx− ωt) (1.11)

Thus we can write
∇2φ =

[
d2f

dz2
− k2f

]
sin(. . .) = 0.

The term in [] must be zero identically thus,

d2f

dz2
− k2f = 0,

which as a linear 2nd order constant coefficient ODE has solutions of

f(z) = Aekz +Be−kz

and by applying the bottom boundary condition ∂φ/∂z = df/dz = 0 at z = −h leads to

B = Ae−2kh

However we still need to know whatA is. Next we apply the surface kinematic boundary condition
(XX)

∂η

∂t
=
∂φ

∂z
, atz = 0
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which results in
aω sin(. . .) = k(A−B) sin(. . .)

which give A and B. This leads to a expression for φ of

φ =
aω

k

cosh[k(z + h)]

sinh(kh)
sin(kx− ωt) (1.12)

So we almost have a full solution, the only thing missing is that for a given a and a given k, we don’t
know what the radian frequency ω should be. Another way of saying this is that we don’t know
the dispersion relationship. This is gotten by now using the surface dynamic boundary condition
by plugging (1.12) and (1.10) into (XX) and one gets[

−aω
2

k

cosh(kh)

sinh(kh
= −ag

]
cos(. . .)

which simplifies to the classic linear surface gravity wave dispersion relationship

ω2 = gk tanh(kh) (1.13)

The pressure under the fluid is can also be solved for now with the linearized Bernoulli’s
equation: p = ρgz + ρ∂φ/∂t. This leads to a the still and wave part of pressure pw = ρ∂φ/∂t

The full solution for all possible variables is

η(x, t) = a cos(kx− ωt) (1.14a)

φ(x, z, t) =
aω

k

cosh[k(z + h)]

sinh(kh)
sin(kx− ωt) (1.14b)

u(x, z, t) = aω
cosh[k(z + h)]

sinh(kh)
cos(kx− ωt) (1.14c)

w(x, z, t) = aω
sinh[k(z + h)]

sinh(kh)
sin(kx− ωt) (1.14d)

pw(x, z, t) =
ρaω2

k

cosh[k(z + h)]

sinh(kh)
cos(kx− ωt) (1.14e)

Implications of the Dispersion Relationship

The dispersion relationship is
ω2 = gk tanh(kh)
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and is super important. To gain better insight into this, one can non-dimensionalize ω by (g/h)1/2

so that
ω2h

g
= f(kh) = kh tanh(kh) (1.15)

So first we review tanh(x),

tanh(x) =
ex − e−x

ex + e−x
(1.16)

and so for small x, tanh(x) ' x and for large x, tanh(x) ' 1.
Here we define deep water as that were the water depth h is far larger than the wavelength

of the wave λ, ie λ/h � 1 which can be restated as kh � 1. With this tanh(kh) = 1 and the
dispersion relationship can be written as

ω2h

g
= kh,⇒ ω2 = gk (1.17)

with wave phase speed of

c =
ω

k
=

√
g

k
(1.18)

Similarly, shallow water can be defined as where the depth h is much smaller than a wavelength
λ. This means that kh � 1, which implies that tanh(kh) = kh and the dispersion relationship
simplifies to

ω2h

g
= (kh)2,⇒ ω2 = (gh)k2 ⇒ ω = (gh)1/2k (1.19)

and the wave phase speed
c =

ω

k
=
√
gh (1.20)
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1.4 Homework

1. In h = 1 m and h = 10 m water depth, what frequency f = ω/(2π) (in Hz) corresponds to
kh = 0.1, kh = 1, and kh = 10 from the full dispersion relationship? Make a 6-element
table.

2. Plot the non-dimensional dispersion relationship ω2h/g versus kh. Then plot the shallow
water approximation to this (1.19). At what kh is the shallow water approximation in 20%
error?

3. For h = 10 m, plot f versus k for the full and shallow water dispersion relationship. At what
(f, k) is the shallow water limit in 10% error?

4. The shallow water approximation to the non-dimensional dispersion relationship (1.19) is
ω2h/g = (kh)2. Derive the next higher order in kh dispersion relationship from the full
dispersion relationship ω2h/g = kh tanh(kh). What is the corresponding phase speed c?

5. Plot this next-order in kh non-dimensional dispersion relationship. At what kh is this new
relationship in 20% error? Note the difference in the kh limit of usefulness relative to the
shallow water approximation.

6. Again, for h = 10 m, plot f versus k for this higher-order in kh dispersion relationship. At
what (f, k) is this in 10% error?

10



Chapter 2

Lecture: Mean Properties of Linear Surface
Gravity Waves, Energy and Energy Flux

Here, mean properties of the linear surface gravity wave field will be considered. These properties
include wave energy, energy flux, and mass flux, which is also known as Stokes drift. In a future
lecture we will consider wave momentum fluxes. These properties are important as they help us
understand how the wave field affects the circulation on time-scales much slower than the waves
themselves. Some of these wave properties will be depth averaged and others will not be, so keep
that in mind. Furthermore, aside from wave-energy, the wave-aveaged properties are all fluxes of
a sort - either energy, mass, or momentum. So without further ado!

2.1 Wave Energy

Wave energy E can be though of as the sum of kinetic (KE) and potential (PE) energy, E =

KE + PE. In this context wave energy is depth-integrated average energy of waves over a wave
period. As such it should then have units of J m2 so that by averaging wave-energy over an area,
one gets Joules (J).

Lets first calculate the potential energy (PE). This is defined as the excess potential energy due
to the wave field. Thus the instantaneous PE is

ρg

[∫ η

−h
z dz −

∫ 0

−h
z dz

]
= ρg

∫ η

0

z dz =
1

2
ρgη2 =

1

2
ρga2 cos2(ωt). (2.1)

Now we time-average (2.1) over a wave period and with the identidy that (1/T )
∫ T

0
cos2(ωt)dt =

1/2 we get

PE =
1

4
ρga2 (2.2)
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Next we consider the kinetic energy. The local kinetic energy per unit volume is ρ|u|2, and so
depth-integrated this becomes

ρ

∫ 0

−h
|u|2 dz = ρ

∫ 0

−h
(u2 + w2) dz (2.3)

Using the solutions (1.14c and 1.14d) and depth-integrating and time-averaging over a wave-period
one gets

KE =
1

4
ρga2/ (2.4)

The first thing to note is that the the kinetic and potential energy are the same (KE = PE), that
is the wave energy is equipartiioned. This is a fundamental principle in also sort of linear wave
systems. But that is not a topic for here.

Now consider the total wave energy

E = KE + PE =
1

2
ρga2 (2.5)

Now if one defines the wave height H = 2a, then the wave energy is written as

E =
1

8
ρgH2 (2.6)

2.2 A Digression on Fluxes

A local flux is a quantity × velocity, so it should have unis of Q m/s. For example,

• temperature flux: Tu

• mass flux: ρu

• volume flux: u

Transport is the flux through an AreaA. So this has units ofQm3s−1 and transport T can be written
as

T =

∫
u · n̂Q dA (2.7)

An example of volume transport can be the transport of the Gulf Stream ≈ 100 Sv where a Sv is
106 m3 s−1. Or consider flow from a faucet of 0.1 L/s. Well a liter is 10−3 m3 so this faucet flow is
10−4 m3 s−1. A heat flux example is useful to consider. For example heat content per unit volume
is ρcpT , where cp is the specific heat capacity with units Jm−3. This implies that by integrating
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over a volume, one gets the heat content (thermal energy) which has units of Joules. So the local
heat flux is ρcpTu which then has units of Wm−2. When integrated over an area,∫

ρcpTu · n̂ dA (2.8)

gives units of Watts (W).
Here, with monochromatic waves propagating in the +x direction, we will typically consider

fluxes (but not always) in a constant yz direction. This means that the normal to the plane n̂ is in
the +x direction, and that u · n̂ = u, the component of velocity in the +x direction. This makes
the depth integrated flux of quantity Q ∫

Qudz (2.9)

with units Qm2 s−1.
Knowing flux is important for many things pratical and engineering. However, one funda-

mental property of flux is its role in a tracer conservation equation. A tracer φ evolves according
to

∂φ

∂t
+∇ · Flux = 0, (2.10)

so that the divergence (∇· ()) of the flux gives the rate of change. This equation can describe many
things from traffic jams to heat evolution in a pipe to the Navier-Stokes equations.

A key point to the flux is that through the divergence theorem, the volume integral of φ evolves
according to,

d

dt

∫
V

φdV =

∫
∂V

F · n̂dA (2.11)

where the area-integrated flux F into or out of the volume gives the rate of change. This concept
is useful in many physical problems including those with waves!

2.3 Wave Energy Flux

Now we calcualte the wave energy flux. The starting point is the conservation equation for mo-
mentum, which here are the inviscid incompressible Navier-Stokes equations,

∇ · u = 0 (2.12a)

∂u

∂t
+ u · ∇u = ρ−1∇p (2.12b)

Now, as before we consider only the linear terms and thus we neglect the nonlinear terms (u ·
∇u). Then an energy equation is formed by multiplying (2.12b) by ρu. The first terms becomes
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(1/2)∂|u|2/∂t after integrating by parts. The pressure terms becomes u · ∇p = ∇ · (up)− p∇ ·u,
and because the flow is incompressible (∇ · u = 0) we are left with

1

2

∂|u|2

∂t
= −∇ · (up) (2.13)

which is in the form of a conservation equation being driven by a flux-divergence. In this case up

is the local energy flux. Note that this does sortof look like a classic flux (velocity times quantity)
with pressure having units of (Nm−2) which is Jm−3, which is energy per unit volume!

So now the depth-integrated and time-averaged wave energy flux F is

F =

〈∫ 0

−h
pu dz

〉
(2.14)

The upper limit on the integral for (2.14) is z = 0 and not z = η because this is the linear energy
flux and assumes that η is small.

Now we just need to plug in the solutions and average and we get the wave energy flux. The
pressure is the sum of the hydrostatic component p̄ and the wave component pw (1.14e). Because
u (1.14c) is periodic and p̄ is steady, 〈∫ 0

−h
p̄u dz

〉
= 0 (2.15)

leaving

F =

〈∫ 0

−h
pwu dz

〉
(2.16)

Plugging in (1.14c) and (1.14e) results in

F =
1

2
ρga2

[
ω

k

1

2

(
1 +

2kh

sinh(2kh)

)]
(2.17)

Now the wave energy flux can can be rearranged to look like

F = Ec
1

2

(
1 +

2kh

sinh(2kh)

)
(2.18)

looks like a quantity times a type of velocity times a non-dimensional parameter ? = (1/2)(1 +

2kh/ sinh(2kh)). Lets consider two limits, deep water: kh → ∞ then ? → 1 and shallow water
kh→ 0 gives ? = 1/2.

So perhaps one could redefine the velocity associated with the flux as cg

cg = c
1

2

(
1 +

2kh

sinh(2kh)

)
(2.19)
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which we call the group velocity. Then the depth-integrated and time-averaged wave energy flux
is

F = Ecg (2.20)

which is analogous to the point fluxes discussed earlier.
Now how is the group velocity related to the dispersion relationship ω2 = gk tanh(kh)? Well

first the wave phase speed is

c =
ω

k
=

[g tanh(kh)]1/2

k1/2
(2.21)

and

∂ω

∂k
=

1

2
[gk tanh(kh)]−1/2 (g tanh(kh) + gk cosh−2(kh)) (2.22)

= c
1

2

[
1 +

2kh

sinh(2kh)

]
. (2.23)

So cg, which we’d derived earlier the velocity associated with the wave energy flux, is also

cg =
∂ω

∂k
. (2.24)

This relationship for cg (2.24) can be derived in an entirely different way. Consider two waves
with slightly different frequencies

η = a cos(k1x− ω1t) + a cos(k2x− ω2t) (2.25)

where ∆ω = ω2 − ω1 is small. This results in wave groups that propagate with cg.

2.3.1 Hint of a Wave Energy Conservation Equation

Going back to the idea of a flux conservation relationship (2.10), we now have wave energy E and
wave energy flux F . Unless wave energy is created (by wind generation) or destroyed (by wave
breaking or bottom friction) we might expect that a wave energy equation such as

∂E

∂t
+∇ · (E~cg) = 0 (2.26)

applies for linear waves. This statement (2.26) can be more generalized as a wave-action conser-
vation equation. Such an equation can apply to a variety of linear wave situations from surface
gravity waves, to internal waves, to sound waves. This is a topic that deserves more discussion
but it belongs in a general linear waves course. But keep (2.26) in mind as it wil appear in various
guises later on.
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2.4 Homework

1. Confirm for yourself that the units of (2.26) work out. What are the units of Ecg?

2. Assume linear monochromatic waves with amplitude a and frequency f are propagating in
the +x direction on bathymetry that varies only in x, i.e., h = h(x). If the waves field is
steady, and there is no wave growth or breaking then one can assume that

d

dx
(Ecg) = 0. (2.27)

• In deep water, what is the wave height H dependence on water depth h?

• In shallow-water, what is the wave height H dependence on water depth h?

In both cases one can derive a scaling for H ∼ f(h).

3. Directionality of the wave energy flux: Previously we considered the energy flux for waves
propagating in +x direction. Now consider waves propagating with an angle θ to the +x

direction. What is the wave energy flux component in the +x and +y direction?
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Chapter 3

Lecture: Wave-induced Mass Flux: Stokes
Drift

With linear surface gravity waves, at some point below the trough, the mean Eulerian velocity is
zero as 〈u〉 ∝ 〈cos()〉 = 0. So the local Eulerian mass flux is zero below trough level. But htere is
a net wave-induced depth-integrated mass flux, (maintaining consistent notation) i.e.,

MS =

〈
ρ

∫ η

−h
u dz

〉
. (3.1)

This integral (3.1) can be broken down into two components

MS =

〈
ρ

∫ 0

−h
u dz

〉
+

〈
ρ

∫ η

0

u dz

〉
. (3.2)

The first term of (3.2) is zero. For the second term, the linear solution only applies to z ≤ 0 not to
z = η, however because η is small, we can use u at z = 0 and write

MS =

〈
ρ

∫ η

0

u dz

〉
= 〈ρηu|z=0〉. (3.3)

When applying the linear solution (1.14a,1.14c) gives

MS =
1

2
ρa2ω

cosh(kh)

sinh kh
=

1

2
ρga2 · ωk

gk tanh kh
= E · k

ω
=
E

c
. (3.4)

This derivation was performed from an Eulerian point of view. With this perspective, one can
only get the depth-integrated wave-induced mass transport. One might think that the local mass
transport is zero, but it is not. What is the local mass flux at a particular depth? To answer this we
must use an Lagrangian perspective.

Consider a particle at z = z0 and x = x0, how is this particle, on average, advected laterally in
the +x direction? The particle Lagrangian velocities are uS = ∂x/∂t and ws = ∂z/∂t. Note here

17



we use the subscript “S” to denote the wave-induced Lagrangian velocities. These equations can
be integrated to give

x(t) = x0 +

∫ t

0

uS(x0, z0; t′) dt′, (3.5)

and similarly for z(t). To solve for the time-averaged Stokes-drift velocity ūS(z), we need to
Taylor series expand the instantaneous Lagrangian velocity around the Eulerian velocity,

ūS(z) = 〈u(x0, z0, t)〉+

〈
∆x

∂u

∂x
+ ∆z

∂u

∂z

〉
(3.6)

where ∆x and ∆z are the orbital excursions. The first term in (3.6) is zero as this is the Eulerian
velocity. which can be derived from the linear solutions which for deep water are:

∆x = −a exp(kz0) sin(kx− ωt) (3.7a)

∆z = a exp(kz0) cos(kx− ωt) (3.7b)
∂u

∂x
= −akω exp(kz0) sin(kx− ωt) (3.7c)

∂u

∂z
= akω exp(kz0) cos(kx− ωt). (3.7d)

Evaluating the 2nd term of (3.6) gives for deep water

ūS(z) = (ak)2c exp(2kz), (3.8)

which as ak must be small, then it is clear that ūS � c. One can then depth-integrate over the
water column to get the mass transport

MS = ρ

∫ 0

−∞
ūS(z)dz = ρ

(ak)2c

2k
=

1

2
ρga2 · ω

g
=
E

c
(3.9)

as g/ω = c in deep water. Note that this is the same result as for the Eulerian derivation!
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Homework

The arbitrary depth-dependent definition of the Stokes-drift velocity is

ūS = (ak)2c
cosh[2k(z + h))]

2 sinh2(kh)
(3.10)

1. Write out ūS for shallow water (small kh). Is there another non-dimensional small parameter
that comes out?

2. Can you think of a limit on this new small parameter? Where would it be unphysical?

3. For shallow-water, what is the depth-integrated wave-driven transport ML = ρ
∫ 0

−h ūSdz?
Does it differ from the other wave-induced transport estimates (3.4?

4. For a shallow-water infinite re-entrant channel of depth h = 1 m and H = 0.1 m, what is
ūS? What is the depth-averaged Eulerian flow?

5. Same as 3., but for a finite channel where waves dissipate into a sponge layer. If there is no
piling up of water at the end of the channel what is the depth-averaged Eulerian flow?
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Chapter 4

Lecture: Wave-induced Momentum Fluxes:
Radiation Stresses

Here we derive the wave-induced depth-integrated momentum fluxes, otherwise known as the
radiation stress tensor S. These are the 2nd-order accurate momentum fluxes that can be derived
from the linear solutions for surface gravity waves. These solutions for radiation stresses were
derived in a series of papers my Longuet-Higgins and Stewart in 1960,1962. Here we follow the
derivation given in Longuet-Higgins and Stewart (1964).

First to review we’ve considered the wave-induced mass flux MS (3.1)

MS =

〈
ρ

∫ η

−h
u dz

〉
= ρ

∫ 0

−h
ūS dz =

E

c
, ρ

[
L2

T

]
and wave-induced energy flux F (2.14),

F =

〈∫ 0

−h
pu dz

〉
= Ecg, ρ

[
L4

T 3

]
What about momentum fluxes? Now these are derived directly from the inviscid Navier Stokes
equations, which have the form (in vector index notation),

ρ
∂ui
∂t

= −ρ∇ · (uiuj + p). (4.1)

Thus, as with energy flux, to have a standard flux-gradient balance, we must also consider the
pressure term.

The flux across a vertical (yz) plane at x = x0 with normal to the plane of n̂ = (1, 0, 0) is
ρu2 + p. Which vertically integrated and time-averaged becomes〈∫ η

−h
(ρu2 + p) dz

〉
(4.2)
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which has units of ρL3/T 2 or mass per time squared. As we are considering the wave-induced
mass flux, we have to subtract the mass flux from when there is no motion. Obviously, there is
no velocity component in still water, but there is a hydrostatic pressure component. As before, the
pressure

p = p0 + pw, (4.3)

is broken down into hydrostatic (p0 = −ρgz, note we don’t use p̄ any longer) and wave-induced
(pw) contriputions. Thus the wave-induced depth-integrated and time-averaged momentum flux is

Sxx =

〈∫ η

−h
(ρu2 + p) dz

〉
−
∫ 0

−h
p0 dz (4.4)

Note that this is one component of a 2D tensor. We will derive this component first and then derive
the others.

This definition of Sxx can be split into three parts

Sxx = S(1)
xx + S(2)

xx + S(3)
xx , where (4.5a)

S(1)
xx =

〈∫ η

−h
ρu2 dz

〉
(4.5b)

S(2)
xx =

〈∫ η

−h
pw dz

〉
(4.5c)

S(3)
xx =

〈∫ η

0

p dz

〉
(4.5d)

(4.5e)

where the first term is the momentum flux due to velocity, the 2nd term is the wave-induced pres-
sure change in the water column, and the third term is the contribution of total pressure from crest
to trough. These terms are evaluated separately using the linear theory wave solutions.

