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Abstract

The purpose of this study is to find a combination of optimal numerical algorithms for time-stepping and
mode-splitting suitable for a high-resolution, free-surface, terrain-following coordinate oceanic model. Due

to mathematical feedback between the baroclinic momentum and tracer equations and, similarly, between

the barotropic momentum and continuity equations, it is advantageous to treat both modes so that, after a

time step for the momentum equation, the computed velocities participate immediately in the computation

of tracers and continuity, and vice versa, rather than advancing all equations for one time step simultane-

ously. This leads to a new family of time-stepping algorithms that combine forward–backward feedback

with the best known synchronous algorithms, allowing an increased time step due to the enhanced internal

stability without sacrificing its accuracy. Based on these algorithms we design a split-explicit hydrodynamic
kernel for a realistic oceanic model, which addresses multiple numerical issues associated with mode split-

ting. This kernel utilizes consistent temporal averaging of the barotropic mode via a specially designed filter

function to guarantee both exact conservation and constancy preservation properties for tracers and yields

more accurate (up to second-order), resolved barotropic processes, while preventing aliasing of unresolved

barotropic signals into the slow baroclinic motions. It has a more accurate mode-splitting due to redefined

barotropic pressure-gradient terms to account for the local variations in density field, while maintaining the

computational efficiency of a split model. It is naturally compatible with a variety of centered and
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upstream-biased high-order advection algorithms, and helps to mitigate computational cost of expensive

physical parameterization of mixing processes and submodels.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Realistic oceanic circulation models are usually based on Boussinesq, hydrostatic momentum
and mass balances, material tracer conservation, seawater�s equation of state, and parameterized
subgrid-scale transports. Their time integration is made with a decomposition of the 3D fields into
barotropic (depth-averaged) and baroclinic (the residual) parts to facilitate the calculation of the
pressure-gradient force (Bryan and Cox, 1969). The motivation to build a free-surface oceanic
model is twofold. From a physical point of view, it is desirable to recapture processes lost or al-
tered by the rigid-lid assumption. These include tidal motions, altered dispersion relations for the
Rossby waves, etc. The other motivation comes from computational economics: as pointed out by
Killworth et al. (1991), there is a natural physical ratio of phase speeds for the external and inter-
nal gravity-wave modes. Once the model time step is chosen from the CFL criterion based on the
fastest baroclinic wave speed, the external mode has to be treated by either (i) a streamfunction
method using rigid-lid approximation; or (ii) a two-dimensional (2D) pressure Poisson equation
for pressure on the rigid-lid or due to free-surface elevation; or (iii) a special 2D barotropic sub-
model that uses a smaller time step chosen from a CFL criterion based on the barotropic speed.
Approaches (i)–(ii) require solution of a 2D elliptic problem (Dukowicz, 1994; Dukowitz and
Smith, 1994) at every time step that, with a conventional Successive Over-Relaxation (SOR) or
similar method, requires a number of iterations on the order of the number of grid points in
the longest direction of the computational domain. Since on this path the number of operations
needed at every grid point at every time step tends to increase with the resolution, on finer grids
the approach (iii) tends to be more efficient than the others with a threshold set by the ratio of
phase speeds of the external and the fastest internal gravity waves compared to the number of grid
points in the longest dimension, 1
1 T
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Despite the long-time existence of split-explicit versions for all three major classes of oceanic
models––z-, sigma-, and density-coordinate––there are few published studies about the mathemat-
ical aspects: consistency, accuracy, and stability associated with mode splitting (e.g., Higdon and
Bennett, 1996; Higdon and de Szoeke, 1997; Hallberg, 1997; Higdon, 2002 and an earlier theore-
tical work, Yanenko, 1971 and Skamarock and Klemp, 1992) more related to atmospheric
his criterion may be shifted in favor of the rigid-lid model if a more efficient (e.g., conjugate gradient, direct, or

rid; Multigrid Methods, 1981) elliptic solver is used instead of SOR. These kinds of solvers are available for

ely simple geometries but not for complex geometry and topography. Similarly, if the rigid-lid is abandoned in

of an implicit free-surface approach, the associated elliptic operator becomes diagonally-dominant: this alleviates

quirements for the solver and ultimately helps to reduce the computational cost (Dvinsky and Dukowicz, 1993;

witz et al., 1993; Dukowitz and Smith, 1994).
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modeling. Even within the limits of numerical stability based on the usual CFL condition, mode
splitting may introduce additional sources of numerical instability not present in models with uni-
form time steps nor in rigid-lid models.

The purpose of the present study is to reconsider the computational kernel of an oceanic model,
including the optimal choice of time-stepping algorithms for the barotropic and baroclinic
momentum and tracer equations, and their mutual interaction. Here we advocate an integrated
approach whose main focus is on the time-step limitation coming from the system as a whole that,
as we will show, is typically more restrictive than the CFL limitations coming from each equation
taken individually. We design a new finite-volume, finite-time-step discretization for the tracer
equations to eliminate the conflict between integral conservation and constancy preservation
properties associated with the variable free surface. We generalize the barotropic mode to take
into account the nonuniform density. Collectively, these steps reduce the mode-splitting error
and improve the stability, robustness, and efficiency of the model.
1.1. A generalized topography-following coordinate

The topography-following vertical coordinate system implies that there is a transformation
z ¼ zðx; y;rÞ; ð1:2Þ

where z is the Cartesian height and r is the vertical distance from the surface measured as the frac-
tion of the local water column thickness (i.e., �1 6 r 6 0,r = 0 corresponds to the free surface,
z = f and r = �1 corresponds to the oceanic bottom, z = �h(x,y)). The resulting system of coor-
dinates is nonorthogonal and leads to a set of chain rules for derivatives,
o

ox

����
z

¼ o

ox

����
r

� oz
ox

����
r

� o
oz

: ð1:3Þ
In the case of the classical a-coordinate, (1.2) reduces to
z ¼ r � hðx; yÞ: ð1:4Þ

This may be combined with nonlinear stretching, S(r)
zðx; y;rÞ ¼ SðrÞ � hðx; yÞ ð1:5Þ

and further generalized into the S-coordinate of (Song and Haidvogel, 1994)—which in essence
behaves like (1.4) in shallow regions and (1.5) in deep.

Past experience with r-coordinate models and intercomparisons with z- and isopycnic-coordi-
nate models (Beckmann, 1998; Willebrand et al., 2001) reveal that the solutions from (T-models
exhibit stronger topographic sensitivity than the other two classes of models. This is attributed to
the fact that the isosurfaces of the vertical coordinate intersect the isopycnals at some angle, even
in the case of horizontally uniform stratification, which causes pressure-gradient error. One way
to address this problem is to redesign the model algorithms making them less sensitive to such
errors (Shchepetkin and McWilliams, 2003). It is also desirable to allow the possibility of a
smooth transition from r to z-coordinates, such that the top-most isosurfaces are nearly flat while
the bottom-most are still aligned with topography. For example, one can chose a set of z-levels,
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fz�
kþ1

2

j k ¼ 0; 1; . . . ;Ng where z�1
2

¼ �hmax is chosen to be the maximum depth and z�
Nþ1

2

¼ 0 is the
unperturbed free surface. 2 Then, starting from the bottom, for k = 0 set
2 F

are p

interf
z1
2
ðx; yÞ ¼ �hðx; yÞ ð1:6Þ
and for each k = 1, . . . ,N�1 set
zkþ1
2
ðx; yÞ ¼ max z�kþ1

2
; zk�1

2
ðx; yÞ þ Dzmin

� �
; ð1:7Þ
where Dzmin is the chosen minimal vertical grid spacing (n.b., to avoid surfacing of coordinate iso-
lines, Dzmin 6 hmin/N, where hmin is the minimal depth). In principle, Dzmin may be chosen as infi-
nitely small, so the resultant system is equivalent to a z-coordinate with the necessity of handling
the layers near the bottom as ‘‘mass-less’’ layers. Its disadvantage is the nonsmooth transition
from z-level to topography-following regions. This nonsmoothness can be repaired by applying
2D diffusion to zkþ1

2
with a variable diffusivity coefficient—zero for the bottom and increasing to-

ward the surface. The resultant coordinate systems are shown in Fig. 1b–d for the cases of two
different degrees of smoothing: case (b) is closer to the stretched r-coordinate, while (c) retains
more features of the original z-coordinate (d). Unlike the (r-coordinate, in both cases the coordi-
nate surfaces near the top are almost horizontal and have less resemblance to the topography.

Throughout this study we assume that our vertical system of coordinates is no longer separable
in the sense that it cannot be generated by the simple relationships (1.5) where S(r) is independent
of horizontal coordinates, but involves a full three-dimensional (3D) transformation (1.2).

Consequently, the applicability of the methods developed here is not limited to just a r- or
S-coordinate class of models.

1.2. Perturbed vertical coordinate system

Discretization of vertical coordinate introduces a set of coordinate surfaces,
fzkþ1
2
¼ zkþ1

2
ðx; yÞ; k ¼ 0; 1; . . . ;Ng: ð1:8Þ
If the ocean is at rest, the free-surface elevation is f = 0, hence zNþ1
2
¼ 0, and the whole set cor-

responding to zero free-surface fzð0Þ
kþ1

2

g is referred as an unperturbed coordinate system. In the case

of a nonzero f, all zkþ1
2
are displaced by a distance proportional to f and the distance from the

bottom as the fraction of unperturbed local depth
zkþ1
2
¼ zð0Þ

kþ1
2

þ f 1þ
zð0Þ
kþ1

2

h

0
@

1
A ð1:9Þ
(recall that z1
2
� zð0Þ1

2

� �h and zNþ1
2
� f). As a result the perturbed grid-box height, Dzk �

zkþ1
2
� zk�1

2
, is related to the unperturbed height, Dzð0Þk � zð0Þ

kþ1
2

� zð0Þ
k�1

2

according to
or notational consistency throughout this study, z�
kþ1

2

have half-integer indices to reflect the fact that these z-levels

laced between the tracer point levels on a vertically staggered grid. Specifically, these z-levels correspond to

aces between two adjacent grid boxes in the finite-volume discretization.



(a)

(b)

(c)

(d)

Fig. 1. Examples of vertical coordinate systems: (a) S-coordinate of Song and Haidvogel, 1994 with hs = 3 and

hb = 0.01; (b,c) hybrid z � r coordinate systems obtained by relaxing the (d) z-coordinate system toward the

S-coordinate.
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Dzk ¼ Dzð0Þk 1þ f
h

� �
; ð1:10Þ
where the multiplier (1 + f/h) is independent of the vertical coordinate. This choice is similar to
Higdon and Bennett (1996) and Higdon and de Szoeke (1997), with the exception that they ap-
plied it for an isopycnic coordinate model. But it is different from Killworth et al. (1991) and
Dukowitz and Smith (1994), where free-surface elevation affects only the top-most grid box, as
well as from (Song and Haidvogel, 1994), where each grid box receives the same increment (hence
Dzk ¼ Dzð0Þk þ f=N ) regardless of its unperturbed size Dzð0Þk . Later we show that (1.10) has several
consequences, including the fact that vertical mass fluxes generated by a purely barotropic motion
vanish identically at every interface, zkþ1

2
.

1.3. Conflict between integral and constancy preservation for tracers

Combining the tracer equation in advective form
oq
ot

þ ðu � rÞq ¼ 0 ð1:11Þ
with the nondivergence equation,
ðr � uÞ ¼ 0; ð1:12Þ
we derive the tracer equation in conservation form,
oq
ot

þr � ðuqÞ ¼ 0: ð1:13Þ
As a consequence of (1.11), if the tracer is specified as a spatially uniform field at the initial time, it
remains so regardless of the velocity field. On the other hand, as a consequence of (1.13), the vol-
ume integral of the tracer concentration is conserved in the absence of incoming and outgoing
fluxes across the domain boundary. The continuity equation (1.12) provides the compatibility
condition between these two properties. Both properties are valuable and should be considered
in constructing numerical oceanic models.

The discretization of (1.13) is usually done using a finite-volume approach
DVnþ1
i;j;k q

nþ1
i;j;k ¼ DVn

i;j;kq
n
i;j;k � Dt ~qiþ1

2
;j;kU iþ1

2
;j;k � ~qi�1

2
;j;kU i�1

2
;j;k þ ~qi;jþ1

2
;kV i;jþ1

2
;k � ~qi;j�1

2
;kV i;j�1

2
;k

h
þ~qi;j;kþ1

2
W i;j;kþ1

2
� ~qi;j;k�1

2
W i;j;k�1

2

i
; ð1:14Þ
where qi,j,k is understood as a volume-averaged concentration over the grid-box DVi;j;k,
qi;j;k ¼
1

DVn
i;j;k

Z
DVn

i;j;k

qdV: ð1:15Þ
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The ~qiþ1
2
;j;k (q with one index half-integer) are the interfacial values of tracer concentration. Upper-

case 3 Uiþ1
2
;j;k;; V i;jþ1

2
;k, and W i;j;kþ1

2
are volumetric fluxes 4 in the two horizontal and vertical direc-

tions. These are defined as velocity components multiplied by the contact area between two
adjacent grid boxes
3 W

the ve

overb
4 W

everyw

and in
Uiþ1
2
;j;k ¼ uiþ1

2
;j;kDziþ1

2
;j;kDgiþ1

2
;j

V i;j;þ1
2
;k ¼ vi;jþ1

2
;kDzi;jþ1

2
;kDni;jþ1

2
;

ð1:16Þ
where Dziþ1
2
;j;k; Dgi;jþ1

2
, and Dzi;jþ1

2
;k; Dni;jþ1

2
, are vertical and horizontal measures of the corre-

sponding grid-box interfaces (De,Dg are assumed to be nonuniform because of curvilinear hori-
zontal coordinates). The superscripts n + 1 and n denote new and old time steps. The time step
for the flux variables in (1.14) is not specified yet (must be effectively at n + 1/2 to achieve the sec-
ond-order temporal accuracy), but the flux form by itself guarantees exact conservation of the glo-
bal volume integral of the advected quantity as long as there is no net flux across the domain
boundary. Setting qi,j,k � 1 in (1.14) yields the discretized continuity equation,
DVnþ1
i;j;k ¼ DVn

i;j;k � Dt � Uiþ1
2
;j;k � Ui�1

2
;j;k þ V i;jþ1

2
;k � V i;j�1

2
;k þ W i;j;kþ1

2
�W i;j;k�1

2

h i
: ð1:17Þ
Once it holds, the conservative form of the discrete tracer equation (1.14) also has the property of
constancy preservation in addition to global content conservation.

