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ABSTRACT

The authors first derive both Coriolis-induced and viscosity-induced stresses for arbitrary water depth and
arbitrary wave direction. Opportunity is taken here to succinctly and rigorously derive the Longuet-Higgins
virtual tangential stress due to wave motion. It is shown that the virtual stress is a projection on the surface
slope of two viscous normal stresses acting on the vertical and horizontal planes. Then a simple Eulerian model
is presented for the steady flow driven by waves and by waves and winds, This simple Eulerian model demonstrates
that the wave forcing can be easily incorporated with other conventional forcing, rather than resorting to a
compficated and lengthy perturbation analysis of the Lagrangian equations of motion. A further focus is given
to the wave-driven flow when the various limits of the wave-driven steady flow are discussed. The wave-driven
steady flow given by the model yields a unified formula between Ursell and Hasselmann’s inviscid but rotational
theory and the Longuet-Higgins viscid but nonrotational theory, and it becomes an Eulerian counterpart of
Madsen’s deep-water solution when the degp-water limit is taken. The model is further expanded for the case
of unsteady wave forcing, yielding a general formula for any type of time variation in the wave field. Two
examples are considered: a suddenly imposed wave field that is then maintained steady and a suddenly imposed
wave field that is then subject to internal and bottom frictional decay. The extension of these results to the case
of random waves is briefly discussed. Finally, an example is presented that suggests the need to add surface
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wave forcing in classical shelf dynamics.

1. Introduction

Stokes (1847) established a theory for wave-in-
duced mean flow, which predicts that for a periodic
surface wave field there is an associated mean flow
in the direction of wave propagation. Since this mean
flow can be responsible for a net material transport
of sediments, oil slicks, etc., the concept, which came
to be known as Stokes drift, has been widely applied
in the real ocean. Not until 1950 did Ursell question
the application of Stokes’ theory, which was origi-
nally derived from a nonrotation frame, to the ro-
tating ocean. He argued, from the point of view of
absolute circulation conservation, that it is impos-
sible for a steady wave field to produce a steady La-
grangian mean (Fig. 1). Pollard (1970) then exam-
ined the wave problem in rotational Lagrangian co-
ordinates showing that each water particle in wave
motion experiences an exactly circular orbit so that
there is no net material transport, confirming Ursell’s
theory.

Hasselmann (1970) retained the Coriolis force in
calculating the wave-induced Reynolds stress tensor
and found that, when the earth’s rotation is taken into
account, the horizontal wave orbital velocity compo-
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nent is no longer in quadrature with its vertical coun-
terpart; therefore 2 mean shear component of the
Reynolds stress tensor arises. The associated body force
exerted by the waves is —f X ug, where fis the Coriolis
vector and uy is the Stokes drift velocity. A steady re-
sponse of a laterally homogeneous ocean to this body
force is an Eulerian current u, equal and opposite to
the Stokes drift, resulting in the zero Lagrangian mean
required by Ursell’s theory. The surprising result is that
a high-frequency surface gravity wave field produces
shear stresses in the water column due to the earth’s
rotation. As will be shown later, for a simple wave train,
the Coriolis-induced wave stress at the surface can be
expressed as pa2gf/2 in deep water where p is the den-
sity of seawater, a is the wave amplitude, o is the wave
frequency, and f is the Coriolis parameter; so if a
=V2m,o=1s", f=10"*s!,and p = 103 kg m™3,
then the stress is 0.1 Pa, which is of the order of a
typical wind stress. For a rough sea, the shear stress
can be much larger.

In a nonrotating frame, Longuet-Higgins (1953,
1960) showed that two thin viscous wave boundary
layers, at the surface and at the bottom, can strongly
influence the mass transport in the interior region, no
matter how small the viscosity. This influence can be
expressed in terms of two boundary conditions: a steady
bottom streaming and a surface virtual tangential stress.
Predictions using the formula for viscous wave mass
transport obtained by Longuet-Higgins yields good
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FiG. 1. Diagram of Ursell’s argument: If there was a steady La-
grangian mean, denoted by Uy, then the area projection, A, of a
circuit would increase unboundedly and so would the number of the
captured planetary vorticity filaments, denoted by Q, which would
lead an infinitely large relative circulation around the circuit ba’d’cb,
which initially coincided with badc, and would result in an infinitely
large velocity along the side d’a’ with finite length.

agreement with wave tank data, while Stokes drift the-
ory does not.