Now consider S(1)
xx , as it is a 2nd order quantity with u2, it means that the upper-limit of inte-

gration z = η is replaced with z = 0, and the mean is transfered inside the integral so that

S(1)
xx =

∫ 0

−h
ρ〈u2〉 dz, (4.6)

which is essentially the depth-integrated Reynolds stress induced by waves. Similarly for S(2)
xx the

averaging operator can be moved inside the integrand

S(2)
xx =

∫ η

−h
〈p〉 − p0 dz (4.7)

that this term arises from the change of mean pressure in the fluid. Longuet-Higgins and Stewart
(1964) have a trick to evaluating this term. In a hydrostatic case, the pressure supports the weight
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of the water above, i.e., p = ρgz. However, in a general (non-hydrostatic) cases, it is that mean
vertical momentum flux that supports the mean weight, i.e.,

〈p+ ρw2〉 = −ρgz = p0 (4.8)

or
〈p〉 − p0 = ρ〈w2〉. (4.9)

Thus the mean pressure in the water column with waves is less than the hydrostatic pressure and
one can write

S(2)
xx = −

∫ 0

−h
ρ〈w2〉 dz (4.10)

Combining the first two terms gives

S(1)
xx + S(2)

xx =

∫ 0

−h
ρ
(
〈u2〉 − 〈w2〉

)
dz (4.11)

which is ≥ 0 due to the linear surface gravity wave solution (1.14). One can use the linear wave
solutions to evalue (4.11) and one gets

S(1)
xx + S(2)

xx = ρga2 kh

sinh(2kh)
= E

2kh

sinh(2kh)
(4.12)

This has deep- and shallow water limits.... DISCUSS!
The third term S

(3)
xx is easily evaluated as near the surface pressure is approximately hydrostatic,

ie p = ρg(η − z) and

S(3)
xx =

〈∫ η

0

p dz

〉
= ρg〈η2 − η2/2〉 =

1

2
ρg〈η2〉 =

E

2
, (4.13)

as 〈η2〉 = a2/2. Combining it all, one get

Sxx = E

[
2kh

sinh(2kh)
+

1

2

]
. (4.14)

In deep water (kh− >∞), 2kh/ sinh(2kh)→ 0 so Sxx = E/2. In shallow water 2kh/ sinh(2kh)→
1 so Sxx = 3E/2.

Now, a similar exercise can be performed for the other diagonal component of the tensor Syy
which results in

Syy = Sxx =

〈∫ η

−h
(ρv2 + p) dz

〉
−
∫ 0

−h
p0 dz = E

kh

sinh(kh)
(4.15)
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as v = 0 when the wave propagates in the +x direction. Thus in deep water Syy → 0 and in
shallow water Syy = E/2. The off-diagonal component of the radiation stress tensor Sxy is written
as

Sxy =

〈∫ η

−h
uv dz

〉
, (4.16)

which again, keeping only terms up to 2nd order, we replace the upper-limit of integration with
z = 0, and move the time-average inside the integral to get

Sxy =

∫ 0

−h
〈uv〉 dz. (4.17)

For waves propagating in the +x as for waves 〈uv〉 = 0.
Now how to more compactly represent the radiation stress S? Recall that

cg/c =
1

2

[
2kh

sinh(2kh)
+ 1

]
, (4.18)

so therefore
S =

(
Sxx Sxy
Syx Syy

)
= E

(
2cg/c− 1/2 0

0 cg/c− 1/2

)
(4.19)

For monochromatic waves propagating in the +x direction. What happens if the coordinate system
is rotated? If the coordinate system of a vector v is rotated counter-clockwise by an angle θ, then
the vector components in the new coordinate system can be written as

v′i = Rijvj (4.20)

where
Rij =

[
cos θ − sin θ
sin θ cos θ

]
(4.21)

The rules for tensor transfomation under a rotated coordinate system are analogous and have com-
ponents

S′ = RTSR (4.22)

23



Homework

1. For waves propagating at an angle θ to +x, use the tensor transformation rules (4.22) to
calculate the off-diagonal term of the radiation stress tensor Sxy.

2. Recall the the wave-energy flux (to 2nd order) is F = Ecg for a monochromatic wave prop-
agating in the +x direction in shallow water when the depth only varies in the cross-shore
direction h = h(x). In homework #2, you found that this gives a wave height dependence
on depth H ∝ f(h).

(a) For the same situation (shallow water, h = h(x)), derive an expression for Sxx as a
function of depth.

(b) Now consider that h = βx, where β is the beach slope. What is the cross-shore gradient
of Sxx, that is what is dSxx/dx.

(c) Why does the momentum flux Sxx vary while the energy flux is uniform? What does
this imply about momentum?
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Chapter 5

Lecture: Wave Setup and Setdown

Radiation stresses can be applied in many cases where surface gravity waves generate flows on
time- and length-scales longer than waves. This is particularly true when there are spatial gradients
in the average wave properties (i.e., wave energy E), such as what happends when waves shoal,
refract, encounter a current, and break.

Here we shall consider the simplest such applications, but an extremely important one of what
happens when waves shoal as the water depth decreases, and briefly what happens when waves
begin to break. Other, more complex applications will be addressed later.

5.1 Derivation

Consider the case of no mean flow, waves approaching the shore with bottom slope dh/dx [FIG-
URE] To analyze what happends in this situation we consider

1. The wave induced momentum flux Sxx across two vertical planes separated by dx such that
the change in momentum flux is dSxx/dx.

2. The response of the depth-integrated mean pressure p̄ = ρg(η̄ − z) to this change in Sxx.
We now allow here the mean surface η̄ to variable so that the surface can adjust to the wave
field. This term is vertically integrated to

−
∫ η̄

−h

∂p̄

∂x
dz = −ρg

∫ η̄

−h

∂(η̄ − z)

∂x
dz = −ρg(η̄ + h)

∂η̄

∂x
. (5.1)

Conservation of x-momentum then implies that

−ρg(η̄ + h)
dη̄

dx
+
dSxx
dx

= 0, (5.2)
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where note that this is a non-linear 1st order ordinary differential equation for the mean sea-surface
η̄. This equation can no be used to derive wave-induced setdown and setup which are the depres-
sion of the sea-surface during shoaling and the elevation of the sea-surface during wave breaking.
Sometimes this ODE (5.2) is simplified by assuming that η̄ � h yielding

dη̄

dx
= − 1

ρgh

dSxx
dx

. (5.3)

In order to solve the ODE for η̄, one only needs to specify the wave field to estimate Sxx and
specify a boundary condition for η̄. Here, we will consider two regions

1. Shoaling, with conserved wave energy flux Ecg, which leads to set-down.

2. Surfzone wave breaking which leads to set-up.

5.2 Wave-induced set-down

There are many examples of solutions to the wave set-down problem and in particular the original
solution given by Longuet-Higgins and Stewart (1962) is most elegant yet complex. Here, we
shall consider the far simpler problem of the linear set-down problem in shallow water where
Sxx = 3E/2.

Now in this case the local wave energy

E =
E0cg0
cg

=
1

2
ρga2

0

(
h0

h

)1/2

. (5.4)

where variables with subscript “0” indicate that they are at the location where the boundary condi-
tion comes in. Now the cross-shore momentum equation

dη̄

dx
= − 1

ρgh

dSxx
dx

= −3a2
0h

1/2
0

4

1

h

d
(
h−1/2

)
dx

(5.5)

=
3a2

0h
1/2
0

4

1

2
h−5/2dh

dx
= −a

2
0h

1/2
0

2

d
(
h−3/2

)
dx

. (5.6)

This equation can be integrated from offshore x0 to onshore at x,∫ x

x0

dη̄

dx′
dx′ = η̄(x)− η̄0 = −1

2
a2

0h
1/2
0

(
h−3/2 − h−3/2

0

)
. (5.7)

At this point we can redefine the sea-surface at x0 to be zero, i.e., η̄0 = 0. Now if h < h0, this
implies that

(
h−3/2 − h−3/2

0

)
> 0 which implies that

η̄(x) = −1

2
a2

0h
1/2
0

(
h−3/2 − h−3/2

0

)
. (5.8)
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is negative for shoaling waves.
Note that this solution is relatively limited to shallow water situations. The beautiful and com-

plex solutions for η̄ valid for any kh given in Longuet-Higgins and Stewart (1962) but the primary
point is made here. For shoaling waves, as the wave amplitude (or height) increases, the sea surface
is depressed.

5.3 Surfzone

In order to describe the state of the sea-surface elevation η̄ inside the surfzone where waves are
breaking, one has to first describe the waves. We will examine this in detail later, but for now let
us assume heuristically that γ = H/h is a known constant applicable inside the surfzone. This
implies that a = γh/2 and plugging into Sxx = 3E/2 results in

Sxx =
3

16
ρgγ2h2. (5.9)

Using this and plugging into the linear setup equation (5.3) one gets

dη̄

dx
= −3

8
γ2dh

dx
. (5.10)

Now if the beach slope dh/dx is monotonic and decreases farther onshore then dh/dx is negative
and so dη̄/dx is positive, that is the sea surface tilts up. Note that this can be integrated from the
breakpoint xb onshore and for a planar beach

∆η̄ = −3

8
γ2∆h. (5.11)

where ∆h = h− hb. As ∆h is negative, this implies that ∆η̄ is positive.
Now recall that this form for the wave-induced set-up assumes η̄ � h. This will clearly not

be true near the shoreline where the still water depth goes to zero. The set-up problem can also be
examined with the full non-linear relationship (5.2), rewritten as

dη̄

dx
= − 1

ρg(η̄ + h)

dSxx
dx

, (5.12)

and instead of (5.9), we write Sxx = 3
16
ρgγ2(η̄ + h)2. With this we can write

dη̄

dx
= −3

8
γ2

(
dη̄

dx
+
dh

dx

)
(5.13)

dη̄

dx
= −3

8
γ2

(
1 +

3

8
γ2

)−1
dh

dx
(5.14)

dη̄

dx
= K

dh

dx
(5.15)
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Fig. 2. Profile of the mean water level and the envelope of the wave height for a typical 

experiment. Theoretical plot is from equation 7. Wave period, 1.14 sec; Ho = 6.45 cm; Hb = 
8.55 cm; tan fJ = 0.082. 

As might be expected from (7), the difference 
between the observed and the theoretical 'set-
down' is well correlated with the difference be-
tween the observed wave height and the wave 
height predicted by first-order theory. 

Close to the break point the 'set-down' must 
be influenced by the fact that the solutions 
inside and outside the breakers must be patched 
together in a reasonable way. Experimentally, 
it was found that the 'set-down' was rather con-
stant between the point where the crest of the 
wave begins to curl over and the point where 
the whole wave form collapses. These two points 

are defined as the break point and the plunge 
point (Figure 2). Inshore from the plunge point 
a region of rebound was observed where the 
broken wave reformed and then moved up the 
beach as a regular bore. The rebound was asso-
ciated with a rather rapid rise in the mean water 
level. 

Further inshore, where the bore was well 
formed, the set-up increased steadily, the gradient 
of the set-up being approximately constant as the 
theoretical results suggest. The measurements 
showed that in this region the wave height tends 
to be a linear function of the mean water depth, 

Figure 5.1: Profile of mean water level η̄ and the envelope of wave height for a typical experiment
with H0 = 6.5 cm, T = 1.1 s, and beach slope β = 0.082. (from Bowen et al., 1968).

where
K = (1 + 3γ2/8)−1 (5.16)

Thus the effect on including the full nonlinear depth is to reduce the set-up. This can already be
seen from (5.12) that within the surfzone (η̄ + h) > h and so the setup slope will be smaller.
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Fig. 3. Wave height inside the break point, near 
maximum set-up, as a function of the mean depth, 
showing linearity of the relation and the residual 
wave height at ij + h = o. 

ii + h (Figure 3) as is assumed in equation 11. 
There was, however, always some residual wave 
height Hr at the beach, indicating that equation 
10 should read H = Hr + ,,/(ii + h). Then 
equation 12 becomes 

dii = ·-leii + h) + "/H r dh 
dx - (R/3 + ,,/2)(ii + h) + "/H: dx 

so that, as ii + h 0, diildx - dhldx. 
This suggests that very close to the shore the 

set-up should steepen, becoming tangential to the 
beach as ii + h o. Perhaps surprisingly, this 
tendency can be seen quite clearly in several of 
the experiments (Figure 4). Hr is the vertical 
distance between the beach and the crest of the 
bore 'swashing' across the beach face that has 
just been 'dry.' Surface tension will tend to in-
hibit wave break in this region, but the long 
wavelength suggests that the dominant effects 
are viscous. 

Equation 12, or its modified form (equation 
13), seems to provide an excellent qualitative 
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Fig. 4. Set-up on the experimental beach, 
showing the linearity of the set-up and the slope 
of the set-up becoming tangential to the beach 
slope as ij + h -> o. 
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equation 12. 

Figure 5.2: The ratio of K = (dη̄/dx)/(dh/dx) as a function of γ = H/h. The difrent symbols
represent different experiments and the solid line represents the theory (5.16). (from Bowen et al.,
1968).
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and h estimated from wave and bathymetry data collected 
along a cross-shore transect agreed well with setup observed 
for 2 months in 2 m water depth, even though the setup mea- 
surements were made with unburied pressure sensors subject 
to flow-induced measurement errors (see Appendix A) and 
offset drift. 

Field measurements show that surf zone setup depends on 
the local water depth and the offshore wave height [Nielsen, 
1988; King et al., 1990]. Field observations of setup at the 
shoreline 77shore suggest 

77shore -- cHs,o, (3) 

where Hs,0 is the offshore significant wave height and c is 
a constant between about 0.2 and 0.3 [Hansen, 1978; Guza 
and Thornton, 1981; Nielsen, 1988; Hanslow et al., 1996]. 
This result is consistent with (1) and (2) assuming a mono- 
tonic beach slope, normally incident long waves, and surf 
zone wave heights that are a constant fraction of the wa- 
ter depth. However, scatter about (3) is considerable (of- 
ten greater than 100% of 77shore), possibly because natu- 
ral beaches often are barred or alongshore inhomogeneous, 
wave reflection may be large near the shoreline, and the ratio 
of wave height to water depth may depend on the beach slope 
and wave conditions. Additionally, observed mean water 
levels near the shoreline (in both field and laboratory studies) 
can be sensitive to the measurement technique [e.g., Holland 
et al., 1995] and to the definition of setup [e.g., Gourla3; 
1992]. 

In contrast to (3), Holman and Sallenger [1985] found 
no correlation between video-based estimates of 77shore and 
H•,0, but instead suggested that 77shore/Hs,o increased with 
increasing Iribarren number •0 = •/v/H•,o/Lo, where • 
is the foreshore beach slope and L0 is the offshore wave- 
length of the spectral peak frequency. Scatter in this rela- 
tionship was reduced by separating the results into low, mid- 
dle, and high tidal stages, and it was hypothesized that the 
offshore bar morphology influenced the low-tide shoreline 
setup. However, the observations of Nielsen [1988] showed 
little effect of the offshore barred bathymetry on the setup, 
and thus the importance of barred bathymetry to 77shore is 
uncertain. 

Here the balance (1) is tested with field observations of 
waves and time-averaged water levels measured between the 
shoreline and about 5 m water depth on a barred beach. Wa- 
ter levels are estimated with buried, stable pressure sensors. 
Setdown and setup up are predicted by integrating (1) with 
Sxx based on (2) using the wave observations. The observed 
setdown is consistent with (1). Similar to Lentz and Rauben- 

buried pressure gages (setup sensors) located between the 
shoreline and about 5 m water depth (Figure 1, solid cir- 
cles). The setup pressure sensors were buried to avoid flow- 
induced deviations from hydrostatic pressure (see Appendix 
A). After correcting for temporal changes in water density 
[Lentz and Raubenheimer, 1999] with conductivity and tem- 
perature measured in 5 m water depth, mean water levels 
were calculated from 512 s (8.5 min) records by assuming 
hydrostatic pressure. 

Setup (setdown) was defined as the increase (decrease) of 
the mean water level relative to that observed at the most 

offshore setup sensor (cross-shore location x = 58 m). The 
observed shoreline setup was estimated as the setup where 
the total water depth was < 0.1 m. Note that 77shore was 
measured only when the shoreline, defined as the intersec- 
tion of the mean water level with the beach, approximately 
coincided with a setup sensor location, which occurred at 
most once per rising (and falling) tide. 

At all but the shallowest three locations, sensor offset 
drifts (typically equivalent to about 0.03 m of water over 
the 3 month experiment) were removed by subtracting from 
each time series a quadratic curve fit to setup estimated at 
17 times when negligible setup or setdown was expected 
(H•,0 < 0.35 m and h > 2 m). In shallower water (x > 350 
m), drifts were removed by adjusting the calculated mean 
water levels (using a quadratic fit) so that setup and setdown 
were negligible for small nonbreaking waves (estimated as 
locations and times when the ratio 78 of significant wave 
height H8 to total water depth h + 77 was < 0.2) and so that 
the water level equaled sand level when the saturated sand 
above swash zone sensors first was exposed during rundown 
[Raubenheimer et al., 1995]. 
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heimer [1999], setup is predicted well in 2 m water depth, Figure 1. Locations of deeply buried pressure sensors used 
but the balance breaks down in depths shallower than about to measure setup (solid circles), colocated unburied pres- 
1 m. Setup near the shoreline is shown to be sensitive to the sure sensors, current meters, and sonar altimeters (open cir- 
surf zone bathymetry and tidal fluctuations. cles), near-bed pressure sensors (open diamonds), and the conductivity sensor (asterisk). The most seaward 11 setup 

sensors were accurate Paroscientific gages. All pressure 
2. Field Experiment and Data Processing measurements were corrected for temperature effects. The 

solid curves are selected beach profiles measured between 1 
Observations were acquired from September through September and 31 November. The thick black curve is the 

November 1997 on a sandy Atlantic Ocean beach near Duck, 13 September profile. The x axis is positive onshore with the 
North Carolina. Bottom pressure was measured with 12 origin at the location of the offshore sensor. 

Figure 5.3: Locations of deeply buried pressure sensors used to measure setup (solid circles),
co-located unburied pressure sensors, current meters, and sonar altimeter (open circles), near-bed
pressure sensors (open diamonds), and the conductivity sensor (asterisk). The mostseaward 11
setup sensors were accurate Paroscientific gages. All pressure measurements were corrected for
temperature effects. The solid curves are selected beach profiles measured between 1 September
and 31 November The thick black curve is the 13 September profile. The x axis is positive offshore
with the origin at the location of the offshore sensor. (from Raubenheimer et al., 2001)
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Beach profiles were surveyed every few days with an 
amphibious vehicle, and seafloor elevations were measured 
nearly continuously at 11 cross-shore locations (Figure 1) 
with sonar altimeters [Elgar et al., 2001]. Foreshore sand 
levels at the three shallowest setup gages (cross-shore loca- 
tions 375, 382, and 390 m) were measured approximately 
daily using reference rods. 

Significant wave heights (4 times the standard deviation 
of sea surface elevation fluctuations) and centroidal frequen- 
cies in the wind-wave frequency (f) band (0.05 < f < 0.30 
Hz) were calculated every 512 s using observations from the 
three most shoreward setup sensors and from the wave sen- 
sors (Figure 1, open symbols) located between the setup sen- 
sors. Attenuation of pressure fluctuations through the water 
and the saturated sand above the buried setup sensors was 
accounted for using linear wave and poroelastic theories, re- 
spectively [Raubenheimer et al., 1998]. Orbital velocities 
observed with bidirectional electromagnetic current meters 
were used to estimate 3 hour mean (energy-weighted aver- 
age over frequency) wave directions [Kuik et al., 1988, Her- 
bers et al., 1999]. Waves were assumed normally incident 
onshore of the shallowest current meter (z > 350 m). 

Offshore (Figure 1, x = 0 m) wave heights (Figure 2a), 
directions, and centroidal frequencies ranged from 0.20 to 
2.85 m, -35 ø to 35 ø, and 0.09 to 0.20 Hz, respectively. The 

Table 1. Least Squares Linear Fits (With Intercept a and 
Slope b) of Setup Predictions to Observations, and Range of 
Observed Setup for Different Total Depth (h + •) Ranges 

Total Depth Tipred -- a q- boobs Range 
m a, rn b correlation r/ohs, rn 
4.0 to 5.0 0.000 0.98 1.00 -0.016 to 0.112 
3.0 to 4.0 0.000 0.98 1.00 -0.017 to 0.167 
2.5 to 3.0 0.000 0.98 1.00 -0.033 to 0.171 
2.0 to 2.5 0.001 0.95 0.99 -0.032 to 0.203 
1.5 to 2.0 0.002 0.94 0.99 -0.033 to 0.236 
1.0 to 1.5 0.002 0.93 0.99 -0.030 to 0.248 
0.8 to 1.0 0.000 0.87 0.98 -0.022 to 0.269 
0.6 to 0.8 0.005 0.69 0.97 -0.019 to 0.275 
0.4 to 0.6 0.007 0.64 0.96 -0.025 to 0.304 
0.2 to 0.4 0.009 0.57 0.92 -0.021 to 0.372 
0.0 to 0.2 0.027 0.45 0.88 -0.013 to 0.547 

maximum setup (0.547 m) was observed near the shoreline, 
and the maximum setdown (-0.033 m) was observed in 1.5- 
3.0 m water depth (Table 1). 

3. Model Solutions 

Cross-shore integration of (1) yields 

x2 1 t9Sx• • pg(rl+h) c•x dx, (4) 
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Figure 2. Observed (a) offshore (x - 0 m) significant wave height and observed (dotted curve) and 
predicted (solid curve) setup at cross-shore locations (b) x - 250 and (c) x - 375 m versus time. The 
horizontal dotted line in Figure 2c is the still water level (setup equal to 0.0 m). 