In a hydrostatic model the discrete continuity equation (1.17) is needed to compute vertical
velocity rather than grid-box volume DVnþ1

i;j;k . (The latter is entirely controlled by change of f
via (1.10).) Hence,
W i;j;1
2
¼ 0 at the sea floor and ð1:18Þ

W i;j;kþ1
2
¼ �

Xk
k0¼1

DVnþ1
i;j;k0 � DVn

i;j;k0

Dt
þ Uiþ1

2
;j;k0 � Ui�1

2
;j;k0 þ V i;jþ1

2
;k0 � V i;j�1

2
;k0

( )

for all k ¼ 1; 2; . . . ;N ; ð1:19Þ
which, in fact, defines the meaning of W i;j;kþ1
2
as a finite-volume flux across the moving grid-box

interface zi;j;kþ1
2
. Vertical summation of (1.17) for different k leads to the equation for the free

surface,
fnþ1
i;j ¼ fni;j �

Dt
DAi;j

U iþ1
2
;j � Ui�1

2
;j þ V i;jþ1

2
� V i;j�1

2

h i
; ð1:20Þ
where DAi;j is the horizontal area of the grid box i,j;
e use uppercase letters to denote finite-volume fluxes, while the corresponding lowercase letters are reserved for

locity components. The same convention holds for the barotropic fluxes and velocities that are indicated by an

ar.

e make a Boussinesq approximation that implies density is constant and equal to the background density q0
here except in the gravitational force. This implies that mass conservation is equivalent to volume conservation,

the present study these two terms are used interchangeably.
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Uiþ1
2
;j ¼

XN
k¼1

Uiþ1
2
;j;k; V i;jþ1

2
¼
XN
k¼1

V i;jþ1
2
;j ð1:21Þ
are vertically integrated (barotropic) volume fluxes; and we have used the identity
ðfi;j þ hi;jÞ � DAi;j �
XN
k¼1

DVi;j;k; ð1:22Þ
where hi,j is independent of time. Obviously, setting k = N in (1.19), consistently with 1.20, 1.21
and 1.22 results in
W i;j;Nþ1
2
¼ 0; ð1:23Þ
as required by the kinematic boundary condition at the free surface.
Thus far we have assumed that the time step and time-stepping algorithm for the tracer

(1.14) and for f (1.20) are the same. This would be the case if the barotropic and baroclinic
components were advanced using the same small time step dictated by the stability criterion
for the barotropic mode; or if the barotropic mode were treated implicitly with a special care
to construct finite-volume fluxes Uiþ1

2
;j;k, V i;jþ1

2
;k, and W i;j;kþ1

2
such that the (1.17) holds exactly

and is compatible with (1.21) and (1.23), (Dukowitz and Smith, 1994). In a split-explicit, free-
surface model (cf., Blumberg and Mellor, 1987; Killworth et al., 1991), the equation for free-
surface (1.20) and the vertically integrated (2D) momenta are advanced using a much smaller
time step than the tracer equations. Each baroclinic time step starts with computation of the
r.h.s of the 3D momentum equations. The r.h.s components are integrated vertically to pro-
vide forcing terms for the barotropic mode. During the barotropic time stepping, the free sur-
face and the barotropic velocity components are averaged over the sequence of the barotropic
steps and the averaged values are feed back into the 3D momenta. The averaging is needed to
prevent temporal aliasing of the signals resolved by the barotropic, but not by the baroclinic
step, and [in some models, cf., Nadiga et al., 1997; Hallberg, 1997; Higdon and de Szoeke,
1997; Higdon, 2002, where no dealiazing (averaging) of f-equation is actually performed] to
provide vertically integrated fluxes consistent with finite-time-step ‘‘baroclinic time’’ free-sur-
face equation (1.20). Then the 3D momenta are advanced to the baroclinic time step n + 1
(with violation of the external mode CFL criterion), and vertical integrals of the new fields
are subtracted from the similar values from the barotropic submodel. The resultant differences
is then uniformly distributed throughout the vertical column to make sure that the corrected
3D velocity components have the same vertical integrals as the barotropic ones. At the same
time, free surface f at the new baroclinic step is assigned to its new state from the the baro-
tropic submodel.

Perhaps the most delicate matter here is the replacement of free-surface f at n + 1 with its fast-
time-averaged value: not doing so leaves room for aliasing error, while the replacement makes the
‘‘slow-time’’ discrete 2D continuity equation (1.20) hold only within the order of temporal accu-
racy, but no longer exactly (even thought it is exact at every fast time step). Consequently, it is no
longer possible to reconstruct vertical velocity via (1.19) in such a way that the top kinematic
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boundary condition (1.23) is respected. 5 As the result, a conservative update of the tracer fields
(1.14) looses its constancy preservation property.
2. Accuracy and stability of time-stepping algorithms

Table 4 in Griffies et al. (2000), provides a comprehensive overview of time-stepping and mode-
splitting algorithms for virtually all oceanic models currently in use. Despite the large diversity of
models, the time-stepping algorithms are mainly limited to applications of classical methods––
Leap-Frog (LF), Adams–Bashforth (AB), and Forward–Backward (FB, used almost exclusively
for the barotropic mode). In this section we will show that, for oceanic modeling specifically where
the time step is restricted mainly by internal or external gravity waves, it is advantageous to use
more general algorithms that introduce FB-type feedback into the terms responsible for wave mo-
tions while treating other terms differently, with special care to ensure that different algorithms
can be combined.

2.1. Simple time stepping

Consider the one-dimensional (1D) linear hyperbolic equation,
5 A

condit
6 A

as we

propa
oq
ot

¼ �c
oq
ox

; ð2:1Þ
and 1D hyperbolic system of equations,
of
ot

¼ �c
ou
ox

ou
ot

¼ �c
of
ox

; ð2:2Þ
where c is phase speed. This is a simple analog for the barotropic mode in the absence of Coriolis
force and topography. In the free-surface equation, barotropic mass fluxes are the product of ver-
tically averaged velocities and total depth that depends on f; the nonlinear barotropic system
(3.46) and (3.47) is similar to both (2.1) and (2.2) in the sense that f may be advected by the flow
as well as be changed by its divergence. 6 Therefore, our goal is to design an accurate and stable
algorithm to advance both (2.1) and (2.2). We focus on achieving the greatest stability for the sys-
tem (since the waves usually propagate faster than the advection speed), while at the same time
minimizing dissipation for the advection equation.

A Fourier transform of (2.1) and (2.2) respectively yields
oq̂k
ot

¼ �ixk � q̂k ð2:3Þ
lternatively on might distribute the mismatch in (1.23) throughout the water column, so that the top boundary

ion holds, but at the expense of discrepancy in (1.19), (Song and Haidvogel, 1994).

similar duality exists in the baroclinic case, where temperature and salinity fields are advected directly by the flow

ll as coupled with the momentum equations via the background stratification. This results in internal-wave

gation.
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and
of̂k
ot

¼ �ixk � ûk;
oûk
ot

¼ �ixk � f̂k; ð2:4Þ
where xk � ck and, in the continuous case, k is a spatial wavenumber. In the case of spatial sec-
ond-order finite differences on a staggered grid, (2.2) becomes
ofj
ot

¼ �c �
ujþ1

2
� uj�1

2

Dx
oujþ1

2

ot
¼ �c � fjþ1 � fj

Dx
:

ð2:5Þ
The Fourier transform has the same form as (2.4), except that xk is replaced with xk ¼ c~k where
~k ¼
sinðkDx

2
Þ

Dx
2

¼
k; kDx � 1;

2=Dx; k ¼ p=Dx;

�
ð2:6Þ
which has its maximum value ~kmax ¼ 2=Dx. This means that if a time stepping algorithm for (2.4)
has a stability limit, xDtmax, it translates into maximum allowed Courant number,
cDt
Dx

����
max

¼ 1

2
xDtmax; ð2:7Þ
if the same algorithm is applied to (2.5).
Explicit time-stepping algorithms for a single oscillatory equation (2.3) are well studied (Canute

et al., 1988; Durran, 1991 and Appendix A). The same algorithms can be applied to the system
when the right-hand side terms for both equations in (2.4) are computed at the same time and then
added to their respective prognostic variables. This results in the same order of accuracy and sta-
bility limit as for the single equation. Let
qnþ1 ¼ Fðqn; qn�1; . . .Þ � ia � Gðqn; qn�1; . . .Þ; ð2:8Þ

where a � xDt, and
Fðqn; qn�1; . . .Þ ¼
Xr
m¼0

bmq
n�m

Gðqn; qn�1; . . .Þ ¼
Xr
m¼0

cmq
n�m
be an explicit time-stepping algorithm for (2.3). Its amplification factors are the roots of the char-
acteristic polynomial,
PðkÞ ¼ krþ1 �
Xr
m¼0

ðbm � ia � cmÞkr�m: ð2:9Þ
Similarly, the same algorithm applied to the system, (2.4),
f

u

� �nþ1

¼ F
f

u
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;
f

u

� �n�1

; . . .

" #
þ

0 �ia

�ia 0

� �
� G
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u

� �n

;
f

u

� �n�1

; . . .

" #
; ð2:10Þ
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gives
7 T

of the
Fð1; k�1; . . .Þ � k �ia � Gð1; k�1; . . .Þ
�ia � Gð1; k�1; . . .Þ Fð1; k�1; . . .Þ � k

�����
����� ¼ 0 ð2:11Þ
or
ðFð1; k�1; . . .Þ � kÞ2 þ a2G2ð1; k�1; . . .Þ ¼ k�
Xr
m¼0

ðbm � ia � cmÞk�m

 !

� k�
Xr
m¼0

ðbm þ ia � cmÞk�m

 !
¼ 0: ð2:12Þ
This obviously has the same set of roots as (2.9) as well as their complex conjugates, since the
coefficients bm and cm are real numbers. Eq. (2.8) is the most general form that covers both single-
step (e.g., LF and AB (AB2, AB3)) and multistage algorithms (e.g., Runge–Kutta (RK2, RK3),
and various predictor–correctors). In the last case, bm and cm also depend on a, but they are still
real-valued.

Eqs. (2.8)–(2.10) are not the most efficient way to advance the system (2.2) since none of them
has an efficiency factor exceeding unity (Appendix A). 7 In contrast, a simple FB step
fnþ1 ¼ fn � ia � un

unþ1 ¼ un � ia � fnþ1
ð2:13Þ
retains its stability up to a = 2. The FB algorithm may be rewritten in matrix form as
f

u

� �nþ1

¼
1 �ia

�ia 1� a2

� �
f

u

� �n

; ð2:14Þ
leading to characteristic equation
k2 � ð2� a2Þkþ 1 ¼ 0: ð2:15Þ

This has roots
k� ¼ 1� a2

2
� ia

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

4

r
: ð2:16Þ
Obviously jk±j � 1 as long as the expression under the square root remains positive (i.e., a 6 2).
Substitution of the ‘‘ideal’’ value of k = e±ia into (2.15) and subsequent expansion in Taylor series
for small r results in a mismatch between the left- and right-hand sides. To cancel the leading-
order term of this mismatch, a3

24
, we set k ¼ e�iað1þ 1

24
a2Þ; this indicates that the phase approximation

has second-order accuracy. The positions of the roots k± on a complex plane are shown in Fig. 2.
As predicted, they show a positive dispersion.
he efficiency factor is defined as the maximum allowed Courant number a divided by the number of computations

right-hand side per time step.



Fig. 2. Roots of the characteristic equation for the FB algorithm (2.13) on the complex plane. Tickmarks on the outer

side of the unit circle point to the location of ‘‘ideal’’ amplification factors e�ia, where a ¼ f� pi
16
;� pi

8
;� 3pi

16
; . . .g.

Tickmarks on the inner-side indicate the location of the actual roots (2.16) corresponding to the same values of a. The

mismatch between inner and outer tickmarks indicates the phase error, also illustrated here by the shaded sectors.
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The FB algorithm has been successfully used in many models for the barotropic mode (Bleck
and Smith, 1990; Killworth et al., 1991; Hallberg, 1997). Its efficiency is explained by the fact that
fn+1 is immediately used in the computation of un+1, while in (2.10) it is used only during the next
time step (or substep if a predictor–corrector scheme is used). Compared with LF, FB is twice as
efficient, and it does not have computational modes since both roots correspond to physical waves
traveling to the left and right. Furthermore, because one needs to suppress the computational
modes of LF, the efficiency contrast is even larger.

An difficulty in using FB comes from the fact that the forward step is unconditionally unstable
for (2.1). In the context of a free-surface model, this implies that unless the actual free-surface
equation is linearized,
U ¼ ðhþ fÞ�u ! U ¼ h�u ð2:17Þ

the algorithm is unstable due to the advective features of in the free-surface equation. The linea-
rization is undesirable because it destroys the consistency of the 3D continuity equation and even-
tually results in loss of conservation or constancy preservation for the tracers. In (2.17) U is the
vertically integrated (barotropic) mass flux; �u is the vertically averaged velocity; h is topography;
and (h + f) is the total thickness of the water column. A similar obstacle occurs for the Coriolis
force where a special treatment is required (e.g., an AB3; an implicit time step; or treating �u;�v-
components using FB in alternating sequence, Bleck and Smith, 1990). Additionally, FB and
LF are quite inaccurate in terms of phase error at the second half of their ranges of stability,
and neither provides any damping for motions it cannot accurately represent. Therefore, we seek
to generalize the FB algorithm such that the first substep––the update of f—is stable if applied to
single oscillation equation (2.3). A secondary goal is to improve on the phase error of FB.
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2.2. Generalized predictor–corrector algorithm

The simplest predictor–corrector algorithm is the second-order RK2 step modified by introduc-
ing terms with coefficients b and e to make the predictor substep,
fnþ1;� ¼ fn � ia � un ð2:18Þ

unþ1 ¼ un � ia � ðbfnþ1;� þ ð1� bÞfnÞ; ð2:19Þ
and the corrector substep
fnþ1 ¼ fn � ia
2
� ðunþ1;� þ unÞ ð2:20Þ

unþ1 ¼ un � ia
2
� ð�fnþ1 þ ð1� �Þfnþ1;� þ fnÞ� ð2:21Þ
The case b = � = 0 corresponds to the original RK2 that is second-order accurate and is known to
have a weak instability for a hyperbolic problem. The presence of the new terms with b and �
makes it similar to FB in the sense that as soon as each prognostic variable is updated, the
new values participate immediately in the update of the partner variable (cf., the synchronous time
step (2.10) where it happens only during the next step).

Algorithm (2.18)–(2.21) can be rewritten in matrix form as a single step
f

u

� �nþ1

¼
1� a2

2
�ia 1� a2b

2

� �
�ia 1� a2�

4

� �
1� a2

2
þ a4b�

4

0
B@

1
CA f

u

� �n

;

which leads to the characteristic equation
PðkÞ ¼ k2 � 2� a2 þ a4b�
4

� �
kþ 1þ a4

4
ð1� 2b� �þ b�Þ ¼ 0; ð2:22Þ
where coefficients b and � are yet to be specified. The order of approximation of k ¼ eia þ OðanÞ,
when a ! 0, can be estimated by the order of smallness of P ðeiaÞ ¼ OðamÞ, however, it should be
noted that for all settings of coefficients b and �,
o

ok
P ðkÞ

����a¼0
k¼1

¼ 0 but
o

ok2
P ðkÞ

����a¼0
k¼1

6¼ 0; ð2:23Þ
therefore to achieve a certain order of accuracy for k, we must ensure that P(eia) is one order smal-
ler. To chose b and � we substitute k = eia into (2.22) and expand it in Taylor series for small a,
after which it becomes
a4
1

3
� b

2
� �

4

� �
þ ia5

1

12
� b�

4

� �
þ Oða6Þ ¼ 0: ð2:24Þ
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Setting � ¼ 4
3
� 2b eliminates the Oða4Þ-term, transforming the above into
Fig. 3

the sm

result

‘‘idea
þia5
1

36
þ 1

2
b� 1

3

� �2
" #

þ Oða6Þ ¼ 0: ð2:25Þ
No choice of real-valued b can eliminate the Oða5Þ; however, b ¼ 1
3
minimizes it. The resultant

algorithm is third-order accurate for the approximation of k(a) = eia with a dissipative leading-
order truncation term. Location of its characteristic roots relatively to the unit circle is shown
in Fig. 3, indicating a much smaller phase error in comparison with the classical FB. Stability
of algorithms of this family is always limited by one of its physical modes leaving the unit circle
along the negative real axis, so substituting k = �1 and � ¼ 4

3
� 2b into (2.22), we obtain
4� a2 þ 1

36
� b� 1

3

� �2
" #

a4 ¼ 0; ð2:26Þ
which is to be solved for a. The form of this equation suggests that the largest stability limit is
achieved by setting b = 1/3—remarkably, the same value, as to minimize the truncation error.

The corresponding amax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3�

ffiffiffi
5

p
Þ

q
� 2:140932539 exceeds the limit of all algorithms of sim-

ilar computational costs (i.e. predictor–corrector type) shown in Fig. 20, Appendix A, but is quite
modest relatively to FB, given that twice-as many computations required. Due to the fact that this
algorithm does not require any knowledge of past time steps, it is a good choice for the beginning
time step since it cures the usual problem of accuracy loss associated with a forward Euler step.
. Roots of the characteristic equation for the modified RK2 algorithm (2.18)–(2.21) with coefficients set to achieve

allest possible truncation error among all third-order schemes, � = 4/3 � 2b (bottom). This sets b = 1/3, � = 2/3,

ing in amax = 2.140932539. As in Fig. 2, tickmarks on the outer side of the unit circle point to the location of

l’’ amplification factors e�ia. These are connected with the actual roots corresponding to the same values of a.
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Another commonly used algorithm is the Leap-Frog–Trapezoidal Rule (LF–TR) predictor–
corrector step. Following the same methodology, we introduce FB-feedback (b- and �-terms) be-
tween the equations during both the predictor stage
fnþ1;� ¼ fn�1 � 2ia � un ð2:27Þ

unþ1;� ¼ un�1 � 2ia � ð1� 2bÞfn þ bðfnþ1;� þ fn�1Þ
� 	

ð2:28Þ
and the corrector stage,
fnþ1 ¼ fn � ia � 1

2
� c

� �
unþ1;� þ 1

2
þ 2c

� �
un � cun�1

� 

; ð2:29Þ

unþ1 ¼ un � ia � 1

2
� c

� �
�fnþ1 þ ð1� �Þfnþ1;�� 	

þ 1

2
þ 2c

� �
fn � cfn�1

� 

: ð2:30Þ
When b = � = c = 0, this is equivalent to the familiar LF–TR algorithm with the stability limit
amax ¼

ffiffiffi
2

p
. b = � = 0 and c = 1/12 result in LF–AM3, which is third-order accurate and has the

slightly larger stability limit of 1.587 (Appendix A). The presence of b-terms in the LF-step
(2.27) and (2.28) used alone (without corrector) is known sometimes as Shuman�s averaging
(Brown and Campana, 1978). As follows from their analysis, b-terms do not cause any numerical
dumping (despite the obvious visual similarity with Asselin filter), but rather change phase behav-
ior of the algorithm. The meaningful range of b is 0 6 b < 1/4, with maximum stability achieved at
the upper end. And, similarly to LF, Shuman�s algorithm possesses nondecaying computational
modes.