Thus Stokes drift theory is markedly modified by
two different approaches: Ursell’s and Hasselmann’s
inviscid but rotational approach and the Longuet-Hig-
gins viscid but nonrotational approach. In a realistic
ocean, one should therefore consider both rotation and
fluid viscosity in addressing the wave-induced flow
problem. Madsen (1978), followed by Weber
(1983a,b) and Jenkins (1986, 1987a,b), combined the
Coriolis effect and fluid viscosity in wave mass transport
in deep water, and successfully removed the so-called
Longuet-Higgins paradox in deep water. The paradox,
which was raised first by Huang (1970), arises simply
because the virtual tangential stress remains unbal-
anced in a nonrotational deep water for steady flow.
In the models of Madsen (1978) and Weber (1983a,b),
the eddy viscosity was treated to be constant and waves
to be monochromatic. Jenkins (1987a,b; 1989) devel-
oped models for vertical varying eddy viscosity and for
the random wave case. Recently, Weber and Melson
(1993a,b) considered the effects of growing/breaking
waves on the mass transport.

However, no one seems to have extended the work
of Madsen, Weber, and Jenkins to shallow water where
the surface waves may influence the whole water col-
umn. For example, swell of about 20 sec period can
influence the whole water depth of about 200 m (Grant
et al. 1984). During periods of large swell, it seems
unlikely that any dynamic model whose aim is to fore-
cast or hindcast the real flow can neglect the wave stress.
The purpose of this paper, therefore, is to present a
simple Eulerian model to yield the wind- and wave-
driven flow in water of finite depth. Such a model
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should be of value in interpreting the observed flow on
the shelf.

In the wave mass transport problem, the Lagrangian
description is often favored (Unliiata and Mei 1970;
Madsen 1978; Weber 1983a,b; Jenkins 1986, 1987a,b).
The choice of the Lagrangian description brings in an
evident convenience, that is, to turn the fluctuating
free surface into a fixed plane, which is desirable for
those models designed to yield the detailed structure
of the surface boundary layer. However, the choice
makes the equations of motion and the algebra lengthy
and complicated. Given that it is desirable to make a
comparison between the results of a model including
wave forcing and that with only the conventional wind
forcing where Eulerian description is overwhelmingly
used, we have chosen the Eulerian description for our
model. After we get the result from the Eulerian model,
for the purpose of comparison with the previous results
in the Lagrangian description, we can employ a simple
relationship of (1) = {u,) + uy, where (i) is the
Lagrangian mean and (. ) the Eulerian mean and u,
the Stokes drift (e.g., Longuet-Higgins 1969a). For a
general dynamic link between the two descriptions,
reference is made to Andrews and Mcintyre (1978).
Weber (1990) also gave a comparison of the two ap-
proaches for the wave mass transport problem in deep
rotating water.

2. Primary wave motion and secondary wave stress

a. Inviscid primary wave motion in the interior
region and the Coriolis-induced wave stress

Hasselmann (1970) derived the Coriolis-induced
wave stress without resorting to any specific wave so-
lution. His derivation is general, but also makes the
generating mechanism of the stress less evident. In the
following, we provide a finite water wave solution in a
rotating system from which one can see the generating
mechanism of the stress more clearly and can imme-
diately work out the stress formula in terms of the wave
parameters.

For the first-order wave motion, a frictionless model
is a reasonable approximation for the interior region
in a rotating Cartesian frame with angular frequency
of /2,

AR (1)
g—f+ﬁ?=0 (2)
Gre=—22 3)
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subject to
z=—h

z =17,

w=0 at

(3)
(6)

where the x axis is taken to be the direction of wave
propagation, the y axis is parallel with wave crests, and
z is taken to be vertically upward measured from the
mean sea surface (Fig. 2).

Seeking a plane wave solution to the above model,
one finds that

Aao cosh(Mr + Az)

p=0 at

u= e Sinb A cos(kx — at) (7)

b= (%) Aik" ———COShs(i::)\; 22 Ginkx = o1) (8)
W=aam—hs(i?%sin(kx— at) 9)