Figure 5.4: Observed (a) offshore (x = 0 m) significant wave height and observed (dotted) and
predicted (solid) setup at cross-shore locations (b) x = 250 and (c) x = 375 m versus time. The
horizontal dotted line in (c) is the still water level (setup equal to 0.0 m). (from Raubenheimer
et al., 2001)
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where •/is the sea level difference (i.e., the relative setdown 
or setup) between cross-shore locations a:• and a:2. The inte- 
grated setup balance (4), with the wave radiation stress given 
by (2), is solved numerically for •/relative to a:• = 158 m us- 
ing a fourth-order Runga-Kutta scheme with an adaptive step 
size for all 512 s data records. In (2) the wave energy is es- 
timated as E - pgH•2/16; the wave direction 0 is estimated 
as the mean direction; and the group and phase velocities C a 
and C are estimated using linear theory, the centroidal fre- 
quency, and the total water depth (h + •/). Significant wave 
heights, mean wave directions, and centroidal frequencies 
are interpolated linearly between observation locations. The 
depth h, calculated from the most recent beach survey and 
the mean water level (relative to mean sea level) observed at 
the most offshore setup sensor (a: = 58 m, Figure 1), includes 
tides and other processes (e.g., wind-driven setup) that affect 
the water level across the entire surf zone. 

Setup contributes to the total water depth in (4) and also 
affects the group velocity and phase speed. Therefore (4) is 
solved iteratively by assuming that •/at each shoreward step 
initially is equal to •/at the neighboring offshore location. 

Differences are small (0.00 4- 0.01 m) between hourly av- 
eraged setup based on Sxx calculated using the bulk wave 
properties (0 mean, Hs, C a, and 6' described above) and 
hourly setup estimates based on wave radiation stresses es- 
timated as f Sx•(f)df, where S•(f) is calculated with a 
directional moment technique [Herbers and Guza, 1990; El- 
gar et al., 1994]. 

In 8-13 m water depth at this field site, mean water level 
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Figure 3. (a) Observed offshore (a: = 0 m) wave heights, 
(b) observed offshore tidal elevation (8.5 min averaged sea 
surface level) (solid curve) relative to mean sea level (hori- 
zontal dotted line), and (c) observed (dotted curve) and pre- 
dicted (solid curve) setup at cross-shore location a: = 375 m 
versus time. The horizontal dotted line in Figure 3c is the 
still water level (setup equal to 0.0 m). 
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Figure 4. (a) Observed significant wave heights on 13 
September, and observed (open circles) and predicted (solid 
curve) setdown and setup on 13 September at (b) high tide 
(1600) and (c) low tide (2042), and (d) measured beach pro- 
file versus cross-shore location (times represent the start of 
each 512 s record). The vertical dotted lines in Figures 4c 
and 4d mark the locations a: = 338,363, and 383 m discussed 
in the text. The horizontal dotted lines in Figures 4b and 4c 
are still water level. The horizontal dotted lines in Figure 4d 
are tidal elevations during the two runs. 

changes driven by the cross-shore wind stress and by the 
Coriolis force associated with the alongshore flow can be 
comparable to wave-driven water level changes [Lentz et al., 
1999]. However for the conditions considered here, the esti- 
mated water level changes onshore of a:l (depth about 5 m) 
owing to the wind stress and Coriolis force are at least an 
order of magnitude smaller than those caused by waves and 
therefore are neglected. 

4. Observations of Setup and Comparisons 
With Predictions 

4.1. Observations 

Consistent with empirical formulas [e.g., Nielsen, 1988; 
Gourlay, 1992] and previous observations, the setup ob- 
served at fixed locations increases with increasing offshore 
wave height Hs,o (Figure 2). Near the shoreline (a: = 375 
m; Figures 2c and 3c) the measured setup also is sensitive 
to changes in the local depth owing to tides and bathymetric 
evolution. During each tidal cycle the setup observed at 
a fixed surf zone location is larger at lower tide when the 
observation location is closer to the shoreline (Figure 3c; 
and compare the three data points for :c _> 375m in Fig- 
ure 4b with those in Figure 4c). With approximately equal 

Figure 5.5: (a) Observed significant wave height on 13 Sept, and observed (open circles) and
predicted (solid) setdown and setup on 13 September at (b) high tide and (c) low tide, and (d)
measured beach profile versus cross-shore location. The horizontal dotted lines in (b) and (c) are
the still water level. The horizontal dotted lines in (d) are tidal elevations during the two runs.
(from Raubenheimer et al., 2001)
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Homework

1. Suppose you have a planar beach profile with h = βx. Consider an onshore wind with given
wind stress τw

x (units of Nm−2). With the boundary condition that η̄ = 0 at h = 10 m, derive
an expression for the wind-induced setup onshore from h = 10 m.

2. Wind stress is often represented as τwx = ρCd|U |U where the drag coefficient Cd ≈ 1.5 ×
10−3, and U is the “wind speed”. For a beach slope of β = 0.02, what is the total wind
induced setup in h = 0.5 m depth for cross-shore winds of U = 1 m/s, U = 10 m/s,
U = 50 m/s. Which one of these speeds is most consistent with a hurricane?

3. In h = 10 m water depth for normally incident waves with period of T = 18 s (shallow
water), calculate the expression for Sxx as a function of wave height.

4. Calulate Sxx for different incident wave heights: H = 0.5 m, H = 1 m, H = 2 m.

5. How big is the wave-induced momentum flux relative to the total wind-induced forcing?
This is a bit of a trick question - check your units!
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Chapter 6

Lecture: Random Waves, Part 1

Up to now we have been considering linear monochromatic waves that propagate in the +x direc-
tion, i.e.,

η(x, t) = a cos(kx− ωt). (6.1)

However, monochromatic waves do not exist in the real ocean. Waves in the ocean can be though
of as a superposition of a number of monochromatic waves each with their own phase. At first,
let’s assume that all this superposition of waves still propagate in the +x direction. Using the tools
of Fourier analysis, this can be written as

η(x, t) =
∑

ai cos(kix− ωit+ φi) (6.2)

where at each different radian frequency ωi, there is an amplitude ai, a wavenumber ki that obeys
the dispersion relationship, and a phase φi. A common and simple example is two waves with
slightly different frequencies where the wave envelope propagates with cg. See lecture XX.

Equation (6.2) is also often written as a function of a continous process, i.e.,

η(x, t) =

∫
a(ω) exp[i(kω)x− ωt)] dω + c.c. (6.3)

where the amplitude a(ω) is now complex, and c.c. represents the complex conjugate. Here, the
phase information is included in the complex wave amplitude a(ω).

6.1 Random Waves as a Gaussian Processes

Random waves are often analyzed based on the assumption that the sea-surface is a Gaussian
process - that is that η has a Gaussian probability density function (pdf) of the form

P (η) =
1

ση
√

2π
exp

[
− η2

2σ2
η

]
. (6.4)
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Figure 6.1: (a) Monochromatic sea-surface elevation η = 0.5 cos(ωt) versus time for wave period
of T = 8 s which has variance 〈η2〉 = a2

0/2 = 0.125 m2. (b) Narrow-banded random wave
with frequency T = 8 s and same variance as in (a) . The red dashed curve represents the wave
envelope. (c) probability density function (pdf) of (a) - note the non-Gaussian nature. (d) pdf of
narrow-band wave field in (b). The blue is the pdf and the red dashed is the Gaussian pdf with the
variance of 〈η2〉 = 0.125 m2.

Now where it gets interesting is that the pdf for a monochromatic wave where η = a cos(ωt)

where a = 0.5 m and T = 2π/ω = 8 s (Figure 6.1a) is not Gaussian. In fact it looks down-
right anti-Gaussian (Figure 6.1c). However, when one starts to linearly super-impose a number of
monochromatic waves with different frequencies, the resulting pdf rapidly becomes Gaussian as a
result of the Central Limit Theorem.

An example will make this concrete. Consider a narrow banded wave field with

η =
N∑

i=−N

ai cos[2π(f̄ + f ′i)t] (6.5)

where f̄ = T−1 and

ai ∝ exp

[
− f

′2
i

2σ2
f

]
(6.6)

where the frequency spread σf = 0.01 Hz, and f ′ varies from ±
√

2σf . For N = 175 and the
variance set to that for the monochromatic wave (〈η2〉 = 0.52/

√
2), the narrow-banded random
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wave time series is groupy (Figure 6.1b). The resulting pdf is indistinguishable from Gaussian
(Figure 6.1d).

One important point to note here is that we’ve neglected wave nonlinearities. This will have
the tendency to make the pdf be non-Gaussian. However, for many applications, Gaussian pdf for
the sea-surface is a good approximation.

6.2 Wave spectra and wave moments

Now as random ocean waves result in a sea-surface with a Gaussian probability density function,
then spectra are the appropriate statistical tool to use to describe the statistical properties of the
random wave field. Specifically the spectrum Sηη of the sea-surface η is defined as

Sηη(f) = 〈a(f)a∗(f)〉, (6.7)

where for convencience we now use cyclic frequency f (as opposed to radian frequency ω) 〈〉 is
an ensemble averaging operator that normalizes by the frequency resolution so that

〈η2〉 =

∫ ∞
0

Sηη(f) df. (6.8)

Now, this is not a course aobut time-series and spectral analysis - the tools that are used to
analyze ocean waves. However, we do need to use spectra going forward as a means to describe
random wave fields. Linear monochromatic waves are described by an amplitude a and frequency
f , and it follows that linear random waves are defined by Sηη(f). For monochromatic waves a wave
height H is defined as H = 2a so that 〈η2〉 = H2/8. As we’ve seen above for random waves the
wave height varies. The root-mean-square wave height is defined similarly to the monochromatic
wave height so that H2

rms/8 = 〈η2〉.
However, there is another wave height definition that is often used. This is called the significant

wave height Hs and is defined so that Hs =
√

2Hrms or H2
s = 16〈η2〉. This wave height Hs

is defined because the human eye tends to note or pick out the larger waves and think of that
as the “wave height”, thus the word “significant”. It has a long history in maritime and coastal
engineering circles prior to the ability to make good wave observations.

How else can can the wave field be described? Similar to monochromatic waves we can de-
scribe a bulk frequency. There are two common choices. The first is the mean wave frequency f̄ ,
defined via the first moment of the wave spectra

f̄ =

∫
fSηη(f) df∫
Sηη(f) df

. (6.9)
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Note that the H2
s or 〈η2〉 definitions are based on the zero-th moment of the spectra, i.e.,

H2
s = 16

∫
Sηη(f) df.

Thus bulk properties of the random wave field are often described via moments of the wave spectra.
As we will see, this is particularly true of the descriptors for wave direction later.

The other choice for bulk wave frequency is the “peak” frequency fp which is defined as the
frequency where the wave spectrum is maximum. This actually has a mathematical definition as
the infinity norm and can be written as

fp = lim
m−>∞

[∫
fmŜηη(f) df

]1/m

(6.10)

where Ŝηη(f) = Sηη(f)/〈η2〉 is the normalized wave spectrum.
Now how does one use the wave spectrum to describe mean wave quantities such as wave

energy, wave energy flux, etc.? Recall for monochromatic waves, wave energy E = (1/2)ρga2 =

ρg〈η2〉 (2.5). The equivalent random wave representation for total wave energy is

E = ρg

∫
Sηη(f) df (6.11)

or in frequency space, E(f) = ρgSηη(f). The wave energy flux can be similarly defined as

F = ρg

∫
Sηη(f)cg(f) df (6.12)

that is the energy flux is the linear sum of the wave energy flux of all the individual components.
Other quantities such as the Stokes drift velocity and the radiation stresses can be similarly written.

6.2.1 Rayleigh Distribution for wave heights

As noted previously, for a random super-position of linear surface gravity waves, the sea-surface
η has a Gaussian pdf (6.4). For a narrow banded distribution, we saw that the wave amplitudes
slowly vary. Here we derive the pdf of the wave amplitude and thus wave heights. This derivation
comes from Tim Jannsen who kindly shared it with me.

Now, we’ve established that because of the central-limit-theorem that the sum of a number
of linear waves with varying frequencies will result in a Gaussian distributed sea surface η with
probability density function P (η) given by

P (η) =
1√

2πσ2
η

exp

[
− η2

2σ2

]
. (6.13)
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Figure 6.2: (blue) probability density function of the (red-dashed) wave envelope in Figure 6.1b.
The red dashed curve is the theoretical Rayleigh pdf for the amplitude 6.19.

Now lets us assume that we have a narrow-banded spectrum of waves such that locally at one spot

η = A(εt) cos(ωt) (6.14)

where A varies on time scales much more slowly than the main wave frequency, i.e., ε � ω. We
can then define the approximate Hilbert transform of η as

ζ = A(εt) sin(ωt), (6.15)

and note that ζ will also be Gaussian distributed. Now one can combine η and ζ in another form as

Z = η + iζ = A(εt) exp[iψ(t)] (6.16)

where ψ(t) = ωt is the phase. Now the phase is uniformly distributed over [0, 2π], which implies
that η and ζ are independent so that the joint pdf P (η, ζ) becomes

P (η, ζ) =
1

2πσ2
η

exp

[
−(η2 + ζ2)

2σ2

]
. (6.17)

Now, this pdf can be re-written in polar coordinates (A,ψ) instead of cartesian coordinates
(η, ζ). Using the rules of coordinate transformation A2 = η2 + ζ2 and dηdζ = AdAdψ in order to
satisfy that ∫ ∫

P (η, ζ) dηdζ =

∫
P̃ (A) dA = 1, (6.18)

where the integral over the uniformly distributed ψ is implicit. implies that

P (A) =
A

σ2
η

exp

[
− A2

2σ2
η

]
(6.19)
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This pdf for the wave amplitude is a Rayleigh pdf. If you say that H = 2A, then (6.19) can be
rewritten as

P (H) =
H

4σ2
η

exp

[
−H

2

8σ2
η

]
,

and if we use H2
rms = 8σ2

η then this can be rewritten as a pdf for the root-mean-square wave height
Hrms.

P (H) =
2H

H2
rms

exp

[
− H2

H2
rms

]
, (6.20)

Homework

1. Using the wave height pdf (6.20), calculate the 2nd moment of wave height. How is this
related to the Hrms?

2. A common empirical form for the deep-water wave spectrum is the Pierson and Moskowitz
(1964) spectrum where

Sηη(f) ∝ f−5 exp

[
−5

4

(
f

fp

)−4
]

(6.21)

where fp is the peak frequency. Is the mean frequency f̄ (6.9) > or < fp? Qualitatively
describe why.

3. Extra credit: For this case calculate f̄ and how it depends upon fp. Hint, the definition of the
Γ function is useful:

Γ(x) =

∫ ∞
0

tx−1e−t dt
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Chapter 7

Lecture Random waves: Part 2: Directional

Now lets go back to monochromatic waves propagating in an arbitrary direction so that

η(x, y, t) = a cos(kxx+ kyy − ωt+ φ) (7.1)

where the wavenumber vector k = (kx, ky) such that |k| and ω satisfy the dispersion relationship.
The angle of wave propagation θ relative to +x is

θ = tan−1

(
ky
kx

)
, (7.2)

so that
kx = |k| cos(θ) , ky = |k| sin(θ).

For random, directional waves, there can be waves at different frequencies propagating at a
variety of directions at the same frequency, i.e.,

η(x, y, t) =
∑∑

aij cos(k(ij)
x x+ k(ij)

y y − ωit+ φij). (7.3)

Note that the “i” index corresponds to frequency and the “j” index corresponds to direction, and
that (k

(ij)
x )2 + (k

(ij)
y )2 = |ki|2 satisfies the dispersion relationship for all wave directions j. At each

frequency ωi each “j” wave component has direction

θij = tan−1

(
k

(ij)
x

k
(ij)
y

)
(7.4)

or
k(ij)
x = |ki| cos(θij). (7.5)

Now for random directionally distributed waves we also need a statistical description of the
frequency-directional content of the wave field. We define a frequency-directinoal spectrum Sηη(f, θ)
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so that
〈η2〉 =

∫ ∞
0

∫ π

−pi
Sηη(f, θ) dθ df. (7.6)

where the diagnostic directional variable is θ - the direction the wave is propagating in. Another
possibility is to write the spectrum as a function of (kx, ky) which has the same information content
as (f, θ). In coastal applications Sηη(f, θ) is more common whereas in air-sea interaction studies
Sηη(kx, ky) is often used. Note that with (7.6), one can recover the frequency spectrum as∫ π

−π
Sηη(f, θ) dθ. (7.7)

Now the question is what statistical descriptors to use for direction at a specific frquency f .
Consider the directional distribution D(θ) at a particular frequency,

D(θ) =
Sηη(f, θ)∫ π

−π Sηη(f, θ) dθ
(7.8)

which results in a normlized distribution such that∫ π

−π
D(θ) dθ = 1. (7.9)

This implies at at any frequency there can be an infinite number of wave directions. So how to
define a mean wave direction? One could use a standard first moment (or called a line moment by
Kuik et al. (1988)

θ̄ =

∫ π

−π
θD(θ) dθ. (7.10)

and the directional spread σθ, or the standard deviation of wave angles, could be defined as

σ2
θ =

∫ π

−π
(θ − θ̄)2D(θ) dθ. (7.11)

This moments are called “line” moments and were used prior to the mid 1980s. However, they are
not suitable for wave direction because (1) they are not periodic. Wave energy near +π and −π
may have small σθ but this line estimator (7.11) would make it large, and (2) the physical quantities
(kx, ky) are based on sin and cos. Intuitively wave angle in degrees is easy to understand, but θ
is always used in terms of sin and cos. Thus, Kuik et al. (1988) developed mean wave angle and
directional spread definitions based on “circular” moments - those that are weighted by sin(nθ)

and cos(nθ).
To describe the periodic D(θ), we write it in terms of a Fourier series,

D(θ) =
∑
n

an cos(nθ) + bn cos(nθ), (7.12)

40



where the Fourier coefficients an and bn are defined in the standard way

an =
1

π

∫ π

−π
D(θ) cos(nθ) dθ (7.13)

bn =
1

π

∫ π

−π
D(θ) sin(nθ) dθ (7.14)

7.1 Mean angle and directional spread

Now we ahve the possibility of defining a mean wave angle with the Fourier coefficients, in partic-
ular

θ̄1(f) = tan−1

(∫ π
−πD(θ) sin(θ) dθ∫ π
−πD(θ) cos(θ) dθ

)
= tan−1

(
b1

a1

)
. (7.15)

This is called θ̄1 because it is based on the 1st Fourier modes. One could also define a mean angle
θ2 based on 2nd moments (e.g., Herbers et al., 1999),

θ̄2(f) =
1

2
tan−1

(
b2

a2

)
. (7.16)

Now we can redefine θ′ = θ − θ̄ so that∫ π

−π
D(θ′) sin(θ′) dθ′ = 0 (7.17)

and now to define the directional spread σθ, we drop the ′ from θ′ to keep a clean nontation. By anal-
ogy with the standard 2nd moment definition (e.g., that used to calculate variance)

∫
x2P (x)dx,

we ask how to define this quantity for circular moments? Well with small angle approximation,
sin(θ) ≈ θ and sin2(θ) ≈ θ2, and so a natural defnition for σ2

θ is

σ2
θ =

∫ π

−π
sin2(θ)D(θ) dθ. (7.18)

The minimum and maximum range for σθ can be calculated from D(θ) = δ(θ) and for a uniformly
distributed D(θ) = (2π)−1 limits. For the former, one gets σ2

θ = 0 and for the latter, σ2
θ = 1/2

and σθ = 2−1/2 which in degrees corresponds to ≈ 40.5◦. Via trigonometric transformations, the
directional spread can be written as

σ2
θ = (1/2)(1− a2 cos(2θ̄) + b2 sin(2θ̄)). (7.19)

Another possibility is to define σ2
θ as

σ2
θ =

∫ π

−π
4 sin2

(
θ

2

)
dθ (7.20)

as 2 sin(θ/2) ≈ θ is more accurate to large θ.
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7.2 Digression on how to calculate leading Fourier Coefficients

7.3 More

Note that there are directional Fourier coefficients at each frequency. That is they are functions of
frequency, i.e., a1(f), b1(f), etc. Now recall that that for monochromatic incident waves at angle
θ to +x the linear wave energy flux is F = Ecg cos(θ) (This comes from the Homework question
2 in 2.4). For directionally spread random waves, the linear wave energy flux is straightforwardly
written as,

F =

∫ ∞
0

∫ π

−π
ρgSηη(f, θ)cg(f) cos(θ) dθ df. (7.21)

For the moment assume that we have waves of a single frequency f̄ but directionally spread.
Then we can write

F = Ecg

∫ π

−π
D(θ) cos(θ) dθ (7.22)

= Ecga1 (7.23)

whereE is the wave energy and cg is evaluated at f̄ . Instead what one often sees is F = Ecg cos(θ̄),
that is an monochromatic-like wave field is created. But a1 6= cos(θ̄) (Confirm this for yourself for
extra credit).
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7.4 Homework

1. The definition for Sxy term for general random waves is

Sxy = ρg

∫ ∞
0

∫ π

−π
Sηη(f, θ)

cg(f)

c(f)
sin(θ) cos(θ) dθ df. (7.24)

Consider uni-frequency directionally spread wave field so that ρgSηη(f, θ) = ED(θ), where D(θ)

is symmetric about θ̄. This means that for θ′ = θ − θ̄, D(θ′) = D(−θ′).
Now this term for Sxy is often approximated as

S(nb)
xy = ρgE

cg
c

sin(θ̄) cos(θ̄), (7.25)

where the superscript “(nb)” denotes “narrow-banded” in direction. For a symmetric D(θ′) show
that the ratio of

Sxy

S
(nb)
xy

= 1− 2σ2
θ (7.26)

That is, the commonly used approximation (7.25), over-estimates the actual momentum flux.