The algorithm (2.27)–(2.30) may be rewritten in matrix form
f

u

� �nþ1

¼
A �ib

�iC D

� �
f

u

� �n

þ
E �iF

�iG H

� �
f

u

� �n�1

ð2:31Þ
where
A ¼ 1� 2a2
1

2
� c

� �
ð1� 2bÞ; B ¼ a

1

2
þ 2c� 4a2

1

2
� c

� �
b

� 

;

C ¼ a
1

2
þ 2cþ �

1

2
� c

� �
1� 2a2

1

2
� c

� �
� ð1� 2bÞ

� �� 

;

D ¼ 1� 2a2
1

2
� c

� �
1� �

3

4
� cþ 2a2

1

2
� c

� �
b

� �� 

;

E ¼ �4a2
1

2
� c

� �
b; F ¼ a

1

2
� 2c

� �
;

H ¼ �a2
1

2
� c

� �
1

2
� 2c

� �
�; G ¼ a

1

2
� 2c� �

1

2
� c

� �
1þ 4a2

1

2
� c

� �
b

� �� 

:
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This leads to the characteristic equation.
k2 � ðAþ DÞkþ ADþ BC � H � E þ ðAH þ EDþ BGþ FCÞk�1 þ ðEH þ FGÞk�2 ¼ 0;

ð2:32Þ
which we rewrite as
k2 þ ð�2þ a2p0 þ a4p00Þkþ 1þ a2q0 þ a4q00 þ ða2r0 þ a4r00Þk�1 þ a2s0k�2 ¼ 0 ð2:33Þ
to facilitate further analysis. Unlike A,B, . . . ,H above, the new coefficients p 0,p
00
, . . . , s 0

in (2.33)
p0 ¼ 4
1

2
� c

� �
1� b� �

3

8
� c
2

� �� �
; p00 ¼ �4

1

2
� c

� �2

b�;
� � � �� � � �

q0 ¼ �4

1

2
� c 1� 2b� �

5

8
� c
2

þ 1

2
þ 2c

2

;

� � � � � �� �

q00 ¼ 4

1

2
� c

1

2
� c ð1� 2bÞð1� �Þ � 1

2
þ 2c b ;
� � � �� � � �

r0 ¼ 2

1

2
þ 2c

1

2
� 2c� �

2

1

2
� c � 4

1

2
� c b;
� � � �� �

r00 ¼ 4

1

2
� c

1

2
� �

1

2
� c b;
� � � �� �

s0 ¼ 1

2
� 2c

1

2
� 2c� �

1

2
� c
do not depend on a. (It should be noted that in the derivation above products BG and ED contain
Oða6Þ terms which cancel each other, resulting in no appearance of a r

000
a6 term. Similar cancella-

tion occurs between the Oða4Þ terms in EH and FG, hence there is no s
00
a4 in (2.33).)

Substitution of k = eia into (2.33) and subsequent Taylor series expansion for powers of a yields
a2ðp0 þ q0 þ r0 þ s0 � 1Þ þ ia3ðp0 � r0 � 2s0 � 1Þ

þ a4
7

12
� p0

6
þ p00 þ q00 � r0

2
þ r00 � 2s0

� �
þ ia5

1

4
� p0

6
þ p00 þ r0

6
� r00 þ 4

3
s0

� �

þ a6

2
� 31

180
þ p0

12
� p00 þ r0

12
� r00 þ 4

3
s0

� �
þ Oða7Þ ¼ 0; ð2:34Þ
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where it can be immediately verified that, after the substitution p 0, p
00
, . . . , s 0, the Oða2Þ and Oða3Þ

terms identically vanish for any choice of values of c, b, and �, while the Oða4Þ term becomes
�a4
1

6
� 2c

� �
: ð2:35Þ
This indicates that setting c = 1/12 ensures third-order accuracy, regardless of the settings of b and �.
Once c = 1/12 is chosen, p 0, p

00
, . . . , s 0 become
p0 ¼ 5

3
1� b� �

2

� �
; p00 ¼ � 25

36
b�; q0 ¼ � 11

9
þ 10

3
bþ 35

36
�;

q00 ¼ 25

18

1

2
� 9

5
b� �

2
þ b�

� �
;

r0 ¼ 4

9
� 5

3
b� 5

18
�; r00 ¼ 5

6
b 1� 5

6
�

� �
;

s0 ¼ 1

9
� 5

36
�:
After substituting these into (2.34), we derive that b and � must satisfy
b ¼ 7

30
� �

6
ð2:36Þ
in order to eliminate the Oða5Þ term, and
1

75
� 11

12
�� 4bþ 5b� ¼ 0 ð2:37Þ
to eliminate Oða6Þ. Satisfying the first only or both of these conditions result respectively in the
fourth- and fifth-order accuracy approximation for the phase multiplier. Using (2.36) to exclude
b from (2.37), one can derive a single quadratic equation for �. It does not have a real-valued solu-
tion, so one can only minimize the error in (2.37) by choosing � = 11/20 and b = 17/120 (hence
(2.36) is satisfied). This results in fourth-order accuracy with the minimum possible truncation
error (among all possible b, c, and �) and in the stability limit amax = 1.851640 (Fig. 4). Remark-
ably, this setting of b,� in not far away from the largest stability limit among the fourth-order
schemes with b and � related via (2.36), (Fig. 5, left).

Thus far, we have explored the possibility of achieving the best possible accuracy. For the baro-
tropic mode in a split-explicit model, the design goals are different: the truncation error is of lesser
priority, but it is desirable that the algorithm have a large stability limit and be dissipative for high
frequencies. Arguably, the same is true for the baroclinic mode, but to a lesser extent, because in
most cases accurate representation of the phase speed of internal waves is not the main objective
but they impose a CFL limitation onto the time step. For the next step in our exploration we
treat b and � as independent free parameters and produce a two-dimensional map of the stability
limit amax(�,b), while still maintaining third-order accuracy, c = 1/12 (Fig. 5, right). There are two



Fig. 4. Roots of the characteristic polynomial for algorithm (2.27)–(2.30) with c = 1/12, b = 17/120, � = 11/20,

corresponding to the minimal possible truncation error among all settings of c, b, and �. Its stability limit is

amax = 1.851640.

Fig. 5. (left) Stability limit amax as a function of � for algorithm (2.27)–(2.30) with c = 1/12 for two different settings of

b: (solid) along the line of vanishing Oða5Þ term (2.36) and (dashed) b = 0. (right) amax as function of �, b with fixed

c = 1/12. Contours below a = 1.75 are shown in dashed lines. The empty area in the upper-right corner corresponds to

schemes with an asymptotic instability of the physical modes. Note the appearance of two maxima of stability, at

(�,b) = (0.83,0.126) just on the edge of asymptotic instability, and (0.39,0.044). The straight dashed line approximately

parallel to the edge corresponds to a zero Oða5Þ truncation term. The asterisk * and cross + on this line denote locations

of the minimal truncation error and maximum stability limit among the forth-order algorithms.
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maxima of stability at (�,b) = (0.83,0.126) and (0.39, 0.044). Their characteristic roots are shown
on Fig. 6. Though only formally third-order accurate, the algorithm shown on the upper panel



Fig. 6. Characteristic roots of algorithms corresponding to the primary (left) and secondary (right) maxima of stability

limit in Fig. 5.
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exhibits very small phase error––virtually indistinguishable from that in Fig. 4––and, it has
remarkably small numerical dissipation for almost the whole of its stability range. This is not sur-
prising, since its (�,b) are not far away from the minimum of truncation error. The primary max-
imum on Fig. 5, right, is located on the edge asymptotic instability, which explains its small
dissipation: the stability for the algorithm in the vicinity of this point is restricted by one of the
computational modes leaving the unit circle along the negative direction of the real axis, and
the limit increases when increasing both � and b. However, after crossing the edge, the physical
modes became weakly (asymptotically) unstable due to changes in higher-order truncation terms
(recall that regardless of b,� all these schemes are at least third-order accurate). Consequently, the
location right on the edge on (b, �)-plane corresponds to a delicate balance in these terms, resulting
in a overall extremely low and delayed dissipation. In contrast, the algorithm corresponding to the
secondary maximum possesses no special properties, and its behavior in phase error and dissipa-
tion rate is typical for a common third-order accurate scheme (cf., Fig. 3 or LF–AM3 step on Fig.
20, Appendix A).

Giving up third-order accuracy allows us to threat c as a free parameter and makes it possible
to achieve a much greater stability limit. To do so, for each c from the range of �0.07 6 c 6 1/12
we scan the (b, �)-plane in a manner similar to Fig. 5, bottom, to find values that produce the larg-
est amax. The outcome is summarized in the top left panel Fig. 7. The other three panels show
examples of algorithms from this sequence. When c decreases and then becomes negative, the
arms corresponding to the physical mode contract, allowing a larger stability limit. At the same
time, the roots corresponding to the computational mode became closer to the unit circle, and fi-
nally touch it at c = �0.055. Although this shows the possibility of a dramatic increase of amax up
to 2.8, algorithms with negative c do not behave well in practice because of poor damping of the
computational mode. This leads to a compromise choice of c = 0, resulting in amax = 2.41 that is
still 70% more efficient than the standard LF–TR.



Fig. 7. (top left) Maximum achievable stability limits amax as function of c for the algorithm (2.27)–(2.30), with b
(plotted in long-dashed line) and � (short dashes) optimized for stability range for each value of c. The associated ranges

for b, � are shown on the right axis. Note that with the departure from c = 1/12 (hence loss of third-order accuracy), it is

possible to expand significantly the stability range at the expense of accuracy. The three remaining panels show the

location of the roots of the characteristic polynomials for three sets of (c,b, �) taken from the curves on the upper left.
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As the final remark, we note that the system (2.27)–(2.30) may be reformulated as
fnþ
1
2 ¼ 1

2
� 2c

� �
fn�1 þ 1

2
þ 2c

� �
fn � iað1� 2cÞun; ð2:38Þ� � � � 1

" #

unþ

1
2 ¼ 1

2
� 2c un�1 þ 1

2
þ 2c un � iað1� 2cÞ fn þ b

2fnþ2 � 3fn þ fn�1

1� 2c
ð2:39Þ



Fig. 8. Geometrical interpretation of reformulated LF–AM3 predictor–corrector step (2.38)–(2.41) with b = � = 0.

Initial data at n � 1 and n are linearly interpolated to n� 1
2
þ 2c (bold dashed arrows) and advanced to nþ 1

2
; using rhs

at n (light gray curved arrow, predictor). The resultant values participate only in the computation of rhs. at nþ 1
2
to

advance prognostic variables from n to n + 1 (dark gray arrow, corrector), and they do not need to be stored from one

time step to the other.
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followed by
fnþ1 ¼ fn � iaunþ
1
2; ð2:40Þ

unþ1 ¼ un � ia ð1� �Þfnþ1
2 þ �

1

2
� c

� �
fnþ1 þ 1

2
þ 2c

� �
fn � cfn�1

� �� 

ð2:41Þ
after which the provisional values fnþ
1
2 and unþ

1
2 are discarded. This algorithm can be interpreted as

a combination of linear interpolation and two LF-like steps (Fig. 8), and in the case of a linear
system it gives the same result as the original version (2.27)–(2.30). The key distinction between
the two is that a temporal interpolation of the complete r.h.s is replaced with an interpolation
of prognostic variables, with subsequent computation of right-hand side terms from the interpo-
lated values; this leads to a slightly different result in the nonlinear case, but consistent within sec-
ond-order accuracy. The practical advantage of the alternative form (2.38)–(2.41) is that it leads
to a more efficient code because it eliminates the need to store time tendencies for the prognostic
variables from one time step to the next.

2.3. Generalized forward–backward algorithm

We first consider an AB2-like two-point extrapolation of r.h.s for (f-equation in combination
with a three-point AM3-like interpolation for pressure gradient term in u-equation
fnþ1 ¼ fn � ia½ð1þ bÞun � bun�1	;
unþ1 ¼ un � ia½ð1� c� �Þfnþ1 þ cfn þ �fn�1	;

ð2:42Þ
where b,c, and � are not specified yet. The corresponding characteristic equation is
k2 � ½2� a2ð1� c� �Þð1þ bÞ	kþ 1� a2ðb� c� 2bc� b�Þ
þ a2ð�þ b�� bcÞk�1 � a2b�k�2 ¼ 0: ð2:43Þ
As it is done previously, (2.22)–(2.24) and the discussion there, we substitute k = eia into (2.43) and
Taylor-expand for small a



8 T

via b.

Fig. 9. (left) Characteristic roots for algorithm (2.42) with b = 0, but respecting both conditions (2.45). In comparison

with the classical FB, Fig. 2, it is third-order accurate and has much smaller phase error. Its stability limit is amax ¼
ffiffiffi
3

p
,

which is only 12% less than that of FB; (right) Same as on the (a), but b = 0.3737076, which satisfies (2.47) in addition to

(2.45). This results in a fourth-order accurate scheme, the only one within this family.
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ðb� c� 2�Þia3 þ 1

12
� b

2
þ c
2
þ bcþ 2b�

� �
a4 þ 1

12
� b

6
þ c
6
þ �

3
� b�

� �
ia5 þ Oða6Þ ¼ 0;

ð2:44Þ

which leads to a set of conditions for coefficients b,c, and �. To ensure that the numerical algo-
rithm is at least second-order accurate, one must respect the relation b = c + 2�, which puts con-
straints of time-placement of r.h.s of the two equations of (2.42): if the r.h.s for f-equation is time
centered at tn þ ð1

2
� dÞDt, then r.h.s for u-equation must be centered at tn þ ð1

2
þ dÞDt with the

same offset d. This property is respected for all algorithms discussed here, including the classical
FB (2.13), which corresponds to b = c = � = 0. To simultaneously cancel out Oða3Þ and Oða4Þ
terms in (2.44), one must set
c ¼ b� 2b2 � 1

6
and � ¼ b2 þ 1

12
; ð2:45Þ
where b can still be arbitrary, giving raise to a monoparametric family of third-order accurate
schemes. 8 Fig. 9, left, shows characteristic roots for the b = 0 algorithm, which is the simplest
of this kind. Despite the similarity with the classical FB (shown in Fig. 2), the new algorithm
has very different properties: its leading-order truncation term is dissipation-dominant, and the
step multiplier is approximated with third-order accuracy. Detailed examination of properties
of algorithms of this family within the range of 0 6 b 6 1/2 reveals that their stability is always
o derive these relationships we first exclude e from a4-term via substitution e = (b � c)/2, and then solve for c
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restricted by one of the computational modes leaving the unit circle in along the negative direction
of real axis. Substituting (2.45) into (2.43), setting k = �1, and solving it for a yields
Fig. 1

via (2
amax ¼
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b

2
þ 6b3

r
;

,
ð2:46Þ
which indicates that the stability range decreases with in crease of b, if one wishes to maintain
third-order accuracy.

To eliminate all three leading terms in (2.44), in addition to (2.45), one must satisfy
1

12
� b
12

� b3 ¼ 0: ð2:47Þ
This has a unique solution b = 0.3737076. Correspondingly, c = �0.0722738 and � = 0.2229907,
which yields a fourth-order accurate algorithm, Fig. 9, right. As expected, it has small phase error,
and in addition to that smaller dissipation relatively to one on the left. Detailed examinations of
the algorithms from this family in the vicinity of b = 0.3737076 reveals that the small dissipation is
achieved by a delicate cancellation of high-order truncation terms, which makes algorithms with b
exceeding this value be asymptotically unstable (cf. b = 1/2, Fig. 10), although the instability is
extremely weak: the maximum amplitude jkj = 1.0015 at a � ± 0.58.