D= pga EE%F}}M cos(kx — at) — pgz (10)
7 = acos(kx — ot), (11)

in which k is the wavenumber, A = k/V1 — (f/¢)?,
and ¢? = g\ tanh\4. In Weber’s (1990) paper, which
gives a comparison of the Eulerian and the Lagrangian
approaches for the wave drift problem in a rotating
ocean, an Eulerian deep-water wave solution is pre-
sented. The solution shown above is more general, in
which the deep-water solution is included as its limit
when & — oo0. Also, the solution here so far is exact.
No demand has been put on the ratio of ¢/ f. Of course,
substitution of the practical numbers of ¢ and f will
make the ¢2/f2, which appears in the expression of
), to be of order of O(10~#), which is insignificant in
our problem. Therefore, in the following discussion we
will approximate A with k.
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The significance of the rotating frame to the wave
solution is that it introduces a crest parallel wave orbital
velocity component, 9. This component is in phase
with its vertical counterpart, Ww. A net wave-induced
Reynolds stress then arises from averaging over a wave
cycle,

sinh2k(h + z)
4 sinh?(kh) °

where the angle bracket means time average over a
wave period. For those hyperbolic functions in (7)
~ (10), z is defined from z = 0 to z = —h instead of
from z = % to z = —h. This involves an assumption
that the wave solutions can be analytically extended
to the mean sea surface when % < 0, which is a usual
assumption in linear wave theory [e.g., Phillips 1977,
Egs. (3.1.10 ~ 11); Hasselmann 1970, p. 192; Weber
and Melson 1993a, Eq. (20)]. Consequently, the de-
rived stress of (12) is also defined from the mean sea
level z = 0 to the sea bed z = —h.

To estimate the size of this stress, we consider the
deep-water case. In deep water, the above stress be-
comes

—p{BW) = —pa’fo (12)

a2f0’ eZkz
2 .

If we put /= 10"*s™!, p =10 kgm™, ¢ = 1
s anda= V2 m, which correspond only to moderate
waves, then the above stress yields a value of 0.1 Pa at
the surface, which is the size of a typical wind stress.

Since a surface wave decays vertically, as its name
suggests, one can calculate an associated body force by
taking a derivative of (12) with respect to the vertical
coordinate z. The body force is then

_ XBW) _ afo cosh2k(h + z2)
P8z P 5w 4 sinh’(kh)

(W) = p (13)

= _fbusl, (14)

z=-h (or z’=z+h=0)

FIG. 2. Eulerian coordinates for the wave problem in a rotating water with an arbitrary
depth. In getting the solution for &, ¥, W, §, and #, we assume 6 = O for simplicity, and

afterward we relax this assumption.
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where 6, = 1/(2k) and is known as the Stokes depth
(Fig. 2), and u, denotes the Stokes velocity

- oa’k cosh2k(h + z)
~ T T sinh 2 (kh)

In the above we have assumed for simplicity that
the wave propagation direction coincides with positive
x direction. If the wave direction is at an arbitrary angle
¢ with respect to the x axis (Fig. 2), it is not difficult
to work out the body force as

Ug

(15)

_pf X u_y[, ( 16)
or, written in a complex plane,
a*fo cosh2(kh + kz) gio-r12). (17)

8y 4 sinh2(kh)

where k is now the wavenumber in the direction of 6.
Note that a train of shoreward waves produces an
alongshore force.

b. Wave-induced virtual tangential stress on the free
surface

In a nonrotating frame, Longuet-Higgins (1953)
Longuet-Higgins and Stewart (1960) showed that the
two thin wave boundary layers have fundamental ef-
fects on the wave mass transport in the interior region
no matter how small the viscosity. The effects can be
expressed as two boundary conditions just beneath a
thin free surface boundary layer and just above a thin
bottom boundary layer, respectively. [The wave
boundary layers are practically millimeter order thick,
e.g., Russell and Osorio (1958).] Written in an Euler-
ian sense, they are

d
u f;;> = 2uoa’k? cothkh at z=0— B7'~0

(18)
30a%k o 3
(W) = Fsinb o ~ 3 Ual=h) at
z=—h+6"~—h, (19)

where the wave propagation is again in the x direc-
tion. Equation (18) has been termed as wave-induced
virtual tangential stress and (19) bottom streaming (3
= Vo /2v», v is kinematic viscosity and ¢ wave fre-
quency).