2. For directionally narrow spectra shoaling on a beach with straight and parallel depth con-
tours, Snell’s law says that

sin(θ̄(f)) =
c(f)

c0(f)
sin(θ̄0(f)) (7.27)

where the subscript represents the incident properties at depth h0. Now assume that the mean wave
angle is normally incident θ̄0(f) = 0 and so for all x, θ̄(f) = 0. However, the incident directional
spread σθ,0(f) 6= 0. Derive an expression, based on Snell’s law, that describes the cross-shore
evoloution of σθ(f) for a narrow directional spectrum, that is

σθ(f) = .... (7.28)

that is a function of the incident directional spread σθ,0(f) and other wave properties.
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Chapter 8

Lecture: Using Linear Wave Theory in the
Surfzone

In order to model the cross-shore distribution of wave heights, we have to have (1) faith in linear
theory in the nearshore and surfzone where wave nonlinearity may become important and (2) a
way to represent wave breaking. If linear theory is reasonable to use then we’ve already seen how
it can be used to shoal waves into shallow water. The first issue (1) was addressed by (Guza and
Thornton, 1980) who compared “local” and “shoaled” wave properties within and seaward of the
surfzone. We define “local” properties first.

For monochromatic waves, the relationships between η, p, and u are given in (1.14). For
random unidirectional waves propagating in the +x direction one has a similar relationship but in
frequency space, i.e.,

Spp(f) =

[
cosh[k(z + h)]

cosh(kh)

]2

Sηη(f) (8.1)

Suu(f) =

[
ω

cosh[k(z + h)]

sinh(kh)

]2

Sηη(f) (8.2)

(8.3)

Using these spectral relationships (8.1), one can convert pressure and velocity spectra to sea-
surface elevation spectra Sηη(f).

Guza and Thornton (1980) compared all three spectra at locations within and seaward of the
surfzone from 6 m to 1 m depth. Very good agreement was found between all three spectra in the
sea-swell (0.05 < f < 0.03 Hz) frequency band. Thus, locally the linear theory relationships are
valid. This agreement is so well understood that it forms the bases for quality controlling surfzone
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velocity measurements (Elgar et al., 2001, 2005) where the ratio

Z2(f) =
Spp(f)(

ω
gk

cosh[k(h+zp)]

cosh[k(h+zu)]

)2

(Suu(f) + Svv(f))
(8.4)
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Fig. 4. Sea surface elevation (solid curve) in comparison with hori- 
zontal current (dashed curve) at various total depths: (a) from pres- 
sure and (b, c) from surface-piercing staff. 

frequencies. Table 2 gives these ratios for the spectra shown in 
Figure 3, where 0.061 Hz < f < 0.076 Hz, 0.122 Hz • 2f • 
0.152 Hz, etc. are the bandwidths used. 

It is not obvious that linear theory will adequately relate P, 
u, and zt for waves that are so clearly nonlinear. The Korte- 
weg-deVries equations show that O(a/h) errors arise in using 
linear theory to relate P, u, and zt, and the size of this term can 
be significant, as is shown in Table 2. Thus significant errors 
might be expected to occur, particularly in relating the higher 
harmonics of P, u, and z/to each other. 

Surprisingly, the data show the local P, u, *t agreement us- 
ing linear theory to be rather good everywhere. Figure 4 
shows comparisons of surface elevation predicted from hori- 
zontal velocity (E,) to that calculated from pressure (E•,) or di- 
rectly measured sea surface elevation (En) well outside the surf 
zone (h -- 563 m), just outside the surf zone (h -- 176 cm), and 
inside the surf zone (h -- 111 cm]. The ratios of total energy, 
E,/E•,,,,, are 0.91 (h = 563 cm), 0.7 (h -- 176 cm), and 1.08 (h -- 
111 cm), where E is summed over the frequency range 0.05- 
0.3 Hz. These correspond to H, errors of 6, 17, and 4%. The 
larger error just outside the visually observed average break- 
point may be due to the very peaky shape of these waves just 
prior to breaking. 

Figure 5 shows the ratio between the significant wave 
height using linear theory on the measured velocity (H, ") and 
that obtained from either depth-compensated pressure (Hf) 
or directly measured elevation (Hf). Each data point repre- 
sents a 34-rain data run, with variances summed between 0.05 
and 0.3 Hz. Sensor pairs not near the breakpoint usually show 
a discrepancy less than 10% both inside and outside the surf 
zone. Pairs near the breakpoint have as much as 20% dis- 
parity. In both cases, sea surface elevation measurements 
overpredict the size of the observed velocity fluctuations. The 
comparisons on a frequency band by frequency band basis are 
always about as accurate as the total variance comparisons, as 
in Figure 4. The data shown here are from eight different days 
with rather different incident wave conditions, varying from 
narrow banded (November 20, Figure 3) to very broad 
banded (November 11, Figure 9). Figure 6 illustrates the 
range of significant wave heights included in Figure 5 and 
shows that the agreement is good for both small and large 
waves. It is apparent from Figures 2, 4, 5, and 6 that a single 
measurement of P, u, or z/is sufficient to predict the spectra of 
the others in the wind wave frequency band with an error of 
about 20% in both total variance and spectral energy density. 

The good agreement between zt and u, using linear theory 
across all frequency bands, suggests that local nonlinearity is 
not extremely strong. The lowest-order long-wave relation- 
ships 

u -- gkn/o p = pg• o • -- ghk: 
are approximately valid. The local wave field can be viewed 
as the superposition of phase-coupled free waves. 

SHOALING 

The preceding comparisons between pressure, velocity, and 
sea surface elevations showed that linear theory adequately 
relates spectra of these quantities to each other at the same 
horizontal location. Here linear shoaling theory is used to pre- 
dict spectra in the shoaling regime, given an input spectrum 
measured in 10-m depth. 

Offshore depth profiles used here were taken on November 
18, 1978, using shore-based transponders and a portable mini- 
ranger for horizontal location and a fathometer for depth. 
Beach surveys were obtained by rod and transit. 

Offshore surveys were taken out to the 15-m contour (x 
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Fig. 5. Ratio of significant wave height inferred from •elocity mea- 
surements (H•) to that obtained from pressure (H, v) or direct sea sur- 
face measurements (H, n) at various water depths. Values less than 0.9 
at 2-m depth are from a single sensor pair, suggesting calibration er- 
ror. 

Figure 8.1: Sea-surface elevation Sηη(f) (solid) and converted horizontal velocity spectra (dashed)
versus f at three depths: (a) 4.6 m, (b) 1.8 m, and (c) 1.1 m. (from Guza and Thornton, 1980)
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Fig. 6. Hs" versus H•. The 45 ø line indicates proper prediction of P, u, ,/relationships by linear theory. 

coordinate) lines, spaced every 40 m in the longshore (y) di- 
rection, between y -- -200 and y -- 0 m (the onshore-offshore 
line containing the shoaling wave sensors). Additional depth 
profiles were obtained at y -- +20, +60, -I-160, and +320 m. 
Surveys were conducted and processed by R. J. Seymour. The 
topography is essentially featureless, having an approximately 
constant slope of about 1.3 ø. Figure I shows four representa- 
tive onshore-offshore profiles and suggests that the contour 
lines are reasonably parallel, especially in light of the fact that 
the mean depths obtained from fathometer recordings had the 
surface waves removed by 'eyeball averaging.' 

Figure I qualitatively suggests that linear waves propagat- 
ing over this topography will not behave substantially differ- 
ently than waves propagating over parallel contours. This 
speculation was verified by setting up a topographic grid using 
all survey lines and running a version of Dobson's [1967] lin- 
ear refraction program. As a test case, waves of 0.067 Hz (cor- 
responding to a typical swell peak in the data) and varying an- 
gles of incidence in 10-m depth were refracted from 10- to 3-m 
depth on the sensor range line. The resulting amplifications of 
wave heights are compared (Figure 7) with theoretical values 
calculated by assuming parallel contours and normal in- 
cidence. 

Figure 7 also shows that on plane-parallel contours, 0.067- 
Hz waves with a 15 o (or less) angle of incidence in 10 m show 
an amplification in 3 m less than 1.2% different from normal- 
ly incident waves. If the measured contours were perfectly 

ß 

plane-parallel, the solid and dashed curves in Figure 7 would 
overlap. Thus waves from the northern quadrant (positive an- 
gles) traverse essentially parallel contours, while those from 
the south exhibit a weak convergence. Waves in 10-m depth at 
Torrey Pines Beach usually do not have significant energy at 

angles larger than 15 o because refraction further offshore and 
sheltering by offshore islands significantly reduce energy at 
larger angles [Pawka et al., 1976]. Within this 15 ø angular 
spread the deviation of shoaled wave height amplification 
over the measured topography compared to normally incident 
on parallel contours is less than 5% for any directional band. 
The deviation will be considerably smaller for smooth direc- 
tional distributions and higher frequencies. Therefore in the 
following comparisons of energy spectra the effects of direc- 
tional distributions of energy are neglected, all waves being 
assumed to impinge normally onto parallel contours. Of 
course, on a more complex topography it would be necessary 
to measure the directional spectrum offshore and individually 
refract each frequency-directional component to the desired 
location and integrate across all directions to calculate the 
shoaled energy spectrum. Clearly, the extreme simplicity of 
the Torrey Pines Beach topography makes the test of linear 
shoaling much easier than on most beaches. 

+5 

-5 
_15 ø _10 o _5 ø 0 o .,.5 ø +10 o +15 ø 

ANGLE OF INCIDENCE 

Fig. 7. Percent deviation of wave height amplification of 0.067-Hz 
waves and varying angles of incidence, shoaled from 10- to 3-m depth 
over real topography (solid curve) and plane-parallel contours 
(dashed curve), from the amplification of normally incident waves on 
plane-parallel contours. 

Figure 8.2: Significant wave height derived from velocity (Hu
s ) versus wave staff (Hη

s ). The solid
line indicates the 1:1 relationship. (from Guza and Thornton, 1980)
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FIG. 8. Ratio of pressure variance to (a) horizontal and (b) vertical
velocity variance {converted to pressure variance using linear theory
[Eqs. (4) and (5), respectively]} vs ratio of significant wave height
Hsig [based on pressure fluctuations in the band 0.05 � f � 0.30 Hz
and equation (6)] to water depth h. The 51.2-min records from AD4D,
AD3U, and AD5D were sorted into 0.05-wide Hsig/h bins. Variance
ratios are shown for the power spectral primary peak frequency ( f p)
and its first two harmonics (2 f p, 3 f p). Mean values for each bin and
frequency are shown as symbols, with �1 std dev bars shown for
the values for f p (std dev for the harmonics 2 f p, 3 f p are similar).
Linear theory [Eqs. (4) and (5)] predicts the ratios � 1.0. Note the
different vertical scales in (a) and (b).

where the wavenumber k is given by the dispersion
relationship

2� � gk tanhkh, (2)
and g is gravitational acceleration. Thus, linear theory
predicts that wave-orbital horizontal velocities decrease
only slightly over the vertical in these shallow depths,
with a larger attenuation for high frequencies. The
roughly 5% decrease in horizontal velocity variance be-
tween z2 � 75 and z1 � 25 cm above the seafloor is
accounted for in Fig. 4 by using (1) and (2) to increase
spectral levels to those 75 cm above the seafloor before
integrating over the wind–wave frequency band. There
is some scatter and a bias toward overestimates in the
variances from the electromagnetic current meter for the
strongest flows (Fig. 4a, cf. diamonds with the diagonal
line), consistent with previous field studies (Guza et al.
1988). Variances estimated with upward- (AD3U) and
downward- (AD4D) looking acoustic Doppler current
meters are nearly equal at low flows (Fig. 4a, cf. filled
squares with diagonal line), with slightly higher vari-
ances estimated with the upward-looking sensor for the
most energetic flows. Relative to the downward-looking
acoustic Doppler (AD4D) measurements 75 cm above
the seafloor, the acoustic travel time current meter
(ATT1) has a slight (less than 10%) bias toward un-
derestimation of horizontal variance, as do the acoustic
Doppler sensors (AD2D, AD3D) located closer to the

seafloor. Horizontal velocity variance estimated with the
two acoustic Doppler sensors (AD5D, AD4D) located
75 cm above the seafloor, but separated approximately
5 m alongshore are within a few percent for all con-
ditions (Fig. 4a, cf. triangles with the diagonal line).
According to linear theory, at 75-cm elevation above

the seafloor in 1.25-m water depth the horizontal ve-
locity variance at f � 0.10 Hz is about 45 times the
vertical velocity variance, and thus the measured ver-
tical velocities may have small errors owing to sensor
tilts of a few degrees. Although there is some scatter,
vertical velocity variances measured 75 cm above the
seafloor by upward- (AD3U) and downward- (AD4D,
AD5D) looking acoustic Doppler current meters agree
within about 20% (Fig. 4b, cf. filled squares and tri-
angles with diagonal lines). The acoustic travel time
current meter (ATT1) measured somewhat larger ver-
tical velocity variance, perhaps owing to spikes in the
time series. The relationship between vertical velocity
variances and at elevations z1 and z2 above the2 2W Wz z1 2

seafloor is given by
2sinh (kz )22 2W � W . (3)z z2 1 2sinh (kz )1

Thus, vertical velocities (3) are attenuated more strongly
over the water column than horizontal velocities (1),
and 25 cm above the seafloor in 1.25-m depth the hor-
izontal velocity variance at f � 0.01 Hz is almost 400
times the vertical velocity variance. Consequently, the
measured vertical velocities at 25-cm elevation likely
are corrupted by tilts of a few degrees in the vertical
alignment of the sensors.
Mean horizontal currents measured with the different

sensors are similar (Figs. 5a and 5b). Rip currents, which
were visible from the neighboring pier, were observed
occasionally to meander near the instrument frames, re-
sulting in alongshore inhomogeneities in the mean flow
field, and thus differences in mean horizontal currents
observed at the two sensor frames, separated about 5 m
alongshore (Figs. 5a and 5b, cf. triangles with diagonal
lines). In contrast, mean cross- and alongshore currents
measured with ATT1 and AD5D (located on the same
instrument frame) are similar (Figs. 5a and 5b, cf. as-
terisks with diagonal lines). Mean vertical currents mea-
sured with the different sensors are less than about 4
cm s�1. However, only the acoustic travel time current
meter (ATT1), known to be accurate in low steady flows
(Williams et al. 1987), measured approximately zero
vertical flow (less than about 1 cm s�1, which is not
distinguishable from 0 for the instrument calibrations
used here) for all conditions. Deviations from zero mean
flows may be the result of flow blockage. The mean
vertical flows measured by the downward-looking
acoustic Doppler sensors (AD2D, AD3D, AD4D, and
AD5D) differ from each other by less than 1 cm s�1

(cf. filled circles, open circles, and triangles with solid
lines in Fig. 5c), whereas mean vertical flows measured

Figure 8.3: Ratio of pressure variance to (a) horizontal and (b) vertical velocity variance converted
to pressure variance using linear theory [Eqs. XX and YY, respectively] vs ratio of significant
wave height Hsig [based on pressure fluctuations in the band 0.05 < f < 0.30 Hz ] to water depth
h. The 51.2-min records from AD4D, AD3U, and AD5D were sorted into 0.05-wide Hsig/h bins.
Variance ratios are shown for the power spectral primary peak frequency ( fp ) and its first two
harmonics (2fp , 3fp ). Mean values for each bin and frequency are shown as symbols, with 1 std
dev bars shown for the values for fp (std dev for the harmonics 2fp , 3fp are similar). Linear theory
predicts the ratios = 1.0. Note the different vertical scales in (a) and (b). (from Elgar et al., 2001).
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FIG. 9. Deviation from linear theory of the phase difference be-
tween pressure (P) and velocity fluctuations at f p vs ratio of signif-
icant wave height Hsig (0.05 � f � 0.30 Hz) to water depth h. If
linear theory is accurate, the phase deviation is 0. The 51.2-min
records from AD4D were sorted into 0.05-wide Hsig/h bins. Mean
values for each bin are shown as symbols, with �1 std dev bars
shown for the deviations of the phase difference between pressure
and cross-shore velocity (U, filled circles). Std dev for phase devi-
ations between pressure and vertical velocity (W, open squares) and
between cross-shore and vertical velocity (asterisks) are similar. At
harmonic frequencies 2 f p and 3 f p phase deviations between P and
U are similar to those at f p, deviations between P and W are less
than �3�, and deviations between U and W are about half those at
f p.

FIG. 10. Distance from the fixed sensor to the seafloor measured
with acoustic Doppler current meters in boundary location mode
(symbols) and with a sonar altimeter (ALT1, solid curves) mounted
on the same frame. The acoustic current meter probes ranged from
approximately 25–50 (AD2D), 45–65 (AD3D), to 80–100 (AD4D)
cm above the slowly moving seafloor. (Velocity sample volumes are
18 cm below the probes.) The sonar altimeter was located approxi-
mately 75–95 cm above the seafloor, and estimates of its distance to
the seafloor were converted to estimates that would have been ob-
tained if the altimeter was collocated with each acoustic current meter.
Agreement between measurements made with the acoustic Doppler
current meter (AD5D) and the sonar altimeter (ALT2), both located
approximately 75 cm above the seafloor on the other instrument
frame, is comparable (not shown).

with the upward-looking AD3U are scattered relative to
the downward-looking AD4D (cf. squares with solid
line in Fig. 5c).
Mean wave direction (Fig. 6a) and directional spread

(Fig. 6b) estimated from the covariance of U with V
(Kuik et al. 1988) are similar for the time series acquired
with the different current meters. The increased direc-
tional spread estimated by ATT1 is an artifact of the
spikes caused by the malfunctioning circuit, leading to
reduced covariance.
Third moments of wave-orbital velocities are impor-

tant to sediment transport (Bowen 1980; Bailard 1981;
and many others). Cross-shore velocity skewness (the
mean of the cube of the demeaned cross-shore velocity
time series normalized by the cross-shore velocity var-
iance raised to the 3/2 power) and asymmetry [the mean
of the cube of the Hilbert transform of the demeaned
cross-shore velocity time series normalized by the cross-
shore velocity variance raised to the 3/2 power (Elgar
and Guza 1985)] estimated from time series acquired
with the different current meters agree well [Fig. 7,
average root-mean-square differences relative to AD4D
are 0.03 (skewness) and 0.04 (asymmetry)]. The spikes
in time series acquired with ATT1 occur in pairs, one
positive and one negative, and thus cancel in odd mo-
ments (e.g., mean, skewness, and asymmetry).

b. Nonlinearities

Linear wave theory often is used to convert between
bottom pressure, sea surface elevation, and wave-orbital
velocity. For example, the ratios of the variance of pres-
sure ( ) at a location zp above the bottom to the var-2Pzp
iance of horizontal ( � ) and vertical ( ) ve-2 2 2U V Wz z zu u u

locities at a location zu above the bottom are, respec-
tively,

2 22P cosh (kz )�z pp � (4)
2 2 2 2U � V (gk) cosh (kz )z z uu u

2 22P cosh (kz )�z pp � . (5)
2 2 2W (gk) sinh (kz )z uu

Similarly, the ratio of sea surface elevation variance (�2)
to pressure variance is

2 2� cosh (zh)
� . (6)

2 2P cosh (kz )z pp

Nearshore and surf zone significant wave heights, es-
timated by applying linear theory transfer functions to
bottom pressure or near-bottom wave-orbital velocity
spectra and integrating the resulting sea surface eleva-
tion spectra over the wind–wave frequency band, differ
by less than 10% from the wave heights obtained with
surface-piercing wave staffs (Guza and Thornton 1980;

Figure 8.4: Deviation from linear theory of the phase difference be tween pressure (P) and velocity
fluctuations at fp vs ratio of significant wave height Hsig (0.05 < f < 0.30 Hz) to water depth
h. If linear theory is accurate, the phase deviation is 0. The 51.2-min records from AD4D were
sorted into 0.05-wide Hs/h bins. Mean values for each bin are shown as symbols, with ±1 std
dev bars shown for the deviations of the phase difference between pressure and cross-shore ve-
locity (U, filled circles). Std dev for phase deviations between pressure and vertical velocity (W,
open squares) and between cross-shore and vertical velocity (asterisks) are similar. At harmonic
frequencies 2fp and 3fp phase deviations between P and U are similar to those at fp, deviations
between P and W are less than ±3◦, and deviations between U and W are about half those at f .
(from Elgar et al., 2001).
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Figure 8.5: Time-seris of Z2 (i.e., the Z-test) in h = 4.4 m and h = 1.3 m mean water depth from
the IB09 experiment
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Chapter 9

Lecture: Cross-shore Wave
Transformation: Shoaling and Breaking

Here we will describe the process of wave shoaling as waves enter decreasing depths. We will then
discuss how the waves transform in the cross-shore across the surfzone and how wave breaking is
represented. Essentially we will want to know how to transform Sηη(f, θ) orHs across the shoaling
and surfzone regions.