For practical reasons it is advantageous to set b = 1/2, hence to use AB2 time step for f-equa-
tion (2.42), because it naturally combines with the computation of other terms in shallow-water
equations (Coriolis and advection). Although AB2 is still asymptotically unstable for terms
of purely hyperbolic nature, the instability is much weaker than for forward Euler step, or
b < 1/2-steps. To explore this possibility, we fix b = 1/2, and now treat e as a free parameter,
0. Characteristic roots for algorithm (2.42) with b = 1/2, which corresponds to AB2 step for f-equation; c,� are set
.45). This algorithm has very weak asymptotic instability, jkj = 1.0015 at a = ± 0.58.



370 A.F. Shchepetkin, J.C. McWilliams / Ocean Modelling 9 (2005) 347–404
but still respecting the property b�c�2� = 0 to cancel Oða3Þ term in (2.44). Substitution of this
into (2.43) transforms it into
k2 þ 2� a2
3

2
�þ 3

4

� �� �
kþ 1þ a2

1

2
� 7

2
�

� �
� 1

4
� 5

2
�

� �
a2k�1 � 1

2
�a2k�2 ¼ 0; ð2:48Þ
where we are interested in properties of algorithms in the vicinity of � = 1/3. Once again, stability
is limited by one of the computational modes leaving the unit circle along negative real axis. Sub-
stituting k = �1, we find that it occurs at amax ¼ 1=

ffiffiffiffiffi
2�

p
, i.e., it decreases with �. On the other hand,

setting � < 1/3 results in asymptotic instability of the physical modes. Combination of these con-
ditions defines � = 1/3 as yielding the largest possible stability range among all second-order accu-
rate settings with b = 1/2. Overall it is more accurate than the classical FB: Fig. 10 vs. Fig. 2, and
illustrates the principle that the order of accuracy of representing the phase speed and rate of dis-
sipation of the propagating wave (ideally should none) can be made greater than the formal order
accuracy of discretization of individual equations—the third- and the second-orders, respectively,
in this case. However, its largest possible stability limit amax ¼

ffiffiffiffiffiffiffiffi
3=2

p
� 1:2247 is significantly less

than 2 of FB. In addition to that, this algorithm still has a weak asymptotic instability of physical
modes.

The next possibility is to use an AB3- and AM4-like time step for the f- and u-equations
fnþ1 ¼ fn � ia
3

2
þ b

� �
un � 1

2
þ 2b

� �
un�1 þ bun�2

� �
; ð2:49Þ

unþ1 ¼ un � ia dfnþ1 þ ð1� d� c� �Þfn þ cfn�1 þ �fn�2
� 	

:

Obviously it differs from (2.42) by the presence of b- and �-terms associated with the use of prog-
nostic variables at n � 2 step. Setting b = 5/12 corresponds to an AB3 step for f. We will show that
this choice is not optimal for the widest stability range; so for now b is viewed as an adjustable
parameter.

Algorithm (2.49) has the characteristic equation
k2 � 2� a2
3

2
þ b

� �
d

� �
kþ 1� a2 � 3

2
þ 2dþ 3

2
cþ 3

2
�� bð1� 3d� c� �Þ

� �

� a2
1

2
� d
2
� 2c� �

2
þ bð2� 3d� 3c� 2�Þ

� �
k�1 þ a2 bð1� d� 3cÞ � c

2
þ 3

2
�

� �
k�2

þ a2 bðc� 2�Þ � �

2

h i
k�3 þ a2b�k�4 ¼ 0: ð2:50Þ
Similarly to (2.44), we substitute k = eia and expand (2.50) in a Taylor series
� ia3
1

2
� dþ cþ 2�

� �
þ a4

5

6
� b� d� �

� �
þ 1

6
ia5½1� d� 2c� �þ 6bð1� dþ cþ 2�Þ	

þ 1

720
a6 �77þ 60d� 180c� 480�þ 60bð7� 6dþ 18cþ 48�Þ½ 	 þ Oða7Þ ¼ 0: ð2:51Þ
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All terms of orders Oð1Þ; OðiaÞ and Oða2Þ cancel out for any choice of the coefficients b,c,d, and �.
To eliminate Oða3Þ terms in (2.51) we must satisfy
d ¼ 1

2
þ cþ 2�; ð2:52Þ
which in essence centers the r.h.s terms of u-equation (2.49) at n + 1/2. This condition will always
be respected in the subsequent analysis in this section. Substituting (2.52) into (2.51) turns it
into
a4
1

3
� b� c� 3�

� �
þ 1

2
ia5

1

6
þ b� c� �

� �
þ a6 � 47

720
� 1

6
c� 1

2
�þ b

1

3
þ cþ 3�

� �� �
þOða7Þ ¼ 0:

ð2:53Þ
At first we explore the possibility to achieve the highest order of accuracy. To eliminate both
Oða4Þ and Oða5Þ terms in (2.53), we need to satisfy
c ¼ 1

4
� 2� and b ¼ 1

12
� �; ð2:54Þ
which automatically sets d = 3/4 for any �. In principle � can be chosen from the condition of can-
cellation of Oða6Þ terms in (2.53) which, after substitution of (2.54), becomes
�a6
7

120
þ 2

3
�þ �2

� �
þ Oða7Þ ¼ 0: ð2:55Þ
This leads to
� ¼ � 1

3
�

ffiffiffiffiffiffiffiffi
190

p

60
: ð2:56Þ
As expected the resultant algorithm has extremely small phase and amplitude errors (Fig. 11,
where we have chosen the ‘‘+’’ sign in (2.56) since the ‘‘–’’ results in a much smaller stability limit).
But it is not attractive overall because of its modest stability limit of amax � 1 (limited by one of
the computational modes leaving unit circle at k = �1) and it also has asymptotic instability of the
physical modes. Here it should be noted that unlike for the quartic equation (2.43), there is no
general analytical method for finding roots of a fifth- or sixth-order polynomial. However, the
roots of (2.50) corresponding to physical modes are always isolated and can be found using an
iterative Newton method. Once two physical roots are known, the power of the polynomial is re-
duced by two, and the remaining roots are found using conventional Cardano or Ferrari
solutions.

Abandoning the cancellation of Oða6Þ terms while retaining both conditions in (2.54) yields
asymptotically stable algorithms as long as � > �0.03655 (corresponding to amax = 1.187). A fur-
ther increase of � results in an increase of the stability range until it reaches its maximum at
amax = 1.727 when � = 0.083; at this point the computational mode touches the unit circle (Fig.
12). This algorithm formally maintains fourth-order accuracy since it eliminates both Oða4Þ and
Oða5Þ terms in (2.53).



Fig. 11. Characteristic roots for algorithm (2.49) with coefficients selected to achieve the largest possible order of

accuracy. It has asymptotic instability of the physical modes, (reaching jkj = 1.014 at a � 1) and amax = 1.014512 limited

by the computational mode leaving the unit circle at k = �1.

Fig. 12. � = 0.083, while maintaining (2.54) and (2.52). This yields the largest possible stability range amax = 1.727

among the �-family of fourth-order accurate schemes. The computational modes ‘‘touch’’ the unit circle at the place

where they meet at k = �1. It should be pointed out that despite the visual appearance, there are actually four

computational modes here: two of them depart from the origin heading to the positive direction of real access, hence

they are seen as a single line.
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Further relaxing the order of accuracy by abandoning the cancellation of Oða5Þ terms makes two
parameters available for tuning while formally maintaining third-order accuracy. Thus we choose
c ¼ 1

3
� b� 3� ð2:57Þ
and treat b and � as adjustable parameters.
An obvious choice of (� = 0,b = 5/12) results in c = �1/12 and d = 5/12 that can be identified

as the AB3 coefficients for f and AM3 coefficients for u. This has third-order accuracy for each



Fig. 13. Complex roots for generalized AB3–AM3 FB algorithms with different settings of coefficients. Although the

choice with c5 1/12 no longer maintains the third-order accuracy of the AM3 step for the f-equation taken alone, the

phase speed of the wave system can still be approximated with third-order accuracy.
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equation in (2.49) taken separately. Its stability limit is amax = 1.0039, with the instability of the
physical mode occurring first (Fig. 13, top left).

In this procedure we select b first, then for each beta we choose an � to provide desirable prop-
erties of the resultant algorithm. The meaningful range for b is
1

6
6 b 6

5

12
ð2:58Þ
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with b = 0 correspond to AB2 and b = 5/12 to AB3 time steps for the f equation. Because of the
advective properties of the nonlinear free-surface and tracer equations, it is also undesirable to
choose b < 1/6 because of the weak instability of AB2 (Appendix A, Fig. 22). Setting
b = 0.281105 corresponds to the best stability range for the AB2–AB3 family.

A two-parameter optimization for the maximum stability range on the b–� plane results in
b = 0.232 and � = 0.00525, hence amax = 1.939 (Fig. 13, top right). This is only insignificantly
smaller than for the classical FB algorithm (2.13), but the order of accuracy is now raised to third,
and the phase lead of FB is eliminated for small values of a. Still, the new algorithm has the same
drawback as the classical FB: the second half of its stability range (approx. a > p/3) is too inac-
curate (phase error) and does not provide sufficient damping (roots for physical modes touch the
unit circle at a � ±2p/3). A slightly modified choice of (b = 0.21, � = 0.0115) corrects the problem
at the expense of a minor reduction of the stability range, amax = 1.875 while maintaining third
order accuracy (Fig. 13, bottom left).

It may be advantageous to choose b = 0.281105 (the largest possible stability limit among all
AB2–AB3 family algorithms for a single equation; Appendix A) that leads to a simplification
of the algorithm because separate coefficients for the advection terms in the nonlinear free-surface
and tracer equations and for the pressure gradient in the momentum equations can be avoided.
However, it is then no longer possible to maintain (2.57) and achieve a stability range comparable
to 1.8, as in the two previous algorithms. A compromise choice of (b = 0.281105, c = 0.088,
� = 0.013) results in a slightly more dissipative algorithm (Fig. 13, bottom right). In a split-explicit
model the fastest gravity waves are filtered out anyway, so this is the algorithm of choice for the
barotropic mode.
3. Barotropic mode

In this section we address specific aspects of the barotropic mode as part of a coupled baro-
tropic–baroclinic system.
3.1. Barotropic mode for a stratified ocean

In a split-explicit method à la Blumberg and Mellor, 1987, and Killworth et al. (1991), after the
vertical integration of 3D momentum equations is performed, the ShallowWater Equation (SWE)
pressure gradient (computed using the same free surface, f, and a constant reference density, q0) is
added and subtracted to it, resulting in
oU
ot

þ � � � ¼ �gDrxfþ fgDrxfþFg; ð3:1Þ
where g is acceleration of gravity; D = h + f is total depth; U � D�u is depth-integrated velocity
(barotropic mass flux); $xf is a shorthand for of/ox; and
F ¼ � 1

q0

Z f

�h

oP
ox

dz ð3:2Þ
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is the vertically integrated pressure gradient. The latter is a functional of the topography, free-sur-
face gradient, and free surface itself, as well as the vertical distribution of density and its gradient,
9 T

the ro

baroc

2-way

each p
F ¼ F½rxf; f;rxqðzÞ;qðzÞ	: ð3:3Þ

The term in curly brackets in (3.1) is interpreted as barotropic–baroclinic mode coupling. It is kept
‘‘frozen’’ during the barotropic time stepping while the first term on the right-hand side––the
SWE-like term––is evolving in barotropic time.

The disadvantage of this approach is that after the barotropic time stepping is complete and the
new free-surface field is substituted into the full baroclinic pressure gradient, its vertical integral
will no longer be equal to the sum of the SWE-like pressure gradient (computed using new free
surface) and the original coupling term (still based on the old free surface),
�gDrxf
0 þ fgDrxfþF½rxf; f;rxqðzÞ; qðzÞ	g 6¼ F½rxf

0; f0;rxqðzÞ;qðzÞ	: ð3:4Þ

f 0 is the free-surface elevation after the sequence of barotropic time steps corresponding to one
baroclinic time step. This type of discrepancy is usually known as a mode-splitting error.

The usual argument for the use of (3.1) is based on the fact that the difference is usually very
small (since model density q(x,y,z) = q0 + q 0(x,y,z) is always close to q0). However, the primary
concern here is that it affects the stability of the split-explicit model. The error (3.4) is discovered
during the next baroclinic time step, and it plays the role of a disturbance causing the vertically
integrated pressure gradient to be not in equilibrium with the barotropic mass flux. The baro-
tropic time stepping drives the barotropic part toward an equilibrium, but it is disturbed again
due to the redefinition of the vertically integrated baroclinic pressure gradient.

Higdon and Bennett (1996), and later (Higdon and de Szoeke, 1997), analyzed the stability of a
coupled linearized system in an isopycnic vertical coordinate and show that, if nondissipative time
stepping algorithms (LF or FB) are used for both modes, the resultant model is unavoidably
unstable. 9 As a remedy they proposed an alternative definition of the barotropic mode in an iso-
pycnic model that eliminates the mode splitting error, resulting in an effectively uncoupled (in line-
arized system) barotropic mode.

One may replace both gD$xf terms in (3.1) with
oF

oðrxfÞ
rxfþ

oF

of
f; ð3:5Þ
where, for the purpose of partial differentiation, f and $xf are treated as independent variables
and derivatives exist in variational sense. After this replacement, (3.4) becomes
F½rxf; f; . . .	 þ
oF

oðrxfÞ
rxðf0 � fÞ þ oF

of
ðf0 � fÞ � F½rxf

0; f0; . . .	; ð3:6Þ
his is evident from Fig. 3.1 from (Higdon and de Szoeke, 1997), and the associated discussion. In the case where

ots corresponding to the barotropic mode receive a phase increment during one baroclinic time step equal to the

linic roots + an integer times 2p, the barotropic mode is aliased to be in phase with the baroclinic mode. So any

coupling between the modes (i.e., a perturbation due to the mode-splitting error) causes at least one root from

air to go outside the unit circle.
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i.e., the left-hand side formally appears as Taylor-series expansion of the right-hand side. This re-
moves the dominant portion of the splitting error, and it also implies linearization with respect to
the increment in f between baroclinic time steps (but it does not require smallness f/h � 1).

We now show that without significant increase of the computational cost, one can take into ac-
count the nonuniform density field in the barotropic mode, resulting in a more accurate mode
splitting method that is free of the shortcoming mentioned above and is suitable for use in a ter-
rain-following model. Consider a fluid element bounded horizontally by two vertical lines corre-
sponding to the locations of fi and fi + 1 and vertically by the free surface and bottom (Fig. 14,
left). The horizontal component of the pressure-gradient force acting on this element is calculated
by the integration of the pressure along the contour surrounding the fluid element (cf. Lin, 1997)
Fig. 1

profil

nonun
F iþ1
2
¼
Z fi

�hi

P ðxi; zÞdz�
Z fiþ1

�hiþ1

Pðxiþ1; zÞdz�
Z xiþ1

xi

Pðx;�hðxÞÞ � ohðxÞ
ox

� �
dx ¼ I i � I iþ1 � I iþ1

2
;

ð3:7Þ

where we have neglected the effect of atmospheric pressure applied to the slopping surface of the
ocean. In (3.7) P(x,z) is the hydrostatic pressure,
P ðx; zÞ ¼ g
Z fi

z0
qðx; z0Þdz0: ð3:8Þ
Assuming a finite-volume approach to approximate (3.8) and eventually (3.7) at the discrete
level, the barotropic pressure-gradient force at the velocity point iþ 1

2
is a function of the density

in the vertical columns i and i + 1, as well as the free-surface elevations fi,fi+1. Hence,
F iþ1
2
¼ Fðfiþ1; �qiþ1;1; . . . ; �qiþ1;N ; fi; �qi;1; . . . ; �qi;NÞ; ð3:9Þ
4. (left) Fluid element showing placement of different terms in (3.7). (right) Reconstruction of the vertical density

e by parabolic segments (3.16): for each k ¼ 1; 2; . . . ;N ; �qk are density averaged over grid boxes Hk of a vertically

iform grid. The shaded area is the same as the area of the diagonally hatched rectangle.
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where the structure of the functional F depends upon the discretization details of the baroclinic
pressure gradient, typically involving nonlinear interaction of fi 0 and qi0;k fields,
o2F

ofi0o�qi00;k
6¼ 0 ð3:10Þ
where i 0, i
0 0
= i, i + 1 in arbitrary combination and k = 1, . . . ,N. Consequently, one cannot split F

into
F 6¼ F1ðfiþ1; fiÞ þF2ð�qiþ1;1; . . . ; �qiþ1;N ; �qi;1; . . . ; �qi;N Þ; ð3:11Þ
where F2 does not depend on f.
In the mode splitting technique proposed here, we assume that f is changing during the baro-

tropic time stepping while the density values, f�qi;kg, remain frozen and change only during the
baroclinic time step. However, the nonlinear relation (3.9) holds in barotropic time. Of course,
it would be prohibitively inefficient to recompute F in (3.9) at every barotropic step by vertical
integration of the whole 3D pressure gradient. Instead, in each vertical column, once at every bar-
oclinic time step before the barotropic mode calculation begins, we compute a vertically averaged
density
�qðxÞ ¼ 1

D

Z fðxÞ

�hðxÞ
qðx; zÞdz ð3:12Þ
and a vertically averaged dynamical density,
q�ðxÞ ¼ 1
1
2
D2

Z fðxÞ

�hðxÞ

Z fðxÞ

z
qðx; z0Þdz0

� 

dz; ð3:13Þ
where D � D(x) = f(x) + h(x) is the total thickness of the water column. Changing the integration
variable to r = (z � f)/D yields
�qðxÞ ¼
Z 0

�1

qðx; rÞdr; q�ðxÞ ¼ 2

Z 0

�1

Z 0

r
qðx; r0Þdr0

� 

dr;
which implies that �q and q* are actually independent from f as long as density profile q = q(r)
stays the same. Expressed in terms of �q and q*, (3.7) becomes
F iþ1
2
¼ g

q�
i D

2
i

2
� q�

iþ1D
2
iþ1

2
þ
Z xiþ1

xi

�qD
oh
ox

dx
� 


: ð3:14Þ
This is a finite-volume discretization of the pressure-gradient term in the vertically integrated
momentum equation
o

ot
ðDUÞ þ � � � ¼ � 1

q0

g
o

ox
q�D2

2

� �
� �qD

oh
ox

� 

¼ � 1

q0

gD q� of
ox

þ D
2

oq�

ox
þ ðq� � �qÞ oh

ox

� 

:

ð3:15Þ

If q� � �q � q0, the right-hand side of (3.15) reverts back to the familiar SWE pressure-gradient
term of (3.1), but in the general case nonuniformity of �q and q* leads to the appearance of
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two extra terms that are baroclinic in nature. The problem therefore reduces to the search for a
suitable method of calculation of �q and q* from the 3D density field f�qi;kg and an appropriate
discretization of (3.14) and (3.15).