Of the two boundary conditions, the one near the
free surface has drawn considerable discussions (e.g.,
Phillips 1977; Longuet-Higgins 1969b; Huang 1970;
Unliiata and Mei 1970; and Weber 1983a) because of
its important role in the transfer of wave energy into
mean flow and yet, while it seems sensible there should
be a stress, the details of the mechanism are far from
obvious. The complexity in the mathematical deriva-
tion given by Longuet-Higgins masks the generating
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mechanism. Phillips (1977) offered an explanation
from the point of view of wave energy dissipation into
the surrounding water. The extension of this energy
approach to the rotating system is presented in the ap-
pendix to this paper. However, using energy to account
for a stress is not really adequate, simply because an
energy is scalar and a stress is a vector. Here, we take
this opportunity to present a succinct and rigorous way
to derive the Longuet-Higgins wave-induced virtual
tangential stress. As is shown below, our derivation
reveals that the virtual stress can be derived by consid-
ering projections on the surface slope of two viscous
normal stress acting on the two axis planes, respectively.
Let

F=z—acos(kx — at); (20)
then the free surface is described by
F=90 (21)

and the outward normal direction at a point O on the
free surface (Fig. 3) is

VF
n=[n,n]= VF

~ [ka sing, | — % (ka)? sinqu} ,

omit O[(ka)3], (22)

where we have used ¢ to denote kx — of. The tangential
direction s at the point O is

s = [n;, —n,]
= [1 —%(ka)z sin%p, —ka sin¢}. (23)
Calculate tangential stress, P, at the point O on the
free surface as follows:
Py=nPys; (i=x,z J=Xx,2z)
~ P.x + ka sing[ P — P,.] — 2(ka)? sin2¢P,.,
omit O[(ka)?]. (24)
On the free surface P, vanishes, thus from (24)
P« + ka sing[ Py, ~ P,;] — 2(ka)? sin2¢P,, = 0.
(25)

The relationship between stress tensor and strain of
motion is

Jd
Po=—p+2u (26)
ax
Ju Jdw
sz = - P
”(az 6x) (27)
0d
P.=-—p+2. ¥ (28)
dz
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Assume that

It

u=¢u +eut+ - (29)

(30)

in which e is a small parameter, and the first-order u,,
w, are high-frequency periodic surface wave motion
and the second and higher orders are much lower-fre-
quency motion. In the problem of wave-driven flow,
it is proper to take

w=ew +ewy + -

€= ka. (31)
Accordingly,

6u1 2 auZ
Py = —p + (ka)2p — + (ka)2u ——+ - - - (32)

ox ax

3
(ka),u(—ﬂ + %) + (ka)u . (33)
d
P,.=—p+ (ka)2u g (ka)u 52+ + -+, (34)
0z oz

where we have dropped off dw,/dx from P, because
of the horizontal scale in which second-order motion
varies is much larger than the water depth in the ocean,
as is commonly assumed. Substitution of (32), (33),
and (34) into (25) yields

(ka )u(%wLa )+ (ka) [2;; smq&(%—awl)
ox ax a4z
+u%]+ coo=0. (35)
az

For the above equation to hold, the coefficients of each
power of (ka) must equal zero; that is,

(a”‘ +%)=o (36)
0z
uy_owy) ] _
[Zpsmd)( o az)-%-u az] 0 (37)
(38)
Averaging (37) yields
(2]l o0
0z ox 174
while averaging (29) yields
(uy = (ka)*{upy + O[(ka)?). (40)

The combination of (39) and (40) then results in

0 . 9 0
© —% = —(ka)2<2u smé(% - -%)> , (41

where terms of O[(ka)>] have been dropped. This
equation reveals the essence of the virtual tangential
stress: It is the projection on the surface slope of two
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viscous normal stresses acting on the two axis planes,
respectively (Fig. 3).

The next question is how to calculate the virtual
tangential stress if we are provided only with the in-
viscid wave solution. This can be done as follows. First
we notice that
du, Jw ou,
ax dz 2 ox (42)

because of incompressibility of the fluid. Second, we
define two components in u, near the free surface, one
is inviscid solution, say #;invis, and one is viscid solution,
say .. Although we do not know the details about
Ujvis, one thing about it is certain: u; = O(k/
B)Uiinvis(8~' = V2v/ 0 is the thickness of the surface
viscous boundary layer) for on the free surface the shear
stress due to the inviscid motion must be balanced by
that due to the viscid motion. Because of the high-
frequency of the first-order motion, the thickness of
the viscous boundary layer is much smaller than the
wave length; that is,

k
=<1
8

Thus, one can calculate the virtual stress by using only
inviscid solution:

du_ow_ 59
ax 0z ox

_ aulinvis _]S .
=2 [1 +0(B)], (44)

substitution of (44) into (41) yields

8<u> = —4u(ka) <smq§ I:Cwns> ,

(43)

n

omit O[(ka)2 g] . (45)

The inviscid solution to the surface gravity wave mo-
tion in a nonrotating shallow water is

g cosh(kh + kz)

invis — k
“ (ka) o coshkh os¢é
= (ka)ulinvis (46)
(e.g., Phillips 1977). Thus, substituting
g cosh(kh + kz)
o= XA 7 47
Ujinvis COShkh OSd) ( )
into (45), we obtain the virtual stress
d
W K9 5 (kaye cothich, (48)

0z

where the dispersion relationship ¢ = gk tanh(kh)
has been used.
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' =
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: 2uﬂi%lka sin ¢

'

1

1

t

1]

l‘.'