9.1 Wave shoaling

Here, initially let us assume that we have monochromatic waves. We will also assume the rela-
tively simple situation of alongshore (y) uniform conditions. This means that the bathymetry is
alongshore uniform (h = h(x)), and that the statistics of the wave field are also alongshore uni-
form (i.e., ∂y = 0). For these situations we can use a number of theoretical results for linear waves
that will not be derived here. They come out of the conservation of wave-action. The first is that
the frequency does not change, which is a statement that the bathymetry does not vary in time.
It also is only strictly true for linear waves. This means that if the depth and wave frequency are
known, |k|, the wavenumber magnitude is also known via the linear dispersion relationship (1.13).
Second, that as the waves shoal the curl of the wavenumber is zero, or

∇× k =
∂ky
∂x
− ∂kx

∂y
= 0 (9.1)

which is also a result of geometric optics (or ray tracing). If we assume alongshore uniform
conditions then this means that ∂kx/∂y = 0, which in-turn implies that the alongshore component
of the wavenumber ky = |k| sin(θ) is conserved in the cross-shore. As the frequency is constant
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this implies that ω/ky is constant which can be rewritten as

ω

|k| sin(θ)
=

c

sin(θ)
⇒ sin(θ)

c
= const (9.2)

This result is known as Snell’s law, and governs the process of wave refraction on plane, parallel
bathymetry. As the phase speed c is known at all depths from the dispersion relationship, Snell’s
law implies θ(x) can be derived if θ = θ0 at h = h0 is prescribed.

In homework (2.4), we used ∂(Ecg)/∂x = 0 to derive a wave height scaling. However, if the
waves are steady and they do not dissipate then wave-action conservation tells us that

∇ · F = 0 (9.3)

where F is the vector wave energy flux. As ∂y = 0, this implies that

d

dx
[Ecg cos(θ)] = 0 (9.4)

Thus this gives us our prescription for how to transform waves in the cross-shore given knowledge
of h(x) and the offshore boundary condition.

1. Use the dispersion relationship to solve for c(x) and cg(x) (applies to shoaling and surfzone).

2. Use Snell’s law to solve for θ(x) (applies to both shoaling and surfzone)

3. Use wave energy flux conservation (9.4) to calcuate E(x). (shoaling zone only)

This was all derived for monochromatic waves put it also applies to random waves. Step #1
is straightforward to generalize for random waves. Step #2 requires a1 to be transformed in the
cross-shore, where a1(f) =

∫ π
−π cos(θ)D(θ) dθ. If D(θ) is known, it can be refracted shoreward

using Snell’s law giving a1(x, f). The third step is then to use wave energy flux conservation in
each frequency band,

d

dx
[E(f)cg(f)a1(f)] = 0. (9.5)

Note that using linear waves assumes explicitly that there is no energy transfer across frequencies.
This cannot occur using linear theory, but it does occur with nonlinear waves. So (9.6) may not
be a good assumption. What is often done instead is to focus not on the entire spectrum but on the
frequency integrated spectrum,

d

dx

[∫
ss

E(f)cg(f)a1(f) df

]
= 0. (9.6)
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9.2 Surfzone Wave Breaking Type - The Irrabaren Number

Before we describe the cross-shore transformation of Hs(x) across the surfzone, we first discuss
teh qualitative features of depth-limited wave breaking. Note that this type of wave breaking is very
different from deep-water wave breaking. The later is a result of nonlinear interactions and wind
resulting in overturning waves. Depth-limited wave breaking is a result of linear and nonlinear

wave steepening. For example, in linear shallow water shoaling H ∼ h−1/4 yet clearly for a linear
wave H < 2h, as wave amplitude a cannot exceed h. This implies that at a maximum in a linear
sense H/h < 2.

But wave breaking generally begins much much before that, typically in a range of γ = H/h of
γ = 0.5 to 0.7. A related posultate in the surfzone is that γ is a constant. This is a useful postulate
and it’s effectiveness will be examined later.

A common non-dimensional parameter to describe the type of surfzone is the Irrabaren number
Ib = β/(Hb/L0)1/2, where β is the planar beach slope, Hb is the wave height at breaking, and
L0 is the deep water wave height and wavelength, respectively. Note that this can be written
as the ratio of the beach slope to the (quasi deep-water) wave-steepness. Using the deep-water
dispersion relationship T 2 = L02π/g, Ib can also be written as a function of wave period. Also
a “deep-water” Irrabaren number of also often defined using the deep water wave height H0, so
that Ib0 = β/(Hb/L0)1/2. Note that with these definitions, Ib is essentially a monochromatic wave
quanitity.

This parameter IB is also known as the surf-similarity parameter (Battjes 74 add ref), and
comes from laboratory experiments with planar beaches, where it was first used to define if labo-
ratory wave breaking occurs. For large Ib, laboratory waves are reflected, which makes sense as
for β →∞ one has a vertical wall which would reflect waves.

This parameter is also is useful for thinking about different classifications of surfzones. When
wave breaking is initiated, three types of the initiation of wave breaking have been described

• Spilling : Ib < 0.4 (Ib0 < 0.5) : where the wave breaking is initiated by the top of the wave
spilling over without any noticable overturning (or a tube).

• Plunging: 0.4 < Ib < 2.0 (0.5 < Ib0 < 3.3) : where wave breaking is initiated by overturn-
ing of the top of the wave (a tube). Note that this only describes the initiation of the wave
breaking.

• Surging: Ib > 2.0 (Ib0 > 3.3) These waves may be breaking or not but are largely reflected.
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These limits on Ib are laboratory derived, and only describe breaking initiation. If there is enough
room before the wave reaches the shore, both spilling and plunging breakers will evolve into a
bore, often referred to as a self-similar bore.

Now what sets the breaking type? Why are some wave spilling or plunging? It has to do with
how rapidly a wave is forced to shoal. If it shoals slowly (i.e., over many wavelengths as in WKB)
then it will break as a spilling breaking. If it shoals more rapidly then wave breaking will begin as
a plunging breaker. If it shoals very rapidly then it will mostly reflect (surging).

How can this be quantified on a planar beach where h = βx? Wave breaking begins at Hb =

γhb, thus wave breaking begins at a distance Lb = hb/β from the shoreline. A wave with period
T will have at hb (shallow water) a dispersion relationship Lw = (ghb)

1/2T , where Lw is the local
wavelength at breaking.

Now consider the ratio of the local wavelength at breaking to the width of the surfzone Lw/Lb.
This is a measure of how many wavelength fit over a region of significant depth change. Expanding
this ratio (using Hb = γhb so Lb = Hb/(γβ), we get

Lw
Lb

=
(ghb)

1/2Tγβ

Hb

=
(gγ)1/2βT

H
1/2
b

(9.7)

This can be converted to use a deep water wavelength so that this is written as

Lw
Lb

= (2πγ)1/2 β

(Hb/L0)1/2
= (2πγ)1/2Ib (9.8)

Using a γ ≈ 0.5, this means that (2πγ)1/2 ≈ 1.8. This implies that for spilling breaking, the local
wavelength at breaking has to be slightly larger than the width of the surfzone. Of course as the
waves get into shallower water, the local wavelength continues to decrease but this gives a sense
of why spilling breaking occurs. Similarly, if the local breaking wavelength is > 4 the surfzone
width, then one will get largely wave reflection - think Marine street.

9.3 The concept of constant γ = H/h

9.3.1 Laboratory

• McCowan (1891) : Solitary wave theory, wave breaking begins when breaking wave height
Hb = 0.78hb.

• Miche [1954]: Dependence on wavelengthLb or period such thatHb = 0.142Lb tanh(2πhb/Lb),
which for shallow water reduces to Hb = 0.89hb.

• Many laboratory observations suggest γ range between 0.7–1.2
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9.3.2 Field

• Thornton and Guza (JGR, 1982): Hrms = 0.42h inside the saturated (self-similar surfzone).

• Raubenheimer defined γs = Hs/h and found that γs ∝ β/(kh), which represents the frac-
tional change in water depth over a wavelength.

9.4 Surfzone Cross-shore wave transformation

In order to represent the bulk effects of wave breaking we must specify something about the wave
dissipation Dw in order to solve for Hs(x). The wave dissipation comes into the wave energy
equation (for normally incident waves),

dEcg
dx

= Dw (9.9)

where the question is now how to represent the wave dissipation due to wave breaking.

9.4.1 Fraction of waves breaking

Bore dissipation must be applied to the waves that are breaking in the surfzone. Recall that the
wave height distribution even in the surfzone is Rayleigh. TG83 found that this did a good job of
representing H distributions in the surfzone.

Now of the wave height distribution, only a certain fraction are breaking. Let pb(H) be the
“conditional probability” that a wave of height H is breaking, such that∫

pb(H)dH = Q (9.10)

where Q is the fraction of waves breaking which is≤ 1. The pdf of breaking waves can be thought
of as a conditional probability written as

pb(H) = W (H)p(H) (9.11)

where W (H) is the probability that waves of a certain height H are broken. It seems clear that
larger waves are more likely to be broken, but to keep things simple we choose W (H) to be a
constant so that

W (H) = Ab =

(
Hrms

γh

)n
. (9.12)

This implies that W is larger for larger waves and shallower water, controlled through the γ

paraeter - which is the same empirical parametre we have been examining throughout. Note that
this means that W (H) ≤ 1 which is not apriori clear that this must be so!
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9.4.2 Digression on Bore Dissipation

9.4.3 Applying the model

Thornton and Guza (1983) define the bore energy dissipation per unit length for a bore to be

Dw =
f̄

4
ρg

(BH)3

h
. (9.13)

To convert this to be applicable to random waves we have to apply this only to the waves that are
breaking. By integrating over the conditional probability pb(H) we get

〈Dw〉 = ρg
f̄B3

4h

∫ ∞
0

H3pb(H)dH. (9.14)

This can be integrated resulting in

〈Dw〉 = ρg
3
√
π

16

f̄B3H3+n
rms

4hn+1γn
. (9.15)

Thornton and Guza (1983) liked n = 4 An analytic solution could be found

Homework

1. For alongshore parallel contours and alongshore uniform conditions, show that the surfzone
alongshore wave forcing is

dSxy/dx =
sin θ0

c0

Dw (9.16)

where θ0 and c0 are deep water quantities.

2. For normally incident, monochromatic waves, with wave breaking beginning at Hb = γhb,
solve for the surfzone wave height distribution H(x) using (9.9) and D = ρgf̄H3/(4h)
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Chapter 10

Depth-integrated model for nearshore
circulation

The depth-integrated and time- (wave) averaged equations of motion - the conservation of mass
and momentum - are often used in the nearshore and surfzone to explain a variety of circulation and
low-frequency phenomena. The idea is to average over the sea-swell waves (also known as short
waves) that leaves equations describing “long” (infragravity, tsunamis) waves, setup, alongshore
currents, and rip currents. The resulting equations look a lot like the shallow water equations but
with a few twists. Getting to that point is also not straightforward.

For notation purposes, horizontal velocities will be written in index notation so that the instan-
taneous velocity ui = (u, v) for i = 1, 2 and the vertical velocity is written as w. We also define a
(sea-swell) wave velocity as ũi and the short-wave averaged velocity as ūi.

10.1 Mass Conservation Equation

Starting with the mass-conservation equation for an incompressible fluid, ∇ · u = 0, we depth-
integrate resulting in ∫ η

−h

∂ui
∂xi

dz + w|η − w|−h = 0. (10.1)

We take advantage of the surface and bottom kinematic boundary conditions (see Eq. 1.2)
∂η

∂t
+ ui

∂η

∂xi
= w|η (10.2)

ui
∂h

∂xi
= w|−h (10.3)

results in the depth-integrated continuity equation,

∂η

∂t
+

∂

∂xi

[∫ η

−h
ui dz

]
= 0 (10.4)
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This equation (10.4) must now be split into mean and wave terms (ū and ũ) and time-averaged 〈〉,

∂η

∂t
+

∂

∂xi

〈∫ η

−h
ūi dz

〉
+

∂

∂xi

〈∫ η

−h
ũi dz

〉
= 0 (10.5)

The term
〈∫ η
−h ũi dz

〉
= MS is the wave-induced (Stokes) depth-integrated mass transport (3.1).

The other term
〈∫ η
−h ūi dz

〉
= ME is the Eulerian mean depth-integrated mass transport. This

term can be rewritten as 〈∫ η

−h
ūi dz

〉
=

∫ η̄

−h
ūi dz = (h+ η̄)ŪE

i (10.6)

where ŪE
i is the depth-averaged mean Eulerian velocity. The depth-integrated continuity equation

(10.5) can then be written as

∂η

∂t
+

∂

∂xi

[
(h+ η̄)ŪE

i

]
+
∂MS

i

∂xi
= 0 (10.7)

It is also possible to write this equation in a quasi-Lagrangian form if one defines

ŪL
i =

1

h+ η̄

〈∫ η

−h
ui dz

〉
(10.8)

then
∂η

∂t
+

∂

∂xi

[
(h+ η̄)ŪL

i

]
= 0 (10.9)

Thus
ŪL
i = ŪE

i + ŪS
i (10.10)

when ŪS
i = MS

i /(h+ η̄).
These two formulations have impliations for how cross-shore flow is represented. Consider

steady (∂/∂t = 0) and alongshore uniform (∂/∂y = 0) conditions with normally incident waves
on a beach. Then

∂

∂x

[
(h+ η̄)ŪL

]
= 0 → (h+ η̄)ŪL = 0, → ŪL = 0 (10.11)

But of course this implies that that the mean Eulerian flow balances the wave-induced (Stokes)
flow, i.e., ŪE = −ŪS (see HW in 3). Note that what a current meter measures is the Eulerian flow.
Both Eulerian and quasi-Lagrangian forms are correct and useful, but one has to take care not to
confuse.
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10.2 Conservation of Momentum Equation

Here we start with the Navier-Stokes equation

∂ui
∂t︸︷︷︸
A

+
∂(uiuj)

∂xj︸ ︷︷ ︸
B

+
∂(wui)

∂z︸ ︷︷ ︸
C

= ρ−1 ∂p

∂xi︸ ︷︷ ︸
D

+... (10.12)

Now when vertically integrating we will deal with terms separately.

10.2.1 Depth-Integrated & Time averaging the LHS

First consider terms A, B, and C, and integrate by parts:

A :

∫ η

−h

∂ui
∂t

dz =
∂

∂t

[∫ η

−h
ui dz

]
− ui|z=η

∂η

∂t
(10.13)

B :

∫ η

−h

∂(uiuj)

∂xj
dz =

∂

∂xj

[∫ η

−h
(uiuj) dz

]
− (uiuj)|z=η

∂η

∂xj
− (uiuj)|z=−h

∂h

∂xj
(10.14)

C :

∫ η

−h

∂(wui)

∂z
dz = (wui)|z=η − (wui)|z=−h (10.15)

The boundary terms here can be collected. First at the surface z = η,

− (ui)z=η

[
∂η

∂t
+ uj

∂η

∂xj
+ w

]
z=η

= 0

which equals zero due to the surface kinematic boundary condition. Similarly the terms evaluated
at the bottom (z = −h) when collected are

(ui)z=−h

[
uj
∂h

∂xj
− w

]
z=−h

= 0

as the terms in the [] is the bottom boundary condition of no flow normal to the boundary (i.e., w =

u∂h/∂x). Note that in the linear wave problem (Chapter 1) we assumed the depth to be constant
so the bottom boundary condition is w = ∂φ/∂z = 0). The net result is that the LHs of the depth
integrated momentum equation is

∂

∂t

[∫ η

−h
ui dz

]
+

∂

∂xj

[∫ η

−h
(uiuj) dz

]
(10.16)

Now we time-average these terms, to get (for A)

∂

∂t

〈∫ η

−h
(ūi + ũi) dz

〉
=

∂

∂t

[
(h+ η)ŪE

i

]
+
∂MS

∂t
=

∂

∂t

[
(h+ η)ŪL

i

]
(10.17)
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and for B+C, evaluting the term inside the derivative,〈∫ η

−h
uiuj dz

〉
=

∫ η̄

−h
ūiūj dz︸ ︷︷ ︸

I

+

〈∫ η

−h
ũiũj dz

〉
︸ ︷︷ ︸

II

+

〈∫ η

η̄

uiuj dz

〉
︸ ︷︷ ︸

III

(10.18)

To evalute things further, we will make a crucial assumption that ūi is vertically uniform, that
is that ∂ūi/∂z = 0. This simplifies the equations significantly and allows us to proceed in a
straightforward manner. With this assumption, the term I in (10.18 becomes∫ η̄

−h
ūiūj dz = (h+ η̄)ŪE

i Ū
E
j (10.19)

Note that this neglects potential shear dispersion terms. The term III can be evaluated as〈∫ η

η̄

uiuj dz

〉
= ŪE

j

〈∫ η

η̄

ũi dz

〉
+ ŪE

i

〈∫ η

η̄

ũj dz

〉
= ŪE

i M
S
j + ŪE

j M
S
i (10.20)

These terms III are at times been historically neglected in nearshore dynamics. However, they are
important and will be discussed further below. The term II will be dealt with later as it makes up
part of the radiation stress (Remember Chapter 4!).

Pressure Term

The process of vertically-integrating the pressure term (D in Eq. 10.12) is similar to the other terms,

ρ−1

∫ η

−h

∂p

∂xi
dz = ρ−1 ∂

∂xi

[∫ η

−h
p dz

]
− ρ−1

[
p|z=η

∂η

∂xi
+ pz=−h

∂h

∂xi

]
(10.21)

Here we assume that the pressure at the surface z = η is zero. Thus the first boundary term
(ρ−1p|z=η∂η/∂xi) disappears . Atmospheric pressure is of course not zero and subtle distinctions
can be made of this term [Smith et al. 2006], but this is not relevant for our purposes here.

Recall from the discussion of radiation stresses that the pressure when waves are present can
be broken into a hydrostatic and wave pressure (4.3)

p = p0 + pw

where p0 = ρg(η̄ − z). Then the boundary term at z = −h can be evaluated as

[ρg(η̄ + h) + pw|z=−h]
∂h

∂xi
(10.22)

Now we time average the pressure term. Recall also that 〈pw〉 = −ρ〈w̃2〉 (See Chapter 4).
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The vertical integral term also is broken down into hydrostatic and wave terms when time-
averaged,〈∫ η

−h
p dz

〉
=

∫ η̄

−h
ρg(η̄ − z) dz +

〈∫ η

−h
pw dz

〉
=

1

2
ρg(h+ η̄)2 +

〈∫ η

−h
pw dz

〉
(10.23)

Thus the entire pressure gradient term (LHS of EQ. 10.21) becomes

−g(h+ η)
∂η

∂xi
+

∂

∂xi

〈∫ η

−h
pw dx

〉
(10.24)

Note that we can combine term II in (10.18) and the 2nd term inside the derivative in (10.24) to get

Sij =

〈∫ η

−h
(ρũiũj + pw) dz

〉
(10.25)

which is the definition of the radiation stress given in (4.4)!

Total Nonlinear Terms: Eulerian or Lagrangian Form

This topic was discussed nicely by Smith (2006). The momentum equation has terms of the form

∂

∂xj

[
(h+ η̄)ŪE

i Ū
E
j + (ŪE

i M
S
j + ŪE

j M
S
i ) + Sij

]
(10.26)

Using the relationship of MS
i = (h + η̄)US

i and ŪL
i = ŪE

i + ŪS
i , the nonlinear terms can be

rewritten in terms of the total (Lagrangian variables) as

∂

∂xj

[
(h+ η̄)ŪL

i Ū
L
j + (Sij −MS

i M
S
j )
]

(10.27)
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Chapter 11

Lecture: Edge Waves

11.1 Infragravity Waves

• Low frequency short waves with period T > 25 sec

• Included in wave-averaged dynamics

Start with the time- and depth-averaged continuity and momentum equations

∂η̄

∂t
+

∂

∂xi

(
(h+ η̄)UE

i

)
+

∂

∂xi
ms
i = 0 (?)