To address the first issue, consider, e.g., a piecewise-parabolic reconstruction of the vertical
density profile from a set of discrete values f�qkjk ¼ 1; . . . ;Ng that is interpreted as a set of
grid-box averages within each vertical vertical grid box Hk

10 (Fig. 14)
10 F

sectio

allow

being
qðz0Þ ¼ �qk þ
qkþ1

2
þ qk�1

2

Hk
z0 þ 6

qkþ1
2
þ qk�1

2

2
� �qk

� �
z0

2

H 2
k

� 1

12

" #
: ð3:16Þ
Here the local vertical coordinate z 0 spans within the grid box Hk, so that � Hk
2
6 z0 6 þ Hk

2
, and

qk�1
2
� qð� Hk

2
Þ are the density values at at the upper and lower grid box interfaces, z ¼ � Hk

2
com-

puted via an appropriate reconstruction algorithm. Regardless of the details of computing qk�1
2
,

(3.16) guarantees that
1

Hk

Z þHk=2

�Hk=2

qðz0Þdz0 � �qk ð3:17Þ
and leads to the discretization of vertically averaged density,
�qi ¼
XN
k¼1

�qi;kH i;k

,XN
k¼1

Hi;k: ð3:18Þ
To compute q* we note from (3.16) and (3.17) that the hydrostatic pressure in (3.7) can be ex-
pressed as a continuous function within each grid box Hk,
P ðz0Þ ¼ Pkþ1
2
þ g

Z Hk=2

z0
qðz00Þdz00

¼ Pkþ1
2
þ gHk �qk

1

2
� z0

Hk

� �
þ
qkþ1

2
� qk�1

2

2

1

4
� z02

H 2
k

� ��
þ2

qkþ1
2
þ qk�1

2

2
� �qk

� �
z0

4Hk
� z03

H 3
k

� �

;

ð3:19Þ

where Pkþ1

2
is the pressure at a depth corresponding to the interface between Hk and Hk+1,
PNþ1
2
¼ 0 and Pk�1

2
¼ g

XN
k0¼k

�qk0 ;Hk0 ; k ¼ 1; . . . ;N : ð3:20Þ
It can be verified from (3.19) that P ð�Hk=2Þ � Pk�1
2
that the pressure distribution and its first

derivative are continuous across the grid box interfaces. (in the finite-volume approach, (3.20)
is understood to be exact rather than a discrete approximation to the hydrostatic equation.)
or simplicity of notation, we dropped the horizontal index i in (3.16) and throughout the following part of this

n. We use index k exclusively for the vertical coordinate while i and j refer to the horizontal coordinates. We will

indices to disappear and reappear. In the particular context where k is the only present, all related operations are

performed within the vertical column independently from other columns.
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Subsequent integration of (3.19) and (3.20) leads to
Ii ¼
Z fi

�hi

P iðzÞdz ¼
XN
k¼1

Z þHi;k=2

�Hi;k=2

P iðz0Þdz0 ¼
XN
k¼1

Hi;kP i;k; ð3:21Þ
where
P i;k ¼ P i;kþ1
2
þ 1

2
gHi;k �qi;k þ

qi;kþ1
2
� qi;k�1

2

6

� �
¼

P i;kþ1
2
þ P i;k�1

2

2
þ gHi;k

qi;kþ1
2
� qi;k�1

2

12
ð3:22Þ
is pressure averaged over Hi,k. This further leads to the definition of vertically averaged dynamical
density as
q�
i ¼

1

1
2

PN
k¼1

Hi;k

� �2
�
XN
k¼1

Hi;k

XN
k0¼kþ1

�qi;k0Hi;k0

 !
þ 1

2
Hi;k �qi;k þ

qi;kþ1
2
� qi;k�1

2

6

� �" #
: ð3:23Þ
Using the identity
XN
k¼1

Hi;k

XN
k0¼kþ1

Hi;k0

 !
þ 1

2
Hi;k

" #
� 1

2

XN
k¼1

Hi;k

 !2

;

one can interpret (3.23) as just a weighted average. Furthermore, since
XN
k¼1

Hi;k � hi þ fi � Di; ð3:24Þ
(3.21) may be expressed as
Ii ¼
1

2
gq�

i D
2
i : ð3:25Þ
This is consistent with (3.13) and (3.14), as expected.
To approximate Iiþ1

2
, we assume that D, �q, and h are linear functions of the horizontal coor-

dinate between points xi and xi+1
Iiþ1
2
¼ g

Z xiþ1

xi

�qi
xiþ1 � x0

Dx
þ �qiþ1

x0 � xi
Dx

� �
� Di

xiþ1 � x0

Dx
þ Diþ1

x0 � xi
Dx

� �
hiþ1 � hi

Dx
dx0

¼ g
ð�qi þ �qiþ1ÞðDi þ Diþ1Þ þ �qiDi þ �qiþ1Diþ1

6
� ðhiþ1 � hiÞ: ð3:26Þ
After some algebra that repeats the transition from the first to the second line of (3.15) for the
discrete formulation, (3.25) and (3.26) yield
F iþ1
2
¼ g

Di þ Diþ1

2
� q

�
i þ q�

iþ1

2
ðfi � fiþ1Þ þ g

D2
i þ D2

iþ1

4
ðq�

i þ q�
iþ1Þ

þ g
Di þ Diþ1

2
� ðq

�
i � �qiÞ þ ðq�

iþ1 � �qiþ1Þ
2

ðhi � hiþ1Þ

þ g
ð�qiþ1 � �qiÞðDiþ1 � DiÞðhiþ1 � hiÞ

12
: ð3:27Þ
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The three terms on the first and second lines are obviously similar to the first, second, and third
terms in the right-most part of (3.15), respectively. The term on the third line in (3.27) is on the
order of OððDxÞ3Þ while all three preceding terms are OðDxÞ, so the former is negligible relative to
the others as Dx ! 0.

In the case of fi = fi+1 = 0, hence Di = hi and Di+1 = hi+1, (3.27) becomes
F ð0Þ
iþ1

2

¼ gðq�
i � �qiÞ

h2i
2
� gðq�

iþ1 � �qiþ1Þ
h2iþ1

2
þ gð�qi � �qiþ1Þ

h2i þ hihiþ1 þ h2iþ1

6
: ð3:28Þ
Unlike the SWE pressure gradient, this does not vanish unless there is a spcial balance between the
densities q�

i ;q
�
iþ1; �qi; �qiþ1 and the unperturbed thicknesses, hi and hi + 1 For example, if density is a

linear function of depth, q = q(z) = �az resulting in
�qi ¼
1

hi

Z 0

�hi

ð�azÞdz ¼ ahi
2

ð3:29Þ

q�
i ¼

2

h2i

Z 0

�hi

Z 0

z
ð�az0Þdz0 ¼ ahi

3
: ð3:30Þ
Then F ð0Þ
iþ1

2

vanishes, as verified by direct substitution of these expressions into (3.28).

We therefore split (3.27) into
F iþ1
2
¼ F ð0Þ

iþ1
2

þ F 0
iþ1

2
; ð3:31Þ
where
F 0
iþ1

2
¼ � 1

2
g ðhi þ hiþ1Þðq�

iþ1fiþ1 � q�
i fiÞ þ q�

iþ1f
2
iþ1 � q�

i f
2
i

�

þðhiþ1 � hiÞ ðq�
iþ1 � �qiþ1Þfiþ1 þ ðq�

i � �qiÞfi þ
1

3
ð�qiþ1 � �qiÞðfiþ1 � fiÞ

� �

ð3:32Þ
contains all the terms of (3.27) with f. The transition from (3.27)–(3.32) has no approximations.
We now summarize several properties of (3.28)–(3.32):
(i) The first line of (3.32) constitute a generalization of SWE pressure-gradient (3.1) with q*

playing role of ‘‘effective’’ density that is somewhat similar to the multiplicative split of (Bleck
and Smith, 1990). In the uniform density case, q�

i ¼ �qi ¼ q�
iþ1 ¼ �qiþ1 ¼ q0, it turns back to
F iþ1
2
¼ �gq0

Di þ Diþ1

2
ðfiþ1 � fiÞ; ð3:33Þ
as expected. The second line in (3.32) correspond to the response in pressure-gradient force to a
perturbation of f in the presence of stratification and topography (n Æb., these terms vanish if either
the density field is uniform, or bottom is flat, or there is no free-surface perturbation). The appear-
ance of this term is a fundamental property of stratified flows over topographic slopes and is re-
lated to the fact that it is no longer possible to split the motion into orthogonal vertical
eigenmodes (including barotropic), even for waves (Munnich, 1993; Maas, 1997a,b). The full anal-
ysis of the consequences of this term is beyond the scope of the present study, but we point out
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that it is a potential source of splitting error of the type analyzed and eliminated in (Higdon and
de Szoeke, 1997).

(ii) For any given set of grid-box-averaged densities, �qi;k, in a vertical column i, the values of �qi

and q�
i do not depend on the free-surface elevation, fi. (1.9) and (1.10) imply that the disturbance

of the free-surface field causes proportional stretching of all Hk,
11 I

compr

an inc
Hi;k ¼ H ð0Þ
i;k � 1þ fi

hi

� �
; ð3:34Þ
within each vertical column (here H ð0Þ
i;k are the grid-box heights corresponding to an unperturbed

free surface).
Consequently, replacement of H ð0Þ

i;k with Hi;k in (3.18) and (3.23) causes both the numerator and
denominator to be multiplied by (1 + fi/hi) and (1 + fi/hi)

2 respectively. This discrete-system prop-
erty is consistent with a similar one for its continuous prototype, (3.12) and (3.13)); ultimately it
guarantees the avoidance of splitting error of the kind in (3.4).

(iii) When the in situ density increases with depth, 11
q�
i 6 �qi: ð3:35Þ
This implies that the effective barotropic pressure gradient (i.e., the contribution due to f) of a
stratified fluid is a systematically less than that for uniform density with the same f.

(iv) If the density field is a function only of depth (i.e., horizontally uniform stratification), the
baroclinic pressure gradient should vanish. However, in order to make F ð0Þ

iþ1
2

¼ 0 in (3.28), there

must be cancellation between its terms that can be achieved only by having a special relation be-
tween q�

i and �qi. Except for a few special choices of the density profile (constant, linear, or quad-
ratic in z), this cancellation is not exact, but rather relies on the numerical accuracy of the
integration method. This is often referred as hydrostatic inconsistency (Haney, 1991). The use
of a high-order integration method does not offer an escape from inconsistency; it just reduces
the error. For example, dropping the term,
gHk

qkþ1
2
� qk�1

2

12
; ð3:36Þ
in (3.22) is equivalent to switching from a parabolic to a trapezoidal rule in integration of the
hydrostatic equation. Because in stable stratification we expect all these terms to be negative, there
is a systematic bias in q�

i caused by this reduction of the order of accuracy.

3.2. Temporal averaging of the barotropic mode

The fluxes Uiþ1
2
;j;k; V i;jþ1

2
;k, and W i;j;kþ1

2
in (1.14)–(1.17) are defined in finite-volume and finite-

time-step senses (i.e., during a time interval Dt, the sum of fluxes across the moving facets of
the grid element DVi;j;k produce a change in the volume of fluid inside that is equivalent to the
difference of DVnþ1

i;j;k � DVn
i;j;k; this in turn is determined by the free-surface equation advanced
n the case of an incompressible fluid, this condition is equivalent to stable stratification. However, once

essibility effects are taken into account, it becomes less restrictive than stable stratification since the latter requires

rease of potential density with depth, rather than just in situ density.
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in time with a different time-step size and time-stepping algorithm). Given the initial conditions
for the free-surface elevation, fn, and the vertically integrated velocity, U

n
, at the time correspond-

ing to the baroclinic time step n, as well as the baroclinic forcing functions (i.e., the vertically inte-
grated right-hand side of the 3D momentum equations), the requirements on the 2D barotropic
submodel are to compute (i) hfin+1 and hUinþ1

at the new baroclinic time step n + 1, properly aver-
aged to filter out and avoid aliasing of barotropic time scales not resolved by the baroclinic time
step, and (ii) barotropic mass flux, hhUiinþ

1
2, integrated over the barotropic time stepping, satisfy-

ing the slow-time, free-surface equation (1.20).
To fulfill task (i), we must choose an appropriate weighting shape function {am} (Fig. 15, top

panel) that satisfies discrete normalization and centroid conditions,
Fig. 1

(botto
time s
XM�

m¼1

am � 1;
XM�

m¼1

am
m
M

� 1; ð3:37Þ
Here M denotes the barotropic–baroclinic mode-splitting ratio; m and n are fast and slow time
indices (n.b., it takes M barotropic steps to advance the barotropic mode for the time interval cor-
responding to one baroclinic step; m = 0 corresponds to the baroclinic step n, while m =M cor-
responds to the step n + 1); M* is the last index at which am 5 0, where M 6M* to ensure
that {am} is time centered at n + 1. Once {am} is specified, we define the slow-time quantities (de-
noted by angle brackets)
hfinþ1
i;j ¼

XM�

m¼1

amf
m
i;j; hUinþ1

iþ1
2
;j ¼

XM�

m¼1

amU
m
iþ1

2
;j; hV inþ1

i;jþ1
2
¼
XM�

m¼1

amV
m
i;jþ1

2
; ð3:38Þ
where fm;U
m
, and V

m
are ‘‘instantaneous’’ barotropic variables. To satisfy the slow-time continu-

ity equation (1.17), we have to construct another set of fast-time- averaged barotropic fluxes,

hhUiinþ
1
2 and hhV iinþ

1
2, which are consistent with the change in sea level between the two consec-

utive slow-time steps,
hfinþ1
i;j ¼ hfini;j � Dt � divhhUiinþ

1
2

i;j ð3:39Þ
5. Structure of the fast-time-averaging filter. (top) Primary weights, {am}, for computing hfin+1 and hUinþ1
; and

m) corresponding secondary weights, {bm}, to compute hhUiinþ
1
2. Small tickmarks symbolize the fast (barotropic)

teps, and large ones labeled by n and n + 1 are the old and new baroclinic steps.
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where
divhhUiinþ
1
2

i;j ¼ 1

DAi;j
hhUiinþ

1
2

iþ1
2
;j
� hhUiinþ

1
2

i�1
2
;j
þ hhV iinþ

1
2

i;jþ1
2

� hhV iinþ
1
2

i;j�1
2

h i
: ð3:40Þ
Assume that the fast-time sea level is advanced by
fmþ1 ¼ fm � Dt
M

� divUmþ1
2; 8m ¼ 1; . . . ;M�; ð3:41Þ
where divU
mþ1

2 is similar to (3.40) except that it is applied to instantaneous barotropic fluxes, U
mþ1

2

iþ1
2
;j

and V
mþ1

2

i;jþ1
2

, that are time-centered between fast steps m and m + 1 as indicated by the half-integer

index, mþ 1
2
. Their relationship to the whole-indexed, barotropic prognostic variables, U

m
, de-

pends on the particular time stepping algorithm (Section 3.3). Successive summation of (3.41) with
consecutive m yields
fm ¼ f0 � Dt
M

Xm�1

m0¼0

divU
m0þ1

2; ð3:42Þ
which after application of the time-averaging procedure (3.38) to the both sides turns into
hfinþ1 �
XM�

m¼1

amf
m ¼ f0 � Dt

M
� div

XM�

m¼1

am
Xm
m0¼1

U
m0�1

2

" #
;

where we have incremented the summation index m 0 by 1 relative to that in (3.42) to keep it within
the range of index definition for {am}, and moved the operation of horizontal divergence outside
of the summation. To simplify the r.h.s, we substitute
U
m0�1

2 �
XM�

m00¼1

dm0m00U
m00�1

2;
where dm0m00 ¼ 1; m0 ¼ m00

0; otherwise

�
is the Kronecker symbol, and rearrange the double summation

above as
XM�

m¼1

am
Xm
m0¼1

U
m0�1

2

" #
¼
XM�

m¼1

Xm
m0¼1

XM�

m00¼1

amdm0m00U
m00�1

2 ¼
XM�

m00¼1

U
m00�1

2
XM�

m¼1

Xm
m0¼1

amdm0m00

" #

¼
XM�

m00¼1

U
m00�1

2 �
Xm00�1

m¼1

am
Xm

m0¼1
dm0m00|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼0; sincem0<m00

þ
XM�

m¼m00
am
Xm

m0¼1
dm0m00|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼1; asm0¼m002R

2
64

3
75

8><
>:

9>=
>;

¼
XM�

m00¼1

U
m00�1

2
XM�

m¼m00
am

 !" #
from which we see that by introducing a new set of weights,
bm0 ¼ 1

M

XM�

0
am; 8m ¼ 1; . . . ;M�: ð3:43Þ
m¼m
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We obtain
hfinþ1 ¼ f0 � Dt � div
XM�

m0¼1

bm0U
m0�1

2; ð3:44Þ
(i.e., as a single weighted sum). The relationship between the two sets of weights is illustrated in Fig.
15.Once {am} is chosen, theother set {bm} is uniquelydeterminedby the thefirst set. Finally,wedefine
hhUiinþ
1
2

iþ1
2
;j
¼
XM�

m¼1

bmU
m�1

2

iþ1
2
;j

hhV iinþ
1
2

i;jþ1
2

¼
XM�

m¼1

bmV
m�1

2

i;jþ1
2

; ð3:45Þ
to satisfy (3.39) as long as the integration of (3.41) starts with f0 � hfin. This implies that at every
baroclinic step, after the barotropic time stepping is complete, the instantaneous values of f and U
are replaced with their fast-time averages in the sense of (3.38). These averaged values are used as
initial conditions for the barotropic mode during the next baroclinic step.

After the completion of time stepping for the barotropic mode, the vertical coordinate system is
updated via (1.10) using hfin+1. The new set of Hnþ1

i;j;k becomes available to complete the 3D time

step. This is followed by computation of unþ1

iþ1
2
;j;k
, vnþ1

i;jþ1
2
;k
and their subsequent vertical integration.

The integrals are subtracted from hUinþ1

iþ1
2
;j and hV inþ1

i;jþ1
2
, and the difference is divided by the depth

corresponding to hfin+1 and the local topography h. The resultant correction term is then distrib-
uted uniformly throughout the vertical column to ensure that vertical integrals of updated unþ1

iþ1
2
;j;k

and vnþ1

i;þ1
2
;k
are exactly the same as hUinþ1

iþ1
2
;j and hV inþ1

i;jþ1
2
. This completes the update of the 3D velocity

field.
The update of the tracer fields begins with interpolation of 3D velocities between time steps n

and n + 1 to compute the mass fluxes Unþ1
2 and V nþ1

2 that are then corrected in the way just de-
scribed to ensure that their vertical integrals are exactly equal to hhUiinþ

1
2 and hhV iinþ

1
2. This guar-

antees that after computation of the vertical velocity W nþ1
2 via (1.19) and substitution of Hn, Hn+1,

Unþ1
2; V nþ1

2, and W nþ1
2 into (1.17), the later condition holds exactly. Tracer fluxes are then com-

puted by an interpolation of the tracer values in space and in time to the placement of the corre-
sponding velocity component that it is multiplied by (Section 4). The resultant time step for the
tracer field is both conservative and constancy preserving.
3.3. Barotropic time stepping

Since the actual time-stepping algorithm for the barotropic mode is more sophisticated than
(3.41), we need to show in more detail how to combine it with the averaging procedure. The bar-
otropic equations are
of
ot

þ divðD�uÞ ¼ 0 ð3:46Þ

o

ot
ðD�uÞ þ Dfk� �u ¼ F ðfÞ þ � � � ; ð3:47Þ
where F(f) is the barotropic pressure-gradient term (3.32). The dots in (3.47) denote slowly var-
ying terms (i.e., baroclinic-mode, nonlinear, and viscous terms), most of which are kept constant
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during the barotropic time stepping within one baroclinic step. Given the barotropic time step
size, Dt* = Dt/M, two nondimensional numbers are
12 T

discre
Dt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh

1

Dx2
þ 1

Dy2

� �s
and fDt�: ð3:48Þ
These are respectively the Courant number for external gravity waves 12 and the ratio of the time
step to an inertial period. For any reasonable choice of parameters, the former is much more
restrictive than that the later (e.g., for a horizontal grid spacing of Dx=Dy = 45km and a charac-
teristic depth h = 5000m, it reaches unity at Dt* = 150s, while fDt* does not exceed 0.01). Their
contrast is even larger for finer spatial resolution. Consequently, the barotropic time step is stiffly
limited by the phase speed of external gravity waves, while other factors—Coriolis and advection
terms—impose no further restriction. In this case the efficiency of time stepping algorithms can be
predicted from a linear theory: amax � 2.4 for the predictor–corrector (2.38)–(2.41), and
amax � 1.8 for the generalized FB (2.49). In practice this translates into permissible Courant num-
bers (cf., (2.7) and (3.48), left) of 1.2 and 0.9, respectively. Since FB requires only one computation
of the right-hand side of each equation per time step, it is 1.5 times more efficient than the pre-
dictor–corrector in the computational cost per unit simulation time.

The practical barotropic time-stepping algorithm is based on generalized FB algorithm (2.49)
and utilizes temporal interpolation of prognostic variables, rather than complete right-hand side
terms (cf., (2.38)–(2.41) and discussion thereafter). It begins with an AB3-extrapolation of free-
surface elevation and barotropic velocities
fmþ
1
2 ¼ 3

2
þ b

� �
fm � 1

2
þ 2b

� �
fm�1 þ bfm�2

�umþ
1
2 ¼ 3

2
þ b

� �
�um � 1

2
þ 2b

� �
�um�1 þ b�um�2
with a subsequent flux computation
U
mþ1

2 ¼ Dmþ1
2�umþ

1
2Dg; V

mþ1
2 ¼ Dmþ1

2�vmþ
1
2Dn;
where Dmþ1
2 ¼ hþ fmþ

1
2. The free surface update,
fmþ1 ¼ fm � Dt�divU
mþ1

2 ð3:49Þ

is followed by an update of the momentum equations,
�umþ1 ¼ 1

Dmþ1
fDm�um þ Dt�½F ðf0Þ � Dmþ1

2fk� �umþ
1
2 þ � � �	g; ð3:50Þ
where F(f 0) uses backward-interpolated free surface,
f0 ¼ dfmþ1 þ ð1� d� c� �Þfm þ cfm�1 þ �fm�2
he left expression in (3.48) is derived assuming a nonrotational (f = 0), constant-depth, shallow-water model

tized on a C-grid and using an FB time step.
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involving the newly computed values fm+1.
13 E

corres
Dm ¼ hþ fm and Dmþ1 ¼ hþ fmþ1:
The spatial discretization of the Coriolis term Dmþ1
2fk� �umþ

1
2 ensures no contribution to the ki-

netic energy integral (Holland and Lin, 1975, see also Arakawa and Lamb, 1977, Eqs. (262), (263)
and (281)–(285)) for the curvilinear-coordinate version: the velocity components, ð�u;�vÞ, are inter-
polated first to the location of f-points on the C-grid, where they multiplied by Coriolis parameter
f (with advective cross-terms due to curvilinear coordinates added in), multiplied by total depth D,
and the products are then interpolated further to the locations of the partner component. In all
computations presented here, we use the parameter values, b = 0.281105, c = 0.088, d = 0.614
and � = 0.013, specified at the end of Section 2. The computation of fast-time averaged barotropic
variables, hfin+1 and hUinþ1

, is done by (3.38) applied to (3.49) and (3.50). hhUiinþ
1
2 is computed by

(3.45) just after U
mþ1

2 becomes available.

3.4. Choice of filter shape

The analytical study in Higdon and de Szoeke (1997), reveals a probable scenario for compu-
tational instability in a split-explicit model where the eigenvalues 13 of the uncoupled baroclinic
and barotropic modes coincide on the complex plane, and the perturbation due to inaccurate
splitting and subsequent coupling moves some of the eigenvalues outside the unit circle. This coin-
cidence is possible when the baroclinic mode gets a phase increment xkDt while the barotropic
mode gets 2pn + xkDt (i.e., aliasing). Temporal filtering of the barotropic variables excludes this
possibility, but, as criticized by (Hallberg, 1997), it also results in additional numerical inaccuracy
and requires an integration of the barotropic mode significantly beyond n + 1 in order to place the
averaged values at n + 1. Although split-explicit models without temporal averaging of the fast
mode are known to exist, their numerical stability is most likely attributable to some kind of im-
plicit dissipation. For example, our time-splitting algorithm becomes equivalent to the method of
averages (Nadiga et al., 1997) if we set {am} to the delta function, am = d(M � m). This method
relies on a Smolarkiewicz advection scheme that is sufficiently dissipative and stable when used
in combination with a forward time step. Our experience with ROMS shows that the model be-
comes weakly unstable with a delta-function weighting. In contrast, (Hallberg, 1997), uses cen-
tered spatial differencing, no time-averaging, and a time-stepping algorithm that provides a
controllable amount of dissipation through its truncation term within second-order accuracy.
Our approach is to construct filters that resolve these issues.

Assuming M
 1, we neglect the truncation error in the barotropic time-stepping for the pre-
sent analysis. Then an unfiltered Fourier component, xk, of the barotropic mode gets a phase
increment a = xkDt in one baroclinic time step Dt. If the same component is subject to the
weighted averaging in (3.38), its step multiplier is
kðaÞ ¼
Z s�

0

e�ia�sAðsÞds; ð3:51Þ
igenvalues are roots of the characteristic polynomial that are also Fourier component phase multipliers

ponding to one time step of the slow (baroclinic) mode.
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where we have replace the discrete summation over m with an integral over s(n.b., A(s) is analo-
gous to am, and s plays the role of m/M). Ideally, k(a) = e�a for small a, and k(a) ! 0 for large a.
A Taylor series expansion for small a is
e�ias ¼ 1� ias� a2s2

2
þ ia3s3

6
þ � � �
leads to
kðaÞ ¼ 1� ia� a2

2
I2 þ

ia3

6
I3 þ

a4

24
I4 þ � � � ; ð3:52Þ
where
In ¼
Z s�

0

snAðsÞds; n ¼ 2; 3 . . . : ð3:53Þ
This takes into account that I0 � I1 � 1 due to the normalization and consistency conditions
(3.37).

An analysis of (3.52) shows that any choice of a positive-definite shape function, A(s), results in
at most a first-order accuracy for the time stepping of the barotropic mode, i.e., k(a) agrees with
e�ia only up to Oða2Þ: using the identity, s2 � (s � 1)2 + 2s � 1, we find that
I2 ¼
Z s�

0

ðs� 1Þ2AðsÞdsþ 2I1 �I0 ¼ 1þ �; ð3:54Þ
where we have used the relation, 2I1 �I0 � 1. Unless A(s) is a delta-function, d(s � 1), the inte-
grand is positive definite, and � > 0. Substitution ofI2 into (3.52) leads to the appearance of � as a
coefficient in the leading-order truncation term at second order. � > 0 corresponds to numerical
dissipation.

If (3.51) can be represented as
kðaÞ ¼ RðaÞe�ia; ð3:55Þ

where the response function RðaÞ is real-valued, the resultant filter is nondispersive (i.e., it has
zero phase error). The simplest way to achieve nondispersion is to choose a shape function sym-
metric about s = 1. Indeed, substitution of s = 1 + n, hence A(s) = A(1 + n) = A(1 � n), into (3.51)
leads to
kðaÞ ¼
Z þDs

�Ds
e�iað1þnÞ Að1þ nÞ þ Að1þ nÞ

2
dn ¼ e�ia ¼

Z þDs

�Ds
Að1þ nÞ � cosðanÞdn ¼ RðaÞe�ia

ð3:56Þ
assuming that A(s) is distinct from 0 only within the interval, 1 � Ds 6 s 6 1 + Ds, with Ds 6 1.
For computational efficiency it is advantageous to use a nonsymmetric shape because it shortens

the extent of integral portion beyond n+1. But we are interested in minimizing dispersion in the
more general, nonsymmetric case. To do so we must construct A(s) in such a way that it results in
RðaÞ ¼ 1� �
a2 þ h

a4 � v
ia5 þ � � � ; ð3:57Þ
2 24 120
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where there are no ia and ia3-terms (their presence would respectively cause the zeroth-order error
in phase speed and the second-order dispersive error). Hence, RðaÞ is allowed to deviate from a
real-valued function only in Oðia5Þ-terms. Multiplication of the above by e�ia and Taylor expan-
sion yields
Fig. 1

weigh

barot

within
RðaÞe�ia ¼ 1� ia� ð1þ �Þ a
2

2
þ ð1þ 3�Þ ia

3

6
þ ð1þ 6�þ hÞ a

4

24
þ � � � : ð3:58Þ
In comparison with (3.52), this implies that
I3 ¼ 3I2 � 2 ð3:59Þ

is the necessary condition to cancel out the Oðia3Þ dispersive term.

Fig. 16 shows k(a) for several filters in common use. Rectangular-shaped filters are character-
ized by the large dissipation for small values of a and relatively slow, oscillatory decay for large a
in comparison with a smooth filter that has rapid decay after a = 2p. As inaccurate as it may ap-
pear, flat averaging over 2Dt (Fig. 16, left top) results in
kðaÞ ¼ sin a
a

e�ia; ð3:60Þ
which has a truncation error comparable to that of a weighted implicit time step,
fnþ1 ¼ fn � ia½bunþ1 þ ð1� bÞun	;
unþ1 ¼ un � ia½bfnþ1 þ ð1� bÞfn	

ð3:61Þ
6. Comparison of differently shaped filters. The left portion of each panel shows the primary and secondary

ts (cf., Fig. 15). The circles on the right portion show the complex roots for the physical mode of the filtered

ropic mode. The solid curve turns to dashed when entering the aliasing range, xDtP p. The roots must be well

the unit circle to prevent numerical instability.
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with
14 A
15 T

r ¼ 0.
kðaÞ ¼ 1� ia� bð1� bÞa2

1þ b2a2
; ð3:62Þ
and b = 2/3. This means that the commonly used Backward Euler (BE) time step (b = 1) is even
less accurate for an implicit free-surface model. In contrast with both of these, the cos-shaped fil-
ter historically used in ROMS, 14
AðsÞ ¼ 1þ cosð2pðs� 1ÞÞ; 1
2
< s < 3

2
;

0; otherwise

�
ð3:63Þ
is characterized by
kðaÞ ¼
sin a

2
� e�ia

a
2
ð1� a2

4p2Þ
¼ e�ia 1� ðp2�6Þ

24p2 ; a ! 0;

Oð1=a3Þ; a ! 1

(

with removable singularities at a = ± 2p. Although it is still only first-order accurate, its leading-
order dissipation, � = (p2 � 6)/(12p2) � 0.0326, is one-and-half orders of magnitude smaller than
for the BE implicit scheme.