∂

∂t
(h+ η̄)(UE

i ) +
∂

∂xj

[
(h+ η̄)UE

i U
E
j

]
= −g(h+ η̄)

∂η̄

∂xi
+ waves

Take away waves and we have the shallow water equations. Now with the fact that ∂h
∂t

= 0 we
get

(h+ η̄)
∂ui
∂t

+ui
∂η

∂t
+ ui

∂

∂xj
[(h+ η̄)uj]︸ ︷︷ ︸+(h+ η̄)uj

∂

∂xj
ui = −g(h+ η)

∂η

∂xi

���
���

���
���

�:0

ui

[
∂η

∂t
+

∂

∂xj
(h+ η̄)uj

]
by continuity (?)

divide by (h+ η̄) =⇒ ∂ui
∂t

+ uj
∂ui
∂xj

= −g ∂η
∂xi

(Inviscid shallow water equation)

Add rotation and one gets Kelvin, Rossby, QG, etc.

The linear shallow water equations are similarly used to find wave solutions here.
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Linearize:

h+ η̄ =⇒ h

uj
∂ui
∂xj

=⇒ 0

∂η

∂t
+

∂

∂xi
(hui) = 0 or

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0

∂ui
∂t

= −g ∂η
∂xi

or
∂u

∂t
= −g ∂η

∂x

∂v

∂t
= −g∂η

∂y

How do we get wave solutions?

(1) Combine continuity and momentum into single equation for η

(2) Assume solutions periodic in time: η ∝ eiωt

(1)

A) time derivative of continuity

∂2η

∂t2
+

∂

∂xi

(
h
∂ui
∂t

)
= 0

B) substitute ∂ui
∂t

=⇒ ∂2η
∂t2

+ ∂
∂xi

[
gh
(
− ∂η
∂xi

)]
= 0

For a flat bottom, we get ∂2η
∂t2
− gh∂

2η
∂x2i

= 0 which looks like a standard wave equation with
c2 = gh.

What happens on a slope?

(2)

Let η = η̂eiωt and let h = βx

−ω2η̂ − ∂

∂x

[
gβx

∂η̂

∂x

]
− gβx∂

2η̂

∂y2
= 0

ω2η̂ + gβ
∂η̂

∂x
+ gβx

[
∂2η̂

∂x2
+
∂2η̂

∂y2

]
= 0
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Step #1 Alongshore uniform standing wave solution. ∂
∂y

= 0.

∂2η̂

∂x2
+

1

x

∂2η̂

∂x2
+

ω2

gβx
η̂ = 0

Solution using Bessel function:

η(x, t) = AJ0(2kx)eiωt

Linear standing wave solutions. Full nonlinear solutions were done by Carrier and Greenspan
1950s.

Step #2 Alongshore propagating wave

η(x, y, t) = Aη̂(x)eikyeiωt

∂2η̂

∂x2
+

1

x

∂η̂

∂x
+

[
ω2

gβx
− k2

]
η̂ = 0 (??)

Pick a solution that is bounded at the shoreline and decays offshore.

This has solutions
η̂(x) = e−kxN(x)

and with substitution:

�
��*

0
k2N − 2k

dN

dx
+

d2N

dx2
+

1

x

[
−kN +

dN

dx

]
+

[
ω2

gβx
�
��*

0
−k2

]
N = 0

d2N

dx2
+

[
1

x
− 2k

]
dN

dx
+

[
ω2

gβx
− k

x

]
N = 0

multiply by x

x
d2N

dx2
+ [1− 2k]

dN

dx
+

[
ω2

gβ
− k
]
N = 0

define x̃ = 2kx x = x̃
2k

2kx̃
d2N

dx̃2
+ (1− x̃)2k

dN

dx̃
+

[
ω2

gβ
− k
]

= 0

x̃
d2N

dx̃2
+ (1− x̃)

dN

dx̃
+

[
ω2

2gβk
− 1

2

]
= 0
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LaGuerre Polynomials!

xy′′ + (1− x)y′ + ny = 0

where n = integer has solution

Ln(x) where L0 = 1

L1 = 1− x

L2 =
1

2
x2 − 2x+ 1

etc.

ω2

2gβk
− 1

2
= n

ω2 = 2gβk

(
n+

1

2

)
ω2 = gk(2n+ 1)β

So the solution to (??) is

η(x, y, t) = Ae−kxLn(2kx)ei(ky±ωt)

Now from momentum ∂u
∂t

= −g ∂η
∂x

so

−ωû = −g ∂η̂
∂x

u(x, y, t) = A
g

ω

∂

∂x

(
e−kxLn2kx

)
ei(ky−ωt)

ν(x, y, t) = A
gk

ω
e−kxLn(2kx)ei(ky−ωt)
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Homework

1. Consider the edge wave dispersion relationship ω2 = gβky(2n+ 1) on a slope of β = 0.02.

(a) At a edge wave period of T = 30 s, what is the alongshore wavenumber ky for n =

0, . . . , 3?

(b) At a edge wave period of T = 60 s, what is the alongshore wavenumber ky for n =

0, . . . , 3?

2. In order for linear monochromatic incident waves to force an edge wave the frequency ω
and ky must match. Consider a period of T = 20 s, at what (if any) deep water wave angles
does the alongshore wavenumber ky of the incident wave match that of the edge waves at the
same period?

3. (EXTRA CREDIT) Consider a sloping beach and shelf with h = βx. Now we include
rotation into the shallow water equations.

∂u

∂t
− fv = g

∂η

∂x
(11.1)

∂v

∂t
− fu = g

∂η

∂y
(11.2)

∂η

∂t
+
∂(hu)

∂x
+
∂(hv)

∂y
= 0 (11.3)

where f is constant (no β plane)

(a) Combine the above equations to get a single PDE for η. The trick is to take a time-
derivative of (11.1.3) and substitute and maybe even do it twice

(b) Assume a propagating edge wave solution

η = η̂(x) exp[i(kyy − ωt)] (11.4)

Derive an ODE for η̂(x).

(c) Assume η̂ is finite at the shoreline and decays as x → ∞, find a solution for η̂ and a
dispersion relationship. The trick is similar to edge waves, and recall the solution to
xy′′ + (1− x)y′ + ny = 0 might be relevant.

(d) How are these modes similar or different from edge waves?
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Chapter 12

Lecture: Bottom Stress Formulations for
Depth-Averaged Models

12.1 Deriving the Stress Terms
∂ui
∂t

+ . . . = −1

ρ

∂p

∂xi
+

1

ρ

[
∂

∂xi
(τij)︸ ︷︷ ︸

lateral

+
∂

∂z
τi3︸ ︷︷ ︸

vertical

]

Now we have to vertically integrate as before - same trick:∫ η

−h

∂

∂xi
(τij) dz =

∂

∂xi

∫ η

−h
τij dz − τij|z=η

∂η

∂xi
− τij|z=−h

∂h

∂xi∫ η

−h

∂

∂z
(τiz) dz = τi3|z=η − τi3|z=−h

Now time-average the linear terms

∂

∂xi

〈∫ η

−h
τ̄ij dz

〉
+ τ̄Si − τ̄Bi

What about other terms that are quadratic?〈
τij|z=−h

∂h

∂xi

〉
= 〈τij|z=−h〉

∂h

∂xi

Other term: 〈
τij|z=η

∂η

∂xi

〉
→ 0
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12.1.1 Lateral, Surface, and Bottom Stress Terms

Thus the lateral stress terms become:

∂

∂xi
(τij)︸ ︷︷ ︸

lateral

=
∂

∂xi

∫ η̂

−h
τ̄ij dz (12.1)

the surface stress is simply written as τ̄S and the bottom stress is τ̄B. Note that all of these terms
have units of

ρ
L2

T 2
or

N

m2
(12.2)

12.2 Parameterizing the Lateral Stress Term

Now the lateral stress divergence terms must be parameterized in terms of the dependent variables
η̄, ŪE

i , etc. One way to do that is via the same stress - rate of strain relationship that we use for
Newtonian fluids, that is ∫ η̂

−h
τ̄ij dz = ρνt(h+ η̄)Ēij (12.3)

where Ēij is the depth-averaged rate of strain tensor, i.e.,

Ēij =

(
∂ŪE

i

∂xj
+
∂ŪE

i

∂xi

)
(12.4)

Thus as we are depth uniform, the term becomes in the depth uniform momentum equation,

ρ
∂

∂xi

(
νt(h+ η̄)

[
∂ŪE

i

∂xj

∂ŪE
i

∂xi

])
This is an ad-hoc turbulence closure, but it does the job. It still requires that the eddy viscosity be
specified!

We can also just use a slightly simpler form∫ η̂

−h
τ̄ij dz = ρνt(h+ η̄)

∂ŪE
i

∂xj
(12.5)

12.3 The surface stress

The surface stress, is typically given as the wind stress, which can be parameterized as

τS = ρairCd|Uair|Uair (12.6)

Because of the strength of wave forcing, we often neglect the wind stress in the surfzone. But it is
crucial farther offshore.
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12.4 Representing the Bottom Stress

The bottom stress must be parameterized as a function of the dependent variable η̂, ŪE
i in order to

close −→ to actually use the equation.
In turbulent flows, drag or stress is often written as quadratic in velocity

τ = ρcD|~u|~u (star)

For example, the drag of your car or bike all follow a law similar to (star). For simplicity’s sake,
one can also use a simple linear drag law where

τBi = ρrŪE
i (12.7)

How to represent τB = 〈|~u|~u〉?

ui = ūi + ũi current and wave

or u = ū+ ũ v = v̄ + ṽi

〈|~u|v〉 =
〈

[ū2 + 2ūũ+ ũ2 + v̄2 + 2v̄ṽ + ṽ2]
1
2 (ū+ ũ)

〉
Now consider the following approximations:

1) small angle =⇒ ũ� ṽ

2) weak current =⇒ ũ� (ū, v̄)

non-dimensionalized:〈
|ũ|
[
1 +

2ū

ũ
+
( ū
ũ

)2

+
( v̄
ũ2

)
+

2v̄ṽ

ũ2
+

(
ṽ

ũ

)2

︸ ︷︷ ︸
quadratic

] 1
2

(ū+ ũ)

〉

linear:
〈
|ũ|
(

1 +
ū

ũ

)
(ū+ ũ)

〉
=��

��*
0

〈|ũ|ũ〉+ 2〈|ũ|ū〉 = 2〈|ũ|〉ū this is linear in ū

Repeat for y term: 〈
|ũ|
(

1 +
ū

ũ

)
(v̄ + ṽ)

〉
but ṽ is small

〈|ũ|ṽ〉 = 0
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〈
|ũ| ū
ũ
ṽ
〉
→ small quadratically

Leave:
〈|ũ|〉 v̄ also linear

Note that this leaves a factor 2 difference in mean cross-shore and alongshore bottom stress.
This is a bit strange.

How to evaluate 〈|ũ|〉

1) Monochromatic waves ũ = uo cos(ωt)

〈|ũ|〉 =
ω0

T

∫ T

0

| cos(ωt)| dt

=
2u0

2π

∫ π
2

−π
2

cos(t) dt

=
2u0

2π
sin(t)

∣∣∣∣π2
−π

2

=
2

π
u0 or

2
√

2

π
σu where σu is std of u.

2) What about random waves? We said it was Gaussian with Rayleigh u0 such that

P(u0) =
u0

σ2
u

(
− u2

0

2σ2
u

)
Then

〈|ũ|〉 =

∫ ∞
0

u0P(uo) du0 ×
1

T

∫ T

0

| cos(ωt)| dt =

√
2

π
σu√

π

2
σu

2

π

3) What about Gaussian ũ?

〈|ũ|〉 =

∫ ∞
−∞
|ũ| 1√

2πσu
exp

[
−1

2

ũ2

σ2
u

]
dũ

=
2√
2π

∫ ∞
0

|ũ|
σu

exp

[
−1

2

ũ2

σ2
u

]
dũ

=

√
2

π
σu

∫ ∞
0

e−s =⇒
√

2

π
σu · 1

s =
1

2

ũ2

σ2
u

ds =
ũ dũ

σ2
u
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Same answer as before with Rayleigh distributed wave heights.

Now what if we have v̄ � ũ?

Then we have 〈|~u|v〉 = |v̄|v̄

Weak current 〈|~u|v〉 =
√

2
π
σuv̄

The relevant weak to strong current parameter is |v̄|
σu

. Note that |v̄|v̄ =⇒ |v̄|
σu
σuv

How to smoothly transition from weak to strong?

〈|~u|v〉 =

√
2

π
σuv̄

[
1 +
|v̄|2

σ2
u

] 1
2

has appropriate limits.

12.5 Homework

1. Some folks have used a form of
νt(h+ η̄)∇2ŪE

i (12.8)

to represent the lateral mixing in these shallow water equation based models, i.e., RHS starts
with ∂[(h+ η̄)ŪE

i ]/∂t+ . . .,

(a) Verify for yourself that this is dimensionally correct

(b) Multiply the term (12.8) by ŪE
i (form an energy equation) and decide whether this is a

good or bad form for an irreversible lateral mixing term.

2. For monochromatic waves, the weak current and small wave angle approximation says that
〈|~u|v〉 = (2/π)u0V

E
. Rewrite this expression for 〈|~u|v〉 in terms of wave amplutide.

3. For random waves with weak currents and small wave angles, 〈|~u|v〉 = (2/π)1/2σuV
E

.
Rewrite this expression as a function of significant wave height Hs.

12.6 OLD STUFF

In turbulent channel flows (think rivers) the bottom stress is often written as a quadratic so that

τb = ρcd|u|u (12.9)
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where cd is a non-dimensional drag coefficient. In fact in many turbulent flows, such as the turbu-
lent wake behind a cylinder, quadratic drag laws are appropriate. This is an empirical parameteri-
zation but it comes from dimensional analysis. If the stress only depends on the fluid density ρ and
the velocity u, then (12.9) is the simplest grouping that gives the right dimensions. The resulting
non-dimensional drag coefficient cd is then considered a function of other non-dimensional param-
eters, such as the Reynolds number or in nearshore situations the depth-normalized bed roughness
kr/h.

12.6.1 Application to the Nearshore

We are interested in applying the bottom stress to understand nearshore circulation. With waves
creating an oscillatory flow in the nearshore, the quadratic bottom stress (12.9) is assumed to apply
instantaneously. This implies that the time-averaged bottom stress can be written as (separated out
into cross-shore x and alongshore y) components,

τbx = ρcd〈|~u|u〉 (12.10)

τby = ρcd〈|~u|v〉 (12.11)

where 〈·〉 represents a time average over a wave period. As we will see, this representation (12.11)
works well in the nearshore region. However, it is depends on averages of instantaneous velocities,
not upon the indepdent variables of the shallow water equations (the depth- and time-averaged
Eulerian mean flow).

To obtain solutions for the longshore current the bottom stress must be written as a function
of the mean longshore current. If there is no mean cross-shore current (u = 0, the simplifying
assumption of 1.2), the cross-shore flow is sinusoidal

u = uo cos(ωt) cos θ

and the longshore flow is
v = v + uo cos(ωt) sin θ

then the bottom stress is written

τy = ρcd〈(u2
o cos2(ωt) cos2 θ + v2 + 2vuo sin θ cos(ωt) + uo sin2 θ cos2(ωt))

1
2

(v + uo sin θ cos(ωt))〉 (12.12)

Assuming that (i) the mean longshore current is weak relative to the wave orbital velocity (v � uo)
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and (ii) that the wave angle is small (sin θ � 1) so that (uo sin θ � v), equation (12.12) becomes

τy ≈ ρcd〈uo cos(ωt)v〉 = ρcduov
1

T

∫
T

cos(ωt)dt

= ρcd
2

π
uov (12.13)

where the integral is over a wave period T . This is the common linearization of the bottom stress.
Various other parameterizations of the bottom stress exist, based on different assumptions. There is
no observational verification that (12.13) accurately represents the true bottom stress, and it turns
out that often the weak current and small angle assumptions are violated in the field. However,
(12.13) is used because it provides a simple τy which is linear in v. The cross-shore orbital wave
velocity uo can be related to the wave amplitude by shallow water linear theory, ut = −gηx gives
ωuo = gka→ uo = a

√
g/h by the the shallow water dispersion relationship, c =

√
gh.
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Chapter 13

Simplified Nearshore Dynamics:
Alongshore Uniform

It has long been known that the direction of the mean (time-averaged) surfzone alongshore cur-
rents V̄ E depends on the incident angle θ of wave propagation. The modern theory of surfzone
alongshore currents was developed in the late 1960’s/ early 1970’s by (Longuet-Higgins, 1970;
Bowen, 1969) and Ed Thornton (1970 conference proceeding) after the concept of the Radiation
stress (Longuet-Higgins and Stewart, 1964) became established. As seen earlier, propagating sur-
face gravity waves have a mean momentum flux associated with them. When waves propagate
obliquely incident (i.e., not normally incident) to the beach there is a mean shoreward flux of
alongshore momentum, gradients of which act as a driving force for the mean alongshore current.
Simple alongshore current models that assume alongshore uniform conditions and steady flow have
succeeded at reproducing observations on a range of beaches from planar to barred. Here, a simple
alongshore current model will be developed and historical comparisons of model to observations
will be presented

13.1 Alongshore Current Models: Momentum Balance

Two assumptions are necessary to get a simple equation for V̄ E . The first is that the flow is steady
so that time derivatives can be neglected. Second, assume that all variables have no longshore (y)
dependence (i.e. ∂y = 0). This means that the bathymetry and forcing, as well as u, V̄ E , and η, are
only functions of the cross-shore coordinate, x.

Assuming alongshore uniform conditions (∂y = 0), weak currents, and small wave angles.

∂[(h+ η̄)V̄ E]

∂t
+
∂

∂x

(
(h+ η̄)ŪEV̄ E +MS

x V̄
E +MS

y Ū
E
)

= −ρ−1∂Sxy
∂x
−cd〈|ũ|〉V̄ E+

∂

∂x

(
νt(h+ η̄)

∂V̄ E

∂x

)
(13.1)
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Now to deal with the nonlinear terms: Recall from continuity that (h + η̄)ŪE = −MS
x so this

means that we are left with ∂(MS
y Ū

E)/∂x, which is the cross-shore gradient of the cross-shore
advection of alongshore wave momentum. This can also be written as ∂(MS

yM
S
x /(h+ η))/∂x.

Now assume steady (∂t = 0) and we get

∂

∂x

(
MS

yM
S
x

h+ η̄

)
= −ρ−1(

∂Sxy
∂x

)− cd〈|ũ|〉V̄ E +
∂

∂x

(
νt(h+ η̄)

∂V̄ E

∂x

)
(13.2)

which is a closed form 2nd order ODE for the mean Eulerian alongshore current V̄ E(x). Further-
more, we can neglect the term ∂x(M

S
yM

S
x /(h + η̄)) as it goes like E2 not like E, ie it is higher

order. Now in reality with a nonlinear surfzone this may not be a good assumption, but we can
always put it back in as it is just an inhomogeneous forcing term.

This leaves us with a simple equation for predicting the alongshore current on a beach,

−ρ−1∂Sxy
∂x
− cd〈|ũ|〉V̄ E +

∂

∂x

(
νt(h+ η̄)

∂V̄ E

∂x

)
= 0 (13.3)

Or stated another way, the depth-integrated and time-averaged alongshore momentum equation
can be represented as

Fy − τBy +Ry = 0 (13.4)

which is a one-dimensional balance between the depth-integrated alongshore force exerted by the
waves on the water column (Fy = −ρ∂Sxy/∂x), the bottom stress (τy, or drag or friction) felt
by the water column, and the cross-shore mixing of momentum (Ry), which carries momentum
down gradients. The alongshore wave forcing results from gradients of the mean wave-induced
momentum flux (radiation stress) due to breaking waves propagating at an angle towards the shore
imparting a mean body force to the water column. The alongshore component of the wind stress
could also be included in this formulation, but for simplicity won’t be.

An equation similar to (13.3) or (13.4) is used by the U.S. Navy and coastal engineers around
the world. To solve for the alongshore current given the offshore wave conditions (i.e. wave angle,
amplitude, frequency), the transformation of wave amplitude across the surfzone (e.g. equation
(13.8)). In addition the values of cd and ν must be known. In reality, cd and ν are chosen to best
fit some observations, and more developed and complicated parameterizations of the three terms
(forcing, bottom stress, and mixing) are often used. The functional forms of these three terms is
specified next.