To further improve the temporal accuracy of the filtered barotropic mode, we define a shape
function with some of the weights allowed to be negative
AðsÞ ¼ A0

s
s0

� �p

1� s
s0

� �q� �
� r

s
s0

� 

; ð3:64Þ
where p, q are parameters and A0,s0 and r are then chosen to satisfy normalization, consistency,
and second-order accuracy conditions,
In ¼
Z s�

0

snAðsÞds ¼ 1; n ¼ 0; 1; 2 ð3:65Þ
using Newton iterations. s* is the upper limit of s with A(s)P0. In practice we initially set 15
A ¼ 1; r ¼ 0 and s0 ¼
ðp þ 2Þðp þ qþ 2Þ
ðp þ 1Þðp þ qþ 1Þ ;
compute A(s) via (3.64), normalize using (3.37), and adjust r iteratively to satisfy the n=2 condi-
tion of (3.65). The results are shown in Fig. 17, left side.

Alternatively to targeting I2 ¼ 1, one might chose to satisfy (3.59) to minimize numerical dis-
persion. No choice of r eliminates both Oða2Þ and Oðia3Þ truncation terms, but the r-term can re-
duce both of them relative to the r = 0 choice. Allowing negative weights in the left portion of the
filter is also beneficial for computational efficiency because it shortens the required number of bar-
otropic time steps. All filters on the left-hand side of Fig. 17 extend no farther than Dt/4 or Dt/3
beyond the baroclinic time step n + 1. A comparison with time-stepping schemes available for an
‘‘raised’’ version of it, AðsÞ ¼ 1þ 0:85 � cosð2pðs� 1ÞÞ, is known as a Hamming window (Hamming, 1989).

his choice results in a center of gravity for famg at m=M ¼ 1 in the limit M ! 1, where s ¼ m=M in (3.64) with



Fig. 17. Shape functions and corresponding step multipliers k(a) for the filter (3.64) with different choices for p and q

(left side) second-order accurate filters and (right side) optimized for minimal numerical despersion (3.59).
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implicit free-surface model 16 shows that, with a proper choice of A(s), the split-explicit model is
inherently more accurate for time-resolved barotropic motions. The choice of parameters p and q
controls the damping of the unresolved barotropic frequencies that determine the stability and
robustness of the model. A complete quantitative analysis in a manner of (Higdon and de Szoeke,
1997), is beyond the scope of the present study; our practical experience indicates that filtering is
generally required for stability (one cannot set am to a delta-function), but even the least dissipa-
tive filter in Fig. 17 result in a stable model for our applications without any need for explicit vis-
cosity in the barotropic mode.
4. A hybrid predictor–corrector for the baroclinic time step

Because of the mathematical similarity of their equations, time-stepping algorithms for the bar-
oclinic mode are generally similar to the barotropic ones. The differences arise from the necessity
for a conservative, constancy-preserving algorithm for tracers. We will show how this makes it
necessary to update the velocities before the tracers. Similar to (3.48), the allowed time step is lim-
ited mainly by internal gravity waves, but the contrast with the Coriolis restriction is not so dra-
matic. In addition, the advective Courant number is not expected to be very small; e.g., for typical
oceanographic conditions, the phase speed of internal gravity waves may be 2.5m/s, while the
advection speed may be as large as 1m/s. For coarse to moderate horizontal resolution, the baro-
clinic time step may be as large as 2h, which is close to 1/f outside the tropics. Although the gen-
eralized FB algorithm is a clear favorite for the barotropic mode, we find that it more favorable to
chose a predictor–corrector approach for the baroclinic mode.
16 Since the implicit AM3 is only conditionally stable, these are limited to a weighted backward Euler step (cf. (3.61)).
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Most oceanic models use a single-step algorithm for the 3D equations: either LF (MOM and its
derivatives, MICOM, and POM) or AB3 (SPEM/SCRUM family). This choice has two
weaknesses:

(i) Since the temperature and salinity are responsible for the stratification, hence the baroclinic
pressure gradient, and since both momentum and tracer equations are advanced simultane-
ously for one time step, the momentum equations feel feedback from the changed tracer dis-
tribution only during the next step. Within the stiffest part of the system (i.e., propagation of
internal gravity waves), the even-step velocity is coupled predominantly with the odd-step tra-
cer field, and vice versa, while the odd–odd and even–even couplings are much weaker. In
fact, for a linearized system and an LF time step, these two modes are completely independ-
ent. The use of AB3 mitigates this effect, but does not completely eliminate it.

(ii) In a free-surface model the grid-box heights, Hnþ1
i;j;k , are set by the barotropic mode using an

entirely different time-stepping algorithm. As the result, in the case of LF it is difficult to build
a conservative and constancy-preserving advection scheme for tracers, because LF advances
tracer fields from step n�1 to step n + 1 with tracer fluxes computed at time step n, while the
discrete continuity equation (1.17) relates Hnþ1

i;j;k with Hn
i;j;k (instead of Hn�1

i;j;k ), and the associated
mass fluxes are time-centered at nþ 1

2
. In the case of AB3, this problem may be addressed if a

forward extrapolation of the pre-computed right-hand side for the tracer equations is
replaced with an extrapolation of velocity components and a subsequent correction of their
vertical averages, with a multiplication by the extrapolated tracers to compute tracer fluxes.

To make (1.14) and (1.17) consistent with their continuous counterparts with at least second-
order accuracy, the mass fluxes, (Uiþ1

2
;j;k; V i;jþ1

2
;k; W i;j;kþ1

2
), and interfacial tracer values,

(~qiþ1
2
;j;k; ~qi;jþ1

2
;k; qi;j;kþ1

2
), must be time-centered at nþ 1

2
. Hence (1.17) becomes
Hnþ1
i;j;kDAi;j ¼ Hn

i;j;kDAi;j � Dt U
nþ1

2
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2
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2
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2
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i;j;k�1
2

h i
ð4:1Þ
and (1.14) turns into
qnþ1
i;j;k ¼ qni;j;kH

n
i;j;k �

Dt
DAi;j
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i;j;k : ð4:2Þ
Here (4.1) is not to be interpreted as a method for computing Hnþ1
i;j;k but rather as a constraint

imposed on the set of mass fluxes, Unþ1
2; V nþ1

2; W nþ1
2

� �
, satisfied by enforcing that the vertical

integrals of Unþ1
2; V nþ1

2

� �
are equal to hhUiinþ

1
2; hhV iinþ

1
2

� �
defined by (3.45). Once this is satis-

fied, building a tracer advection scheme is just a matter of spatial interpolation of tracer variables
to compute interfacial values and temporal extrapolation/interpolation to nþ 1

2
to achieve at least

second-order accuracy and maintain numerical stability.
The simplest possibility is to extrapolate q forward in time before doing the spatial interpola-

tion using a second- or third-order accurate Adams–Bashforth extrapolation rule for the right-
hand side,
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q
nþ1

2

i;j;k ¼
3

2
þ b

� �
qni;j;k �

1

2
þ 2b

� �
qn�1
i;j;k þ bqn�2

i;j;k : ð4:3Þ
b = 0 yields AB2, and b = 5/12 yields AB3 (Appendix A). This is preceded by a similar AB3-like
update for the velocity field so that velocities at n + 1 participate in interpolation to compute mass
fluxes at nþ 1

2
as in (2.49), except that now f and u switch roles.

As an alternative to using local grid points in the previous time steps, one can chose an UTO-
PIA or COSMIC-like algorithm (Leonard et al., 1996). There is no need for forward extrapolation
in time since only tracer values at time step n are used. This is potentially the most accurate ap-
proach because it uses a more compact stencil, and by its design the dispersive errors of time and
space differencing compensate each other. However, the resultant schemes are unavoidably up-
stream-biased in all three spatial directions. This is undesirable for long-term simulations because
of its vertical hyper-diffusion in the leading order truncation error, and this causes excessive arti-
ficial diapycnal mixing if temporal oscillations are present in the vertical velocity field (as is quite
common in oceanic models). This algorithm is a single-step method, but its operational complex-
ity is similar to a predictor–corrector�s. Since a fully 3D UTOPIA algorithm is impractical, COS-
MIC is the most likely candidate. This algorithm includes computation of multi-dimensional
finite-volume fluxes in each direction via successive 1D, nonconservative, advective updates in
both transverse directions to get provisional tracer fields, after which the 1D QUICKEST algo-
rithm is applied to compute fluxes.

The provisional field, qnþ
1
2, also can be obtained by an advective-form predictor substep, where

abandonment of the conservation principle is acceptable because qnþ
1
2 are used only for the com-

putation of fluxes in (4.2) and thereafter discarded. Conversely, since the set of mass fluxes satis-
fying (4.1) exists only between time steps n and n + 1 (but not between n � 1 and nþ 1

2
), a

conservative predictor substep cannot be made constancy preserving; hence, the resultant predic-
tor–corrector algorithm will not be so either. A centered scheme for spatial derivatives in combi-
nation with an LF time step yields
qnþ1;�
i;j;k ¼ qn�1

i;j;k � 2Dt udnq
n þ vdgq

g þ wdzq
z

h i���n
i;j;k

: ð4:4Þ
The symbols d and overline denote differencing and interpolation in the direction designated by
their sub- and superscripts (in principle, these operators can be higher- than-second order accu-
rate), and u, v, and w are velocity components computed from the interface fluxes Un

iþ1
2
;j;k,

V n
i;jþ1

2
;k and W n

i;j;kþ1
2
. Once qn+1,* becomes available, qnþ

1
2 is computed using a three-point

interpolation
q
nþ1

2
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2
� c

� �
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2
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� �
qni;j;k � cqn�1

i;j;k ; ð4:5Þ
after which a high-order spatial-interpolation scheme (described below) is used to compute the

interfacial flux values, ~q
nþ1

2

iþ1
2
;j;k
; ~q

nþ1
2

i;jþ1
2
;k
, and ~q

nþ1
2
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2

in (4.2). Since qnþ1;� is needed only to compute

qnþ
1
2, the operations (4.4) and (4.5) can be combined into a single step,
q
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1

2
� 2c

� �
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i;j;k � ð1� 2cÞDt ½same as in (4.4)	: ð4:6Þ
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Overall the combination of (4.6) and (4.2) is similar to LF–AM3 (with c = 1/12) or LF–TR
(c = 0) predictor–corrector step (cf. (2.38)–(2.41) and Fig. 8).

Finally, instead of using the advective form of the tracer equation, the predictor step employs a
pseudo-compressible algorithm to achieve constancy preservation. In this approach we compute
two auxiliary grid-box height fields, H�

i;j;k and Hþ
i;j;k, by stepping backward and forward in time,
H�
i;j;k ¼ Hn
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1

2
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� �
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DAi;j
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2
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2
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2
� W n

i;j;k�1
2
	: ð4:7Þ
Then we perform a flux-divergent update of the tracer field, q, using an LF step combined with
three-point interpolation (cf., (2.38)),
q
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After this step H�
i;j;k and Hþ

i;j;k further do not participate in any computation and are discarded.

The construction of (4.7) and (4.8) makes the constancy preservation property clear: if
qn�1 � qn � const, then qnþ

1
2 assumes the same constant value, regardless of the divergence of mass

fluxes Un
iþ1

2
;j;k; V n

i;jþ1
2
;k and W n

i;j;kþ1
2
. However, since H+ and H+ have no relation to the actual grid-

box height field by the barotropic mode (i.e., Hnþ1
i;j;k determined from hfinþ1

i;j via (1.10)), this update

is not conservative. In fact, the use of the artificial divergence equation (4.7) just provides a way of
trading in the conservation property in favor of constancy preservation, following the continuous
identity,
rðquÞ ¼ ðu � rqÞ þ qru ð4:9Þ

and dropping the last term. At the same time, the pseudo-compressible time step is numerically
similar to the conservative update during the corrector substep and therefore is preferable over
the advective form (4.4).

Once the tracer concentration is available at the proper time, either n or nþ 1
2
, it needs to be

interpolated to grid-box interfaces to compute tracer fluxes. Three options are available in
ROMS for doing so. The first is a centered, fourth-order-accurate interpolation (cf., Dietrich
et al., 1997),
~qiþ1
2
;j;k ¼

�qi�1;j;k þ 7qi;j;k þ 7qiþ1;j;k � qiþ2;j;k

12
ð4:10Þ
that can be expressed as a mid-point average enhanced by a curvature term
~qiþ1
2
;j;k ¼

qi;j;k þ qiþ1;j;k

2
�
dqiþ1;j;k � dqi;j;k

6
; ð4:11Þ
where dqi;j;k and dqiþ1;j;k are averaged elementary differences
dqi;j;k ¼
dqi�1

2
;j;k þ dqiþ1

2
;j;k

2
ð4:12Þ
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and dqiþ1
2
;j;k ¼ qiþ1;j;k � qi;j;k. The second option is to replace (4.12) with harmonic averaging (cf.,

Shchepetkin and McWilliams, 2003)
17 I

excep

(cente
dqi;j;k ¼
2dqiþ1

2
;j;kdqi�1

2
;j;k

dqiþ1
2
;j;k þ dqi�1

2
;j;k

ð4:13Þ
as long as dqiþ1
2
;j;k and dqi�1

2
;j;k have the same sign, and dqi;j;k ¼ 0 if their signs are different. In this

case (4.11) has the property that the interpolated value, ~qiþ1
2
;j;k, is bounded by the values at the two

neighboring points, qi,j,k and qi+1,j,k, regardless of the values at the two extreme points of the sten-
cil. Although this measure by itself does not strictly guarantee monotonicity preservation for the
whole advection scheme, because the time stepping is done independently from spatial discretiza-
tion, it tends to reduce spurious oscillations that arise with nonsmooth advected fields. The third
option is an upstream-biased, parabolic interpolation,
~qiþ1
2
;j;k ¼

qi;j;k þ qiþ1;j;k

2
� 1

6
�

q00i;j;k; uiþ1
2
;j;k > 0;

q00iþ1;j;k; uiþ1
2
;j;k < 0;

(

where
q00i;j;k ¼ qiþ1;j;k � 2qi;j;k þ qi�1;j;k:
This results in a dissipatively dominant (i.e., hyper-diffusive) truncation error. The overall per-
formance of the advection scheme is similar to that reported in (Farrow and Stevens, 1995). Ver-
tical interpolation is done using either a centered fourth-order scheme or, preferably, an
interpolation based on conservative parabolic splines as in (3.16) (Fig. 14). Use of an up-
stream-biased scheme in the vertical direction is avoided to diminish artificial diapycnal fluxes.

The time stepping for the momentum equations follows the same approach as above: a noncon-
servative (pseudo-compressible) predictor substep followed by a conservative corrector. Spatial
discretization of the advective and Coriolis terms generally follows the framework of (Lilly,
1965), and (Mesinger and Arakawa, 1976), adapted for curvilinear horizontal grids. 17
5. Time stepping the coupled baroclinic–barotropic system

We now summarize the time-stepping algorithm in ROMS, focusing on the discrete-time inter-
actions between the modes (Fig. 18).

Stage 1: Compute the right-hand side for the 3D momentum equations at time step n (i.e., pres-
sure-gradient, Coriolis, and advective terms only; no viscous terms are computed at this time).
Apply this right-hand side to advance the 3D momenta using an LF step combined with a
half-step, backward interpolation with AM3-like coefficients (the result is time-centered at
nþ 1

2
). Since at this moment no meaningful values of Hn+1 are available and it is impossible to
n essence this is done in POM (Blumberg and Mellor, 1987) and SCRUM (Song and Haidvogel, 1994), with the

tion that mid-point averaging is replaced with high-order interpolations: third- (upstream-biased) or fourth-order

red) schemes are applied in the horizontal directions and fourth-order or parabolic splines in the vertical.



Fig. 18. Barotropic–baroclinic mode data exchange in ROMS: Curved horizontal arrows symbolize the predictor LF

step combined with AM3 half-step-back interpolation of the result (light shading) and corrector substeps (dark

shading). The four ascending arrows denote the 2-way, vertically averaged densities, �q and q*, and the vertically

integrated right-hand side for 3D momentum equations [the last two meet with the two small arrows symbolizing

computation of barotropic mode rhs from barotropic variables; so that asterisks (* *) denote the computation of

baroclinic-to-barotropic forcing terms]. The five large descending arrows symbolize 2-way, fast-time-averaged

barotropic variables for backward coupling. Each arrow originates at the time when the data is logically available,

regardless of the temporal placement of the corresponding variable.
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satisfy exactly the discrete continuity equation, use the artificial continuity equation (i.e., the
pseudo-compressible algorithm). In addition to that, because this predictor step violates CFL
for the barotropic mode and no meaningful barotropic mass fluxes time-centered at nþ 1

2
are

available yet, set the vertical averages for the newly computed fluxes back to hUin.
Stage 2: Advance the tracer variables in a similar manner with a pseudo-compressible LF step
combined with an AM3 interpolation, placing the resultant values at nþ 1

2
. (This algorithm is con-

stancy preserving, but not conservative, which is acceptable because the resultant tracer values at
nþ 1

2
are used only for computation of advective fluxes during the subsequent corrector step. The

same comment applies to the predictor update for the momentum equations at Stage 1).
Stage 3: Compute the right-hand side for the 3D momentum equations (i.e., pressure-gradient,
Coriolis, and advective terms) from the mass fluxes and tracers (via density) at nþ 1

2
and the lat-

eral viscosity terms from the old-step velocities, un. Vertically integrate everything and also com-
pute and store vertically averaged densities, �qi; q�

i , using (3.18)–(3.23) time-centered at nþ 1
2
.

Apply the right-hand side to the 3D momentum variables, but do not finalize the time step since
Hn+1 and hUinþ1

are not available yet.
Stage 4: Compute the right-hand side terms for the barotropic mode from barotropic variables
using (3.32) for the pressure gradient and subtract it from the corresponding vertical integrals
of the 3D right-hand side computed in Stage 3 (i.e., convert them into baroclinic-to-barotropic
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forcing terms). 18 Advance the barotropic variables by M* time steps (slightly beyond the baro-
clinic time step n + 1, depending on the shape of the fast-time filter), performing a 2-way, fast-time
averaging of barotropic variables on the way. (The baroclinic forcing terms are kept constant dur-
ing this procedure, but the barotropic pressure-gradient terms are recomputed by (3.32) with par-
ticipation of �qi and q�

i at every barotropic step). Once this is complete, update the vertical
coordinate system, fzi;j;k; zi;j;kþ1

2
; Hi;j;kgnþ1

, to be consistent with hfin+1.
Stage 5: Finalize the computation of the 3D mass fluxes begun in Stage 3 using the now available
Hn+1, and set the vertical average to hUinþ1

from the barotropic mode.
Stage 6: Interpolate the 3D velocity components back in time to nþ 1

2
using a combination of the

new time-step values (from Stage 5), values from the predictor step (Stage 4), and old-time step
values. (This introduces forward–backward feedback between the momentum and tracer equa-
tions as in (2.38)–(2.41) but with the roles of u and f switched.) Set the vertical average of the
resultant fields to hhUiinþ

1
2. Use the resultant velocity field and tracers at nþ 1

2
to compute the tra-

cer fluxes and advance the tracers to n + 1. (This step is both conservative and constancy
preserving.)
6. Conclusions

We have designed a robust computational kernel for a split-explicit, terrain-following-coordi-
nate oceanic model, ROMS.

We use time-stepping algorithms with forward–backward feedback between the pairs of varia-
bles responsible for gravity wave propagation (surface or internal) that combine an extended
range of stability with the temporal accuracy of the best known algorithms: in effect, generalizing
the FB schemes to higher orders of accuracy. Among these schemes, the Euler step (2.13) can be
viewed as the first member of the family, AB2–AM3 (2.42) as the second, and AB3–AM4 (2.49) as
the third. A similar classification applies to the modified RK2–LF–AM3 family.

Although we use LF–AM3-type predictor–corrector algorithms for the baroclinic mode (gen-
erally three-time-level schemes, motivated by comparative linear stability analysis for wave mo-
tions), it should be noted that the predictor substep is only needed to obtain provisional
variables time-centered at nþ 1

2
for subsequent computation of right-hand side terms subsequently

used in the corrector substep. Mode-splitting occurs during the corrector only, which is always a
two-time-level scheme in our approach. In this respect our method differs from POM (perhaps the
most widely used r-coordinate model) and is more similar to ones advocated by (Nadiga et al.,
1997), and (Higdon, 2002), both of which are RK2-type predictor–corrector algorithms that seem
to be a more natural choice for layered models because of the need for positive-definite advection
with vanishing layer thicknesses.
18 There is no need to compute the F(0)-part of the barotropic pressure gradient defined by (3.28) because it is already

accounted for in the vertical integral of the 3D right-hand side. Since it does not depend on f, it remains constant during

barotropic time stepping. Because of the ‘‘add–subtract’’ procedure for baroclinic-to-barotropic forcing, this term

identically cancels out when the forcing terms are added back to the barotropic right-hand side.
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We redefine the barotropic mode equations to account for the nonuniform density field to re-
duce the mode-splitting error––in essence following the methodology of Higdon and de Szoeke
(1997), but here in the context of terrain-following coordinates. The pressure-gradient force for
the barotropic mode is derived as a vertical integral of 3D pressure-gradient due to fluctuations
in the free-surface elevation, f. This ensures accuracy of the mode splitting even in the presence
of topography. The computationally efficient implementation of this method involves a special
2-way vertical averaging procedure for density field once per baroclinic time step.

We assure simultaneous conservation and constancy preservation properties for tracers in the
evolving coordinate system due to changes in f. This is accomplished by 2-way temporal averag-
ing of the barotropic finite-volume fluxes to ensure that the 3D discrete continuity equation holds
exactly between two subsequent baroclinic steps even as the whole vertical system of coordinates
changes with f.

We incorporate a temporal weighted-averaging of the barotropic mode that allows an accurate
representation of the barotropic motions resolved by the baroclinic time step (e.g., tides and bar-
otropic Rossby waves).

Finally, our treatment of computationally expensive processes that are not critical for numer-
ical stability (e.g., lateral and vertical mixing parameterizations) is placed outside the main predic-
tor–corrector procedure to mitigate their computational cost.

Built around this kernel, ROMS has been applied to several oceanographic studies of basin-
scale and coastal circulation (e.g., Haidvogel et al., 2000; Marchesiello et al., 2003). It has been
verified to allow the time step sizes and mode splitting ratios summarized in Table 1 for these con-
figurations. ROMS allows significant increases of the time step size relative to its terrain-following
prototypes (SCRUM/SPEM and POM), as well as to other z-(MOM, POP) and isopycnic-coor-
dinate (MICOM) models that use simpler time-stepping algorithms (e.g., single step, synchronous,
mostly LF or AB3 for SCRUM). Furthermore, our analysis and practical experience indicate that
this gain is achieved without major increase of computational cost due to the predictor–corrector
algorithm, in part because most of the computationally expensive processes are still computed
only once per time step. Nor do we observe any degradation in the quality of our solutions
due to the increased time-step size close to theoretical limits of stability.
Table 1

Permissible time step sizes and mode splitting ratios for several practical applications of ROMS

Configuration Grid size Resolution

(deg or km)

Time step (s) Mode splitting

ratio

Primary time step

limitation by

Atlantic DAMEE 128 · 128 · 20 0.75� 8640 60 (Gen. FB) Coriolis force

Atlantic DAMEE 256 · 256 · 20 0.375� 5760 92 (Gen. FB) Coriolis/internal

Pacific 384 · 224 · 30 0.5� 7200 78 (Gen. FB) Coriolis force

US West Coast 83 · 168 · 20 15km 2880 50 (LF–TR) Internal waves

US West Coast 126 · 254 · 20 10km 2160 60 (LF–TR) Internal waves

Monterey Bay 93 · 189 · 20 5km 960 60 (LF–TR) Internal waves

‘‘(Gen. FB)’’ and ‘‘(LF–TR)’’ in the Mode Splitting Ratio column indicate the type of time stepping algorithm used for

the barotropic mode.



398 A.F. Shchepetkin, J.C. McWilliams / Ocean Modelling 9 (2005) 347–404
Acknowledgment

This study was supported by grant N00014-02-1-0236 from the Office of Naval Research.
Appendix A. Simple time-stepping algorithms

One of the most commonly used time-stepping algorithms is Leap-Frog (LF) accompanied by
an Asselin filter (Asselin, 1972). For (2.3), it may be written as
qnþ1;� ¼ qn�1 � 2ia � qn;� ðA:1Þ

followed by
qn ¼ �qnþ1;� þ ð1� 2�Þqn;� þ �qn�1; ðA:2Þ

where a � xDt; qn+1,* and qn,* are ‘‘preliminary’’ values of qn+1 and qn and � P 0 is an adjustable
parameter. Substitution of qn+1,* from (A.1) into (A.2) yields
qn;� ¼ qn � 2�qn�1

1� 2�� 2�ia
: ðA:3Þ
Since a similar relationship exists between qn+1,* and qn+1, one can exclude the preliminary var-
iables from (A.1),
qnþ1 � 2�qn

1� 2�� 2�ia
¼ qn�1 � 2ia � qn � 2�qn�1

1� 2�� 2�ia
; ðA:4Þ
and further rewrite it as
qnþ1 ¼ ð1� 2�Þqn�1 þ 2�qn � 2iaðqn � �qn�1Þ ðA:5Þ

(i.e., a single-step version of (A.1) and (A.2)). This leads to a characteristic eigenvalue equation,
k2 þ 2ðia� �Þk� 1þ 2�ð1� iaÞ ¼ 0 ðA:6Þ

with roots (cf., Eq. (12) in Asselin, 1972),
k� ¼ �iaþ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ2 � a2

q
ðA:7Þ
and the stability limit
jamaxð�Þj ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�� �2

p
� 1� �: ðA:8Þ
This approximation is valid for � � 1. A Taylor series analysis of (A.5) leads to a modified
equation
oq
ot

¼ �ixq� �Dtx2q
2� 2�þ �ixDt

þ O ðxDtÞ2
� �

; ðA:9Þ
indicating that the formal accuracy drops to first-order if � > 0 and the leading-order truncation
term is dissipative. An Asselin filter introduces the desired damping of the LF computational
mode at the expense of a reduced stability range, some dissipation of the physical mode, and a



Fig. 19. Complex roots for the LF–Asselin Filter time-stepping algorithm for � = 0, 0.05, 0.1, 0.15, 0.2, and 0.25. The

curves corresponding to � = 0, and 0.2 are highlighted. The presence of � terms in (A.7) moves roots strictly along the

real axis relative to unfiltered LF roots. � does not affect the imaginary part of k±. as long as the expression under

the radical is positive. Because of this feature, an Asselin filter causes an additional phase-lead error to an already

forward-dispersive LF. The lower-left portion shows the dependency of the stability limit amax on � (cf. (A.8)).
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further increase of the phase-lead error of already strongly dispersive LF (Fig. 19). For example,
with a ¼ p

4
and a typical value of � = 0.1, adding an Asselin filter almost doubles the LF phase

error.
The properties of an LF–Asselin filter time step are well known. Durran (1991), provides a

comprehensive review of this and other commonly used time-stepping algorithms for the first-
order hyperbolic problem (2.1). This analysis includes Taylor series expansions for both phase
and amplitude errors. However, it is instructive for the algorithmic decisions presented in this pa-
per to trace the location of the amplification factors on the complex plane since this indicates the
limits for each method, while the usual analysis of truncation error based on Taylor series expan-
sion does not provide this information. The results are shown in Fig. 20. Even a brief glance at
this figure indicates the existence of a variety of algorithms potentially more attractive than the
LF–Asselin filter. It also shows that Runge–Kutta (RK) and predictor–corrector methods are
generally more accurate than single-step methods. They also require more computational effort
because the right-hand side is computed more than once per time step. In fact, these types of algo-
rithms can be viewed as combinations of simple single-stage methods arranged so that the leading-
order truncation errors of subsequent stages cancel each other (cf., Hyman, 1979). In some cases it
may be more efficient and more accurate to use a single-step method with a smaller time step. To
make the comparison fair, we introduce a modified amplification factor that accounts for the
number of right-hand side computations:
k0ðxDtÞ ¼ ðkðr � xDtÞÞ1=r; ðA:10Þ

r is the number of right-hand side computations (e.g., r = 1 for single-step methods; r = 2 for pre-
dictor–corrector methods; r = 3.4 for RK3 and RK4, respectively). k 0 is the composite amplifica-
tion factor per right-hand side computation.



Fig. 20. Amplification factors for simple time-stepping methods plotted on the complex plane relatively to the unit

circle. Bold lines correspond to the physical mode and thin lines to the computational mode(s) if any. Once the stability

limit is exceeded, solid lines turn to dashed for all modes. The legend is as follows: LF—Leap Frog; TR—trapezoidal

rule; AB—Adams–Bashforth; AM—Adams–Moulthon; RK—Runge–Kutta; digits 2, 3, 4 denote the order of accuracy;

mod means modification of Milne, in this context ½AB4�AM4þmod	 ¼ 251
270

½AB4�AM4	 þ 19
270

½AB4	, which is

formally fifth-order accurate; numbers below the label is the stability limit. An asterisk (*) indicates asymptotic

instability; the physical mode of AB4 � AM4 + mod is is weakly unstable, and 0.93627 is the threshold of strong

instability of the computational mode. The number on the right is the efficiency factor (stability limit divided by the

number of computations of the right-hand side). For each method, the roots of the computational mode corresponding

to ‘‘ideal’’ amplification factors of expf� pi
16
; � pi

8
; � 3pi

16
; . . .g are connected by straight lines with their ideal locations.

This line illustrates the numerical error: shifts in azimuthal and radial directions correspond to phase and amplitude

errors, respectively.
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Fig. 21. A fair comparison of time-stepping algorithms: the amplification factor of the physical mode normalized by the

number of computations of the right-hand side. Each curve is shown within the limits of stability for its method.
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The results are shown in Fig. 21. This comparison shows that AB3 and LF–AM3 offer the best
accuracy per computational cost, leaving RK4 and LF–TR behind. RK4 is definitely the most
accurate if xDt < p

16
, but it rapidly departs from the unit circle when xDt > p

8
. AB3 and LF–

AM3 are less dissipative than RK4 and LF–TR in the vicinity of xDt = p/8, with LF–AM3 having
somewhat larger phase-lead errors than AB3. Finally, none of these algorithms is accurate if used
in a computational regime requiring less than 10 right-hand side computations per period of phys-
ical oscillation. LF (not shown here) has a smaller phase error than LF–AM3 if both are used in
the computational regimes close to their limits of stability, but it lacks third-order accuracy,
resulting in a noticeable phase-lead error even for well resolved frequencies. As a rule of thumb,
one may conclude that that xDt � 0.8r sets a ‘‘speed limit’’ per computational cost for virtually all
of the explicit algorithms considered here.

For the advection problem the truncation error of spatial differencing always causes a phase
delay for high wavenumbers; therefore, a partly compensating phase-lead error of the time step-
ping algorithm can be tolerated. In fact, if a second-order spatial discretization is used, there is no
need for the use of an algorithm other than LF since its phase-lead error is always less than the
delay caused by spatial differencing, with compensation occurring only at the limit of stability. In
the case of fourth- or higher-order spatial differencing, as well as for second-order differencing on
a staggered grid (e.g., the shallow-water system on a C-grid), the use of a higher-order algorithm
(i.e., AB3 or LF–AM3) is beneficial because the overall phase error may be dominated by the
time-integration error.

Another method worth consideration is the generalized Adams–Bashforth step
qnþ1 ¼ qn þ ia
3

2
þ b

� �
qn � 1

2
þ 2b

� �
qn�1 þ bqn�2

� 

; ðA:11Þ
where b is an adjustable parameter. The choice b = 0 corresponds to AB2, while b = 5/12 yields a
third-order accurate AB3 that achieves the best possible order of accuracy on the given stencil. In
the case where (b < 1/6, the method has an asymptotic instability of the physical mode (similar to
that of AB2). Setting b = 0.281105 corresponds to the case where the physical and one of the com-
putational modes meet each other (Fig. 22). Below this value the instability of the physical mode



Fig. 22. Amplification factors for b-family of Adams–Bashforth time-stepping algorithms. Highlighted curves

correspond to b = 0.281105 (where the physical and one of the computational modes meet each other at the saddle

point; this choice approximately coincides with the maximum possible stability limit of a = 0.78616) and b = 5/12 (the

usual, third-order AB3 method).
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occurs first (as in the case of LF–AM3), while past it one of the computational modes goes unsta-
ble first (as in the case of AB3). This latter value b yields a stability limit of a = 0.78616 that
approximately coincides with that for the b value corresponding to the largest possible stability
limit.
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