73



13.1.1 Lateral Mixing

Several mechanisms have been proposed to mix momentum inside the surfzone. They are mostly
based on the conventional idea that turbulent eddies carry mean momentum down mean momentum
gradients. Depending on the proposed mechanism, these eddies have length scales from centime-
ters to the width of the surfzone (100’s of meters) and time scales both shorter (less than 5 sec)
and much longer ( 100’s of seconds or longer) than surface gravity waves. However, there really
are no estimates of how much mixing of momentum actually goes or even what the dominant
length and time scales of the mixing are. Some even argue that mixing is negligible. Historically,
As mentioned above, the mixing of alongshore momentum usually is written in an eddy viscosity
formulation

Ry = ρ
∂

∂x

(
νt(h+ η̄)

∂V̄ E

∂x

)
(13.5)

Note that the eddy viscosity νt has the same dimension as the kinematic viscocity and can take
a number of forms depending on assumptions about velocity and length scales of the turbulent
eddies. If equation (13.5) is used, then two boundary conditions for V̄ E are needed. These are
typically chosen to be V̄ E = 0 at the shoreline (x = 0) and far offshore (x → ∞). These choices
for the boundary conditions are convenient analytically but often have limited observational merit:
V̄ E may be smaller seaward of the surfzone but it is (almost) never zero. Although the wind
forcing is weaker than wave forcing in the surfzone, the wind usually drives some alongshore
current outside the surfzone and across the continental shelf. V̄ E can also be strong right at the
shoreline, especially at steep beaches.

For the moment to get an analytical solution we are going to set the eddy viscosity to zero
(νt = 0) to proceed giving us

ρ−1∂Sxy
∂x

= −cd〈|ũ|〉V̄ E (13.6)

Physically, this means that the alongshore wave forcing (∂Sxy/∂x) is balanced by the bottom drag.
Some folks call this type of hydrodynamic balance a “slab” model and such things are also used
for wind-driven shelf circulation or mixed layer models. With νt = 0, we also don’t need any
boundary conditions, which is convenient

13.1.2 Monochromatic Waves: Longuet-Higgins (1970)
Theory

OLD:
To parameterize the radiation stresses, we assume monochromatic waves (e.g. waves of only one
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frequency) and use results from linear theory (e.g. Snell’s law and the dispersion relation) to write
the radiation stresses in terms of wave heights. Needless to say, these assumptions may not hold
water in the real world. This will be addressed a bit more later. For linear waves approaching the
beach at an angle θ, the off-diagonal component of the radiation stress tensor is written as

Sxy = E
cg
c

sin θ cos θ

where cg & c are the group and phase velocity of the waves, and E is the wave energy

E = ρga2/2

where a is the wave amplitude. Snell’s Law (lecture 2) governing the linear wave refraction (which
is assumed to hold throughout the surfzone) is, k sin θ = constant, which is written after dividing
by ω (also conserved for linear waves)

(sin θ)/c = constant (13.7)

A result for shoaling (nonbreaking) linear waves on slowly varying bathymetry is that the
onshore component of wave energy flux (Ecg cos θ) is also conserved. With Snell’s law (13.7) this
also means that Sxy is conserved outside the surfzone (i.e. ∂Sxy/∂x = 0). In shallow water, the
group velocity becomes nondispersive (cg =

√
gh) with the assumption that θ is small (cos θ ≈ 1)

and Snell’s law the Radiation stress becomes

Sxy ≈ E
√
gh

sin θo
co

where sin θo/co are the values for the wave angle and phase speed outside the surfzone. The wave
amplitude inside the surfzone (x < xb where xb is the breakpoint location) is empirically written
as (see also last lecture)

a = γh/2 (13.8)

Since 1970, more complicated formulas for the wave transformation across the surfzone have
appeared, but like (13.8) they are all empirically based.

NEW:
First define the depth where wave breaking begins as hb. Recall that Sxy = (Ecg cos θ) sin θ/c and
that seaward of the surfzone (i.e., h > hb) these quantities are constant. Also recall that

∂Sxy
∂x

=
∂(Ecg cos θ)

∂x

sin θ

c
= Dw

sin θ

c
(13.9)
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Now as the wave angle is small, let us assume that cos θ = 1. Also, assume that the wave height
H = γh where γ is a constant. Then, we can write

∂(Ecg)

∂x
= Dw =

∂(1/8)ρgH2(gh)1/2

∂x
=
∂(1/8ρg

3/2γ2h5/2

∂x
= (5/16)ρg3/2γ2h3/2β (13.10)

where β = dh/dx.
For monochromatic waves cd〈|ũ|〉V̄ E = cd(2/π)u0V̄

E . For linear shallow water waves u0 can
be related to the wave amplitude a (See Chapter 1) quite simply. A quick derivation is

∂u

∂t
= −g ∂η

∂x
(13.11)

−ωu0 = −gka (13.12)

u0 = (gk/ω)a (13.13)

u0 = (g/h)1/2a = (g/h)1/2H

2
(13.14)

u0 = (g/h)1/2γh

2
(13.15)

where the last line utilizes the H = γh relationship. We can now write (13.6) as

0, h > hb
(5/16)g3/2γ2h3/2β sin θ0

(gh0)1/2
, h < hb

}
= −cd

2

π

(g
h

)1/2 γh

2
V̄ E (13.16)

This gives a solution for surfzone alongshore current V̄ E ,

V̄ E =

{
0, h > hb

−(5π/16)gγhβ sin θ0
(gh0)1/2

c−1
d , h < hb

(13.17)

Holy smokes! An anlytic solution with only a single non-wave tunable parameter (cd). Not terrible.
This was first derived about the same time (1969 to 1970) by a group of folks including (Longuet-
Higgins, 1970; Bowen, 1969) and a conference proceeding by Ed Thornton. The Bowen (1969)
derivation utilized a linear drag law with a Rayleigh drag coefficient τ̄By = ρrV̄ E wheras Longuet-
Higgins (1970) utilized the weak current small angle bottom stress form.

What does the solution look like? It has V̄ E is linear with h and zero offshore of the surfzone.
This implies a discontinuity at h = hb. Wierd. Nature does no like discontinuities. How should
this be resolved?

13.1.3 Results

What Longuet-Higgins (1970) did was smooth out the discontinuity with lateral mixing term by
setting νt ∝ (gh)1/2x. Longuet-Higgins (1970) solved equation (13.3) with the eddy viscosity
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parameterization ν ∝ Px
√
gh on a planar beach. Eddy viscosities are typically parameterized as

proportional to the product of the typical eddy length scale l′ multiplied by a typical eddy velocity
scale u′, i.e., νt ∝ u′l′, known as mixing length concept. The Longuet-Higgins (1970) form for ν
uses a length scale proportional to the distance from shore (l′ ∝ x) and a velocity scale proportional
to the phase speed of gravity waves (u′ ∝

√
gh), which a non-dimensional coefficient P .

Figure 13.1: Nondimensional V̄ E solutions for a sequence of values of the mixing parameter P .
The breakpoint is at x = 1. (from Longuett-Higgins, [1970])

A nondimensional family of theoretical solutions for V̄ E for varying strengths of mixing are
shown in Figure 13.1. As the strenght of the mixing (P ) increases, the flow gets weaker, smoother,
and extends further offshore. As mixing becomes negligible (P → 0), the the longshore current
takes a triangular form, with a discontinuity at the breakpoint. Longuett-Higgins compared his
model to the available laboratory observations at the time (Figure 13.2) with drag coefficients (cd)
selected to fit the data. The theoretical curves for V̄ E do fall close to the observations for P ≈ 0.2.

One could take objection to these eddy mixing scales. For example, on a beach with slope
β = 0.02, in h = 2 m depth at x = 100 m from shore and with P = 0.2, νt = 0.2(20)1/2100 ≈
100 m2 s−1. Ummmm this is BIG. It is actually far too big to make sense. Furthermore, νt keeps
increasing farther offshore! So, although it is dimensionally correct and it does smooth the profile,
it is not valid. The eddy viscosity needs to be big to smooth out the discontinuity, but what if there
really isn’t a discontinuity?
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Figure 13.2: Comparison of V̄ E measured by Galvin & Eagleson (1965) with the theoretical pro-
files of Longuett-Higgins. The plotted numbers represent V̄ E data points. (from Longuett-Higgins,
[1970])

13.1.4 Narrow-banded Random Waves: Thornton and Guza (1986)

In the Longuett-Higgins model, the monochromatic waves driving the longshore current all break
at the same cross-shore location, which is defined as the breakpoint (xb). This introduces a dis-
continuity in ∂Sxy/∂x at xb. Eddy mixing is thus required to keep the modeled longshore current
continous at the breakpoint, and severe amounts of eddy mixing are required to fit the observations.

The more physical solution is to switch from monochromatic waves (which break at the same
exact location each time) to narrow-banded random waves which have a smooth cross-shore dis-
tribution of wave breaking.

Unlike monochromatic laboratory waves, ocean waves are random rather than deterministic. In
the laboratory, all waves can be made to have the same wave heights, whereas in the ocean the wave
height is variable from wave to wave, and is appropriately defined by a probability density function.
Since the wave heights vary, not all waves break at the same location so there is no discontinuity in
∂Sxy/∂x. Random wave transformation models turn the breaking on gradually (i.e. progressively
more waves break as water shoals). At any one water depth only a certain percentage of waves
have broken. This makes Sxy a smooth function of the cross-shore and removes the discontinuity
in ∂Sxy/∂x, which decreases the need for so much eddy mixing to smooth out the longshore
current profile. Applying this to alongshore current models was pioneered by Thornton and Guza
(1986).
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Theory

Here we first modify the bottom stress term to reflect random waves,

〈|~u|v〉 = (2/π)1/2σuV̄
E (13.18)

where σu = (g/h)1/2ση = (g/h)1/2Hrms/2. The radiation stress terms becomes

∂Sxy
∂x

= 〈Dw〉
sin θ0

c0

(13.19)

where the wave dissipation 〈Dw〉 is a smooth function of x or h, thus this will remove the discon-
tinuity in V̄ E . Recall that a form for 〈Dw〉 is (9.15)) with n = 4 (Thornton and Guza, 1983),

〈Dw〉 = ρg
3
√
π

16

f̄B3H7
rms

4h5γ4
. (13.20)

This leads to a solution for V̄ E of (Thornton and Guza, 1986)

V̄ E =
3

4

B3f̄ g1/2

cdγ4

sin θ0

c0

H6
rms

h9/2
(13.21)

where Hrms (or Hs) are solved for with a wave transformation model. In the inner-surfzone where
Hrms = γh, this expression can be written as V̄ E ∝ h3/2 similar to but slightly different than the
monochromatic case. Seaward of the surfzone where waves are not yet broken, Hrms < γh and it
follows that V̄ E → 0.

Results

With a random wave formulation for Sxy and 〈Dw〉, (13.3) and no mixing was used by (Thornton
and Guza, 1986) to predict alongshore currents observed at a beach near Santa Barbara CA. The
comparison between the model and observations is shown in Figure 13.3 and 13.4. The model
appears to reproduce the observations on the planar beach. Small amounts of lateral mixing was
also included in some model runs, but did not significantly alter the V̄ E(x) distribution, indicating
that eddy mixing in the surfzone may be negligible.

13.1.5 Alongshore current adjustment time: Neglecting the time-derivative
term

Here, we examine the adjustment time for the alongshore current V̄ E and examine how good is the
assumption that we neglect the ∂/∂t term. It is useful to consider the simple spin-down problem
of an initially nonzero V̄ E under the influence of bottom stress. The balance is

∂[(h+ η̄)V̄ E

∂t
= −cd〈|ũ|〉V̄ E (13.22)
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Figure 13.3: Analytic solution for planar beach with no mixing (solid line) and measurements (+)
of V̄ E ( 4 Feb 1980, from Thornton and Guza (1986).

As this is a linear 1st order ODE we can approximately write this as

(h+ η̄)
∂V̄ E

∂t
≈ −cd〈|ũ|〉V̄ E (13.23)

∂V̄ E]

∂t
≈ −rV̄ E (13.24)

where
r =

cd〈|ũ|〉
h+ η̄

(13.25)

Thus r has units of an inverse time-scale [T−1] and the solution of (13.22) with an initial condition
V̄ E

0 is
V̄ E(t) = V̄ E

0 exp(−rt) (13.26)

Note that as both the waves get larger (bigger 〈|ũ|〉) or the drag coefficient cd gets larger, r is larger
and the time-scale r−1 is shorter. For deeper depths r get smaller implying a longer time-scale.

13.1.6 Further Refinements: Barred Beaches and Wave Rollers

The prediction and understanding of alongshore currents was a problem thought solved in 1986.
However, when these models were applied to a barred (with one or more sandbars ) beach (Duck
N.C., see beach profile in Figure 13.5) they did not work very well. The comparison between
model and observations (from the DELILAH field experiment) are shown in Figure 13.5. The
modeled alongshore current has two maxima, one outside of the bar crest and one near the shore-
line. This is contrary to what is repeatedly observed, a single broad maximum inside of the bar
crest. In fact, the two maxima V̄ E this model predicts is never observed. This discrepancy between
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Figure 13.4: Comparison of modeled and observed V̄ E for other days in Febuary. No mixing
(solid) & with mixing (dashed). The location of the breaker line is denoted as B.L. from Thornton
and Guza (1986)

models and observations led to a resurgence in alongshore current modeling in the 1990s, a care-
ful examination of the many assumptions taken along the way, and even more assumptions and
parameterizations. Many reasons or mechanism have been proposed for the discrepancy shown
in Figure 13.5, including wave rollers (which just alter the cross-shore distribution of the wave
forcing) and neglected alongshore pressure gradients, ie −g(h+ η̄)∂η̄/∂u.

13.1.7 Final Comments

It may strike the reader that alongshore current models incorporate assumption upon assumption
before becoming useful. There are two distinct types of assumptions that go into deriving (13.21),
beyond all the assumptions used to derive the depth-integrated and time-average nearshore circu-
lation equations. The first is the assumption of alongshore homogeneity ( ∂y = 0) that makes the
longshore momentum balance one dimensional (13.4). The second type of assumptions are in the
parameterizations of (13.4). The consequences of these assumptions are different. If the first as-
sumption holds (i.e. ∂y = 0) then the appropriate forms for the forcing, bottom stress, and mixing
need to be found to accurately solve for V̄ E across a wide range of conditions. However, if the first
assumption (∂y 6= 0) doesn’t hold, no amount of manipulation of the forcing, bottom stress, and
mixing parameterizations in 1-D models will yield consistently accurate predictions of V̄ E . Does
∂y = 0 hold in the surfzone? The answer to this question is site and condition specific, but during
the 1990’s and 2000’s we have learned that it works reasonably well.
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terizations of the bottom stress. The barred beach bathymetry is shown below. (from Church &
Thornton, [1993])

13.1.8 Homework

1. Assume that lateral mixing is negligible (ν = 0) and that the flow is steady and stable. For
waves which in deep water have an angle of ten degrees (θ = 10◦) and a period of ten
seconds, inside a saturated (self-similar) surfzone (where H = γh), what is the alongshore
current in depth h = 1 m depth on a planar beach with

(a) 1/50 slope (β = 0.02)

(b) 1/100 slope (β = 0.01)

Necessary info: γ = 0.5 & cd = 0.002

2. Time-scale of alongshore current response. Evaluate r for a self-similar surfzone where
Hrms = γh and cd = 2× 10−3 and either

(a) h+ η̄ = 1 m

(b) h+ η̄ = 10 m.

How long is the adjustment time relative to three other relevant time-scales (i) sea-swell
waves O(10) s and (ii) tides O(12) hours and (iii) inertial frequency f?
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Chapter 14

Cross-shore Momentum Balance: Setup
Revisited

∂(h+ η̄)ŪE

∂t
+
∂

∂x

(
(h+ η̄)ŪEŪE + 2MS

x Ū
E+
)

= −g(h+η̄)
∂η̄

∂x
−ρ−1(

∂Sxx
∂x
−τ̄Bx )+

∂

∂x

(
νt(h+ η̄)

∂ŪE

∂x

)
(14.1)

Steady ∂t = 0 implies that (h+ η̄)ŪE +MS
x = 0 and with ŪL = ŪE +MS

x /(h+ η̄) the nonlinear
term can be written as

∂

∂x

(
(h+ η̄)ŪEŪE + 2MS

x Ū
E
)

=
∂

∂x

(
(h+ η̄)ŪLŪL −MS

xM
S
x

)
=

∂

∂x

(
−MS

xM
S
x

)
as ŪL = 0 for steady alongshore uniform conditions and the term MS

xM
S
x can either be incorpor-

tated into the radiation stress or neglected as it is higher order (as with the alongshore momentum
equation leading to simple 1D alongshore current model).

Utilizing a weak current and small angle bottom stress relationship τ̄x = ρcd2〈|ũ|〉ŪE This
leaves us with a simple cross-shore momentum balance

0 = −g(h+ η̄)
∂η̄

∂x
− ρ−1(

∂Sxx
∂x

)− cd2〈|ũ|〉ŪE +
∂

∂x

(
νt(h+ η̄)

∂ŪE

∂x

)
(14.2)

Now recall that ŪE is prescribed by the depth-integrated continuity (mass-conservation equation)
such that ŪE = −MS

x /(h + η). Thus we have a simple 1st order ODE for η̄ that looks like the
simple setup and setdown balance that we used earlier.

In our simple world, the lateral mixing term is annoying and it is arguably small. So we are
going to ignore it and we have:

0 = −g(h+ η̄)
∂η̄

∂x
− ρ−1(

∂Sxx
∂x

)− cd2〈|ũ|〉ŪE (14.3)

which is the original setup balance plus the cross-shore bottom stress term!
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Another way that folks have written this is with a strong current approximation for the bottom
stress so that

0 = −g(h+ η̄)
∂η̄

∂x
− ρ−1(

∂Sxx
∂x

)− cd|ŪE|ŪE (14.4)
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Chapter 15

Inner-shelf Cross- & Alongshore
Momentum Balance: Including Rotation

Here we assume mixing is weak and continue using the alongshore uniform assumption ∂y =

0. With that, ŪL = 0. Here, we will now include the effect of earth’s rotation on the time-
and depth averaged Eulerian flow (ŪE, V̄ E) and also assume the flow is unstratified. However,
because we also want to include the effect of wind forcing we now include the wind stress τ̄Si term.
The resulting time-averaged and depth-integrated alongshore and cross-shore momentum balances
become

∂(h+ η̄)ŪE

∂t
− f(h+ η̄)V̄ E = −g(h+ η̄)

∂η̄

∂x
− ρ−1(

∂Sxx
∂x
− τ̄Bx + τ̄Sx ) (15.1)

∂(h+ η̄)V̄ E

∂t
+ f(h+ η̄)ŪE = ρ−1(

∂Sxy
∂x
− τ̄By + τ̄Sy ) (15.2)

Herein, we can identify the classic cross-shore balance of pressure gradient, wave forcing, and
bottom stress (e.g., Longuet-Higgins and Stewart, 1964; ?) and the class alongshore momentum
balance of wave forcing balancing bottom stress.

We want to now modify these equation so that they are suitable for use on the inner-shelf where
there is no wave breaking. Oon the inner-shelf we are typically dealing with deeper water depths
than the surfzone , assume that η̄ � h and with ∂h/∂t = 0, thus ∂(h+ η̄)V̄ E/∂t = h∂V̄ E/∂t. We
also and that the waves are steady so ∂MS

i /∂t = 0. On the inner-shelf, there is no wave breaking
so ∂Sxy/∂x = 0 but because there is wave shoaling ∂Sxx/∂x 6= 0. Thus, we can rewrite the
depth-normalized equations for the inner-shelf to

∂ŪE

∂t
− fV̄ E = −g ∂η̄

∂x
− 1

ρh
(
∂Sxx
∂x
− τ̄Bx + τ̄Sx ) (15.3)

∂V̄ E

∂t
+ fŪE =

1

ρh
(−τ̄By + τ̄Sy ) (15.4)
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where now note that the equation (?? units are [L/T 2] and not [L2/T 2] as for (15.1). Note also that
we’ve taking out the ∂η̄/∂y term on the shelf which means that there are no alongshore propagating
wave type solutions allowed. This is ok, and it can always be put back in. Also, note that we keep
the time-derivative term as it’s scaling importance goes linearly with the water depth.

Next is dealing with bottom stress. Here we follow ?? and assume a linear bottom stress so that
τ̄Bi = ρrŪE

i , where r is a linear Rayleight drag coefficient that is typically best-fit to observations
of the momentum balance.

∂ŪE

∂t
− fV̄ E = −g ∂η̄

∂x
− 1

ρh
(
∂Sxx
∂x

τ̄Sx )− r

h
ŪE ∂V̄

E

∂t
+ fŪE =

1

ρh
τ̄Sy )− r

h
V̄ E (15.5)

Inner- and mid-shelf solutions with no waves

Here, we consider the situation with no waves (i.e., E = 0). Since η̄ � h, by continuity
∂(hŪE)/∂x = 0 and so ŪE = 0 on the inner- and mid-shelf. Thus the cross-shore and alonghsore
momentum balance reduce to

−fV̄ E = −g ∂η̄
∂x
− 1

ρh
τ̄Sx (15.6)

∂V̄ E

∂t
=

1

ρh
τ̄Sy −

r

h
V̄ E (15.7)

Now consider this simplified cross-shore momentum balance (15.6),
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Chapter 16

Lecture: Wave Bottom Boundary Layers
and Steady Streaming

In the derivation of linear waves, it was assumed that they were inviscid and so the only bottom
boundary condition was that w = 0 (on a flat bottom). However, in reality a no-slip boundary
condition must be satisfied, resulting in what is known as the “wave boundary Layer”. This has
implications that are important for wave dampening over wide continental shelves and for sediment
transport due to a steady flow generated within it.

16.1 First order wave boundary layer

Lets start with linear waves propagating over a flat and smooth bottom with a viscous boundary
layer. Here we will change notation and use z = 0 at the bed and increasing upward (previously
z = 0 was the still water level). The full (Navier-Stokes) x momentum equation is,

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= ρ−1 ∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂z2

)
(16.1)

where ν is the kinematic viscosity of water.
We assume that the wave boundary layer is active over some vertical scale δw. We can non-

dimensionalize the various hydrodynamic variables using the linear wave solutions u = aωu′,
x = k−1x′, t = ω−1t′, p = ρgap′, where the primed variables are non-dimensional. To non-
dimensionalize the vertical coordinate we now use the (yet to be specified) boundary layer width
as z = δwz

′.

aω2

[
∂u′

∂t′
+ ak

∂u′

∂x′
= [tanh(kh)]−1 ∂p

′

∂x′
+

(
νk2

ω

)
∂2u′

∂x′2
+

(
ν

ωδ2
w

)
∂2u′

∂z′2

]
(16.2)
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Next each of these terms is examined individually in order to determine which ones to keep in
the subsequent analysis. The nonlinear term can be considered small due to ak. On contintental
shelves and in the nearshore where a wave boundary layer is important, kh will be relatively small
and so this term must be included. The factor νk2/ω is considered small, removing ∂2

xu from
considertaion. This leaves the ν∂2

zu term which will be non-negligible when z ≤ δw where

δw ∼ (ν/ω)1/2. (16.3)

which gives the vertical scale of the wave boundary layer.
Now the wave boundary layer equation can be dimensionally re-written as

∂u

∂t
= ρ−1 ∂p

∂x
+ ν

∂2u

∂z2
. (16.4)

However, if we now assume that the solution for pressure does not vary in the vertical then we can
rewrite (16.4) as

∂u

∂t
− ν ∂

2u

∂z2
=
∂u∞
∂t

(16.5)

where u∞ is the invisicid orbital wave velocity solution outside the boundary layer. The boundary
conditions on u are thus u = 0 at z = 0 and u = u∞ as z � δw.

To solve (16.5), we assume that u∞ = û∞ exp(iωt) and that the solution for u has a simular
form u = û exp(iωt), resulting in

iωû− ν ∂
2û

∂z2
= iωû∞ (16.6)

which is a 2nd order linear and inhomogeneous ordinary differential equation. In order to solve
this one must consider the homogeneous solutions (where the right-hand-side is zero) and the
inhomogeneous solutions. Consider first the homoegeneous solutions. Let û = A exp(λz), then

(iω − νλ2)A = 0 (16.7)

resulting in λ = ±(ω/(2ν))1/2(1 + i). Thus, we explicitly define

δ = (2ν/ω)1/2. (16.8)

With the requirement that the u → u∞ as z → ∞ we get the homogeneous solution ûh =

A exp(−(1 + i)z/δ). The inhomogeneous solution is straightforward and gives ûi = û∞. Com-
bining these two solutions gives,

u = (A exp(−(1 + i)z/δ) + u∞) exp(iωt), (16.9)
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and to satisify that u = 0 at z = 0, we get that A = −u∞. The full boundary layer solution can
now be written as (replacing complex exponentials with cosine),

u(z, t) = u∞
[
cos(ωt)− e−z/δ cos(ωt− z/δ)

]
. (16.10)

This (16.10) implies that due to the action of viscocity, there is not only a vertical decay in the
velocity but also a phase shift. This kind of 1st order wave boundary layer solution also applies in
many oscillatory flow environments such as tidal boundary layers.

Comparison between this laminar wave bottom boundary layer solution (16.10) and observa-
tions is shown in Figure 16.1 for the parameters shown in Table 16.1.

CASE A B C D
T (s) 1.33 1.50 1.80 2.20
H (m) 0.08 0.13 0.16 0.16
L (m) 2.39 2.82 3.57 4.53
β (m−1) 1439 1355 1237 1119
u2/u1 0.021 0.049 0.199 0.269

Table 16.1: Wave conditions (period T , wave height H , wavelength L, and β = δ−1)for the four
(A-D) Moauze et al. wave bbl cases. Also shown is a nonlinearity parameter u2/u1, the ratio of
the harmonic to principal velocity.

16.2 Stress and Energy Loss

With this solution for the oscillatory velocity, the stress can be calculated as

τxz = ρν
∂u

∂z
= ρνu∞δ

−1e−z/δ [cos(ωt− z/δ)− sin(ωt− z/δ)] (16.11)

which implies that the stress is not in phase with the oscillating velocity u. This can be made more
explicit by noting that cos(a)− sin(a) =

√
2 cos(a+ π/4) so that

τxz = ρνu∞δ
−1e−z/δ

√
2 cos(ωt− z/δ + π/4) (16.12)

= ρ(ων)1/2u∞e
−z/δ
√

2 cos(ωt− z/δ + π/4) (16.13)

(16.14)

Note that the stress is maximum at the bed, here z = 0, and decays with height above the bed.
The local wave energy dissipation is the result of turbulent shear production from the wave

field. This local wave dissipation is written as,

ε(z) =

〈
∂u

∂z
τxz

〉
(16.15)
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Figure 1.  The oscillatory flow in cases C1 (a,b), C2 (c,d), C3 (e,f) and C4 (g,h).  The right-most line in each left hand 
plot corresponds to the phase of the wave crest, and the other profiles (of which the last four are shown on the adjacent 

plot on the right) are at equal phase intervals through one wave period.  Measurements are shown as points, and the lines 
represent second order theory [4]. 
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Figure 2(a) and (b).  See caption below. 

Figure 16.1: Height above the bed (z) versus horizontal velocity u for 4 (top to bottom) wave
bottom boundary layer cases in Moauze et al. Measurements are shown as points, and the lines
represent second order theory. The left panel shows phases from 0, π/4, π/2, 3π/4, π, and the
right hand panel shows π to 2π. The right-most line in each left hand plot corresponds to the phase
of the wave crest (phase of 0).
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and the vertically-integrated wave energy dissipationDf due to friction in the wave boundary layer
can be calculated via

Df =

∫ ∞
0

ε(z) dz = −
∫ ∞

0

〈
∂u

∂z
τxz

〉
dz. (16.16)

This has units of ρ[L2/T3], just as the breaking wave dissipation.
The trick to evaluate Df (16.16) is to integrate by parts so that

Df = −
〈∫ ∞

0

∂u

∂z
τxz dz

〉
= −〈[τxzu]∞0 〉+

〈∫ ∞
0

u
∂τxz
∂z

dz

〉
. (16.17)

The first terms on the right hand side of (16.17) [τxzu]∞0 is zero because u = 0 at z = 0 and
the stress is zero far outside the boundary layer. Now recall from (16.5) (with some minor re-
arrangement using τxz = −ν∂u/∂z) that

∂(u− u∞)

∂t
=
∂τxz
∂z

,

and so (16.17) is re-written in sequence as

Df =

〈∫ ∞
0

u
∂(u− u∞)

∂t
dz

〉
(16.18)

=

〈∫ ∞
0

(u− u∞)
∂(u− u∞)

∂t
dz + u∞

∫ ∞
0

∂(u− u∞)

∂t

〉
(16.19)

=

〈∫ ∞
0

1

2

∂(u− u∞)2

∂t

〉
+
〈
u∞ τxy|∞0

〉
(16.20)

= −〈u∞τb〉 (16.21)

where we now use the notation τb for the bed (z = 0) wave-induced shear stress. This result is
interesting as it states that the total wave energy loss due to friction in the bottom boundary layer
can be estimated from the invisicid free stream velocity and the bed shear stress.

Using the definition of u∞ = û∞ cos(ωt) and from (16.12) at z = 0

τb = ρ
ν

δ
u∞ cos(ωt+ π/4) (16.22)

and so
Df = −〈u∞τb〉 =

1

2
ρ
ν

δ
u2
∞(check) (16.23)

16.3 Bounday layer induced flow: Steady Streaming

An additional property of wave boundary layers is that the z dependent phase lag in the velocity
coupled with the vertical velocity, induces a vertical momentum flux 〈uw〉 that drives a vertically
sheared horizontal mean flow ū(z).
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From the first order solution for the horizontal velocity u, the leading order vertical velocity
solution can be found through the continuity equation ∂u/∂x+ ∂w/∂z = 0 which when vertically
integrated yields

w(z, t) =

∫ z

0

−∂u
∂x

dz (16.24)

asw = 0 at z = 0. From (16.10) (reverting back to complex exponential notation for convenience),

∂u

∂x
= iku∞e

iωt
[
1− ez/δe−iz/δ

]
(16.25)

and so

w(z, t) = iku∞

[
z +

δ

1 + i

(
e−(i+i)z/δ − 1

)]
eiωt (16.26)

= iku∞

[
z +

δ(1− i)√
2

(
ez/δ(cos(z/δ)− i sin(z/δ))− 1

)]
eiωt (16.27)

From this solution for w, it is clear that 〈uw〉 6= 0 in contrast to the standard linear surface gravity
wave solution. Now if we can write u = (ur + iui) exp(iωt) and similarly for w, then 〈uw〉 can be
calculated via

〈uw〉 = urwr + uiwi. (16.28)

We evaluate these terms but there is a ton of algebra

ur = u∞
[
1 + ez/δ cos(−z/δ)

]
(16.29)

ui = u∞
[
ez/δ sin(−z/δ)

]
(16.30)

wr = ku∞

[
δ√
2

(
e−z/δ[cos(z/δ) + sin(z/δ)]− 1

)]
(16.31)

wi = ku∞

[
z +

δ√
2

(
e−z/δ[cos(z/δ)− sin(z/δ)]− 1

)]
(16.32)

After a butt-load of algebra, I think one gets

〈uw〉 = u2
∞k

[
e−z/δ[(z/δ) sin(z/δ) + cos(z/δ)]− 1

2
(e−2z/δ − 1)

]
...... (16.33)

Actually nevermind. What you are going to get is

〈uw〉 ∼ u2
∞kδ (16.34)

which can be dimensionally re-written as

〈uw〉 ∼ 1

2

ν

δ

u2
∞
c
. (16.35)
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Now the vertical momentum balance for the mean flow can be written as

ν
∂ū

∂z
= 〈uw〉, (16.36)

and using the full solution means that the streaming velocity can be written as

ū =
u2
∞

4c

[
3− 2(z/δ + 2)e−z/δ cos(z/δ)− 2(z/δ − 1)ez/δ sin(z/δ) + exp(−2z/δ

]
. (16.37)
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Chapter 17

Stokes-Coriolis Force

Up to now, we have neglected the role of rotation on surface gravity waves and the circulation it
drives. Here, we address the question: What are the implications of a rotating earth (f -plane) and
Stokes drift on the mean flow?

17.1 Kelvin Circulation Theorem

Recall, Kelvin’s circulation theorem for an non-rotating, inviscid, constant density fluid that states
that the circulation Γ around a closed curve that moves with the fluid must remain constant in time,
i.e.,

DΓ

Dt
= 0 (17.1)

where D/Dt represents the material derivative, and the circulation is defined as

Γ(t) =

∮
C

u˙dl. (17.2)

The circulation can be re-written using Stokes theorem as

Γ(t) =

∫
A

(∇× u) · n dS (17.3)

i.e., the area integral through the surface A bounded by C.
However, on a rotating earth, this theorem must be extended to include rotation which makes it

Γ(t) =

∫
A

(∇× u + fk) · n dS (17.4)

where the Coriolis vector is in the vertical direction k.
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Figure 17.1: Diagram of Ursell’s argument. If there was a steady Lagrangian mean, denoted by Us,
then the area projection of A of a circuit would increase unboundedly adn so would the number of
planetary vorticity filaments, denoted by Ω = 2f , which would lead to an infintiely large relative
circulation around the circuit ba’d’cb, which initially coincided with badc, thus violating the Kelvin
Circulation theorem. From Xu and Bowen (1994)

17.2 Application to Stokes Drift: A problem

Now consider waves in deep water propagating in the +x direction. At some time t = 0, the
material surface badc that lies in the yz plane (Fig. 17.1) has no net circulation on that material
contour, Γ = 0. Under the influence of Stokes drift ūs, which is stronger at the surface, the
material surface is moved to ba’d’c, and no longer lies in the vertical yz plane, but is now at an
angle. Because the material surface is no longer vertical, planetary vorticity filaments fk will go
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through the area A projected onto the horizontal plane of aa’d’d. This implies that either

1. For Γ to be conserved:
∫
A
∇× u˙dS = −

∫
A
∇× u˙dS, implies that vorticity must increase

in an unbounded manner on area A or that the circulation must increase in an unbounded
manner. OR

2. With rotation and surface gravity waves, the material surface always stays vertical. If this is
the answer then how?

17.3 Re-derivation of surface gravity wave equations with ro-
tation

Here we answer the question above by re-deriving the surface gravity wave equation in deep water
on a rotating f -plane.

17.3.1 Statement of Problem in Deep Water

The equations for continuity, and x, y, and z momentum on an f -plane are, respectively,

∂u

∂x
+
∂w

∂z
= 0 (17.5a)

∂u

∂t
− fv = −ρ−1 ∂p

∂x
(17.5b)

∂v

∂t
+ fu = 0 (17.5c)

∂w

∂t
= −ρ−1∂p

∂z
− g. (17.5d)

These equations (17.5) are valid for any kh, but here we solve them in deep water. The deep-water
boundary conditions are :

1. w = 0 at z = −∞,

2. p = 0 at z = η, but applied at z = 0.

3. ∂η/∂t = w at z = η, but also applied to z = 0.

Note that these equations with boundary conditions are very similar to the irrotational linear equa-
tions used to derive non-rotating surface gravity waves.
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17.3.2 Solution procedure

1. First we remove hydrostatic pressure so that p = p̃ − ρgz and the z momentum equation
becomes

∂w

∂t
= −ρ−1∂p̃

∂z
(17.6)

2. Next we assume a solution where η = a exp[i(kx− ωt)]. This then implies that we have

u = û(z) exp[i(kx− ωt)]

v = v̂(z) exp[i(kx− ωt)]

w = ŵ(z) exp[i(kx− ωt)]

p̃ = p̂(z) exp[i(kx− ωt)]

3. Subsitute the above into into the equations of motion (17.5) gives

ikû+
∂ŵ

∂z
= 0 (17.7a)

−iωû− fv̂ = −ρ−1ikp̂ (17.7b)

−iωv̂ + fû = 0 (17.7c)

−iωŵ = −ρ−1ik
∂p̂

∂z
. (17.7d)

This (17.7) is a set of 4 ODEs for 4 variables.

4. Next we use our experience with the non-rotating deep-water wave solutions and write,

û = u0 exp(lz)

v̂ = v0 exp(lz)

ŵ = w0 exp(lz)

p̂ = ρga exp(lz)

where l is the inverse vertical decay scale. Note that here, we allow it to be different than the
horizontal wavenumber k! Also this form of the solution means that the boundary condition
w = 0 at z = −∞ is automatically satisfied. We also write the surface kinematic boundary
condition (∂η/∂t = w) as

−iωa = w0 (17.8)
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5. Plugging in û = u0 exp(lz) (etc) to the four ODEs (17.7) gives

iku0 + lw0 = 0

−iωu0 − fv0 = −ikga

−iωv0 + fu0 = 0

−iωw0 = −gla

6. Now we start re-arranging. First we can write v0 = −ifu0/ω. Then we can write the
x-momentum equation as

−iω
(

1− f 2

ω2

)
u0 = −ikga

which when re-organized gives a relationship between u0 and a,

u0 =
kga

ω
(

1− f2

ω2

) . (17.9)

From the z-momentum equation we can relate w0 to a.

w0 =
−igla
ω

(17.10)

Combining (17.10) with the surface boundary condition (17.8) yields ω = gl/ω or

ω2 = gl (17.11)

which looks a lot like the deep-water non-rotating dispersion relationship. There remains
just one thing missing, how to relate the horizontal wavenumber k to the inverse vertical
length-scale l. Here we use the continuity equation

iku0 + lw0 = 0 ⇒ ik2ga

ω
(

1− f2

ω2

) − igal2

ω
⇒ iga

ω

[
k2

1− f2

ω2

− l2
]

= 0 (17.12)

which implies that l = k(1 − f 2/ω2)−1/2. This means that rotation changes the inverse
vertical decay scale from the horizontal wavenumber by a factor related to f 2/ω2.

7. Now the problem is completely solved. The full solution is

u =
kga

ω
(

1− f2

ω2

) exp(lz) cos(kx− ωt) (17.13)

v =
lω

k

(
f

ω

)
a exp(lz) sin(kx− ωt) (17.14)

w = aω exp(lz) sin(kx− ωt) (17.15)
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where the dispersion relationship is

ω2 = gl, l = k(1− f 2/ω2)−1/2 (17.16)

8. How big is f 2/ω2 for typical surface gravity waves? Typically f = 10−4 s−1. For waves
with period T = 20 s, ω = 2π/T = 0.3 rad/s. Thus f 2/ω2 ≈ 10−7. For waves of shorter
period, f 2/ω2 is even larger. Therefore, the change to the dispersion relationship is minor.
This means we can replace all the l with k in the full solution.

9. Note that v is non-zero due to rotation.

17.4 Application to forcing the mean flow

So this solution is very similar to the non-rotating wave solution. The principal difference is the
non-zero v term for waves propagating in the +x direction. Is there not still a wave-induced (Stokes
drift) mass flux (MS)?

To address this we will consider the steady mean horizontal momentum balance in the x and y
direction, respectively,

−fv̄ = −∂〈uw〉
∂z

(17.17)

fū = −∂〈vw〉
∂z

(17.18)

where ū and v̄ are the mean currents in the x and y direction, respectively, and the (2nd-order)
Reynolds stresses are calculated from the rotating wave solutions (17.13).

Now, for non-rotating linear surface gravity waves, the wave induced Reynolds stress is zero.
For rotating linear surface gravity waves, 〈uw〉 = 0 because u ∝ cos(kx− ωt) and w ∝ sin(kx−
ωt) are π/2 out of phase. However, with rotation v 6= 0 and 〈vw〉 6= 0, because v and w ∝ sin().
Using the solutions (17.13) we can calculate 〈vw〉 as

〈vw〉 =
1

2
a2fωe2kz. (17.19)

Can this result in a significant vertical flux of along-crest momentum (〈vw〉) that can be dynami-
cally impactful? Again taking f = 10−4 s−1, ω = 0.5 rad/s, a =

√
2 m gives ρ〈vw〉 = 0.05 Pa.

This is equivalent to a small wind stress.
With the expression (17.17), we can write the Eulerian mean flow ū as

ū = −f−1∂〈vw〉
∂z

= −1

2
(ak)2ce2kz. (17.20)

There are a few things to note here.
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1. The mean Eulerian flow ū is in the opposite direction of the direction of the wave propagation

2. The expression for the Eulerian flow (17.20) is the same as that for Stokes drift (3.8) but
opposite signed! So this means that ū = −ūS , and that there is no net Lagrangian flow (in
the steady deep water case).

3. We can see now that if there is no net Lagrangian flow then there is no issue with overall cir-
culation conservation (17.1) and Γ is conserved. That is that the material surface (Fig. 17.1)
that is originally vertical in the yz plane, stays vertical.

4. For general primitive equations for mean Eulerian flow with rotation one has a left-hand-
side term fk × u. With the addition of waves, there is an additional term that is written
as fk × uS , where uS is the vector wave-induced Stokes velocity. This force is called the
Stokes-Coriolis force.

5. These solutions can be generalized to any water depth (Xu and Bowen, 1994).

17.5 Effect of the Stokes-Coriolis force
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