I

1

]

' sin @ = kasin ¢
(b) ) cosa = 1 — }(ka)?sin? o

¢ =kx — ot
—Qp%a%“l}casinqi) + 2p§%j%lka sin ¢ + ,ua%z—z“ll =0
y '

(c) fi = acos ¢ &a..

_________ 3 EU = a0 COS @ LT
—r<$<0 0<¢<n

8!5:1 20 851:1 S0 3!5:12 S0 3?’;’1 20
kasing <0 kasing >0

FIG. 3. (a) Normal and tangential directions on the free surface; (b) projections on the slope of two viscous normal
stresses 2uka sinf(du,/dx) and 2u(dw, /8z) acting on x and z planes, respectively; (c) the projections are always
opposite to the tangential direction; when averaged over a wave cycle they contribute a second-order tangential stress,
w(8(c*u,)/z), as is required by zero total tangential stress on the surface. In the figure, ¢ = ka, and we have used
them alternatively.

When the earth’s rotation is taken into account, there o . 1 2 2
will be a wave crest parallel velocity component as is i = | kasing, 0, 1 — 2 (ka)*® sin“¢ (49)
shown in section 2a. Consequently, the tensor P; will
become three-dimensional (i = x, y, z, j = X, ¥, z). and the unit tangential direction is
However, if the wave profile is unchanged along the di-
rection of the crest as is assumed in section 2a (see also

- _ l 2 .2 . .
Fig. 2), the unit normal direction of the free surface is 5 [1 2 (ka)® sin’¢, 0, —ka sm¢] - (50)
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Since both n, and s, are zero, neither P,, nor Fy; can
make a contribution to the tangential stress on the sur-
face, whose formula is

Pnszni])ijsj (i:X,y,Z,j=X,yaZ)- (51)

Thus Eq. (45) remains formally valid. Substituting (7)
into (45) we arrive at the same value for the virtual
stress as is given by (48).

To estimate the size of the virtual tangential stress,
we note that for sea waves the wave amplitude is sta-
tistically related to the frequency by

sa*= f S(o)do
in which S(¢) is a wave energy spectrum. For the deep-

water case, therefore, the virtual stress is the fifth mo-
ment of the energy spectrum,

(52)

Ty = 4—‘;f o°S(c)do, (53)
g Jo

where the deep-water dispersion relationship has
been used. Thus the size of the virtual stress is en-
tirely determined by the choices of 1 and the form
of the spectrum S(o). Longuet-Higgins (1969a,b)
chose p as molecular viscosity and the spectrum
as

S(o) = ag?s 73, (54)

where @ = 1.2 X 1072 and the upper-limit fre-
QUENCY omy, is related with the wind speed, and ob-
tained

Omin < 0 < Opax,

(55)

when o, > oni,. Based on Cox’s (1958) wind
tunnel experiment data, he showed the ratio of
the virtual wave stress to the wind stress decreases
from 13% to 3% as the wind speed increases from
3.18 ms™' to 12.02 ms™'. As pointed out by
Longuet-Higgins, this result assumes laminar
motion; when laminar motion breaks down, the
proportion of the virtual wave stress should be
higher.

Madsen (1978) used the Pierson and Moskowitz
(1964) spectrum and a wind velocity-related eddy
viscosity to estimate the size of the surface velocity
induced by the virtual wave stress in deep water. The
size of the surface flow driven by the virtual stress
he found is again on the same order as that driven
purely by wind.

Txz = 4UAO may

c. Wave stress due to bottom friction

The generation of the bottom streaming (Lon-
guet-Higgins 1953) in a nonrotating frame was ex-
plained by Longuet-Higgins (1958): due to the ex-
istence of the bottom friction, the two wave orbital
velocities, # and W, are slightly in phase, resulting
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in a net-Reynolds stress, <L?W>, this stress in turn
drives the bottom streaming (also see Phillips 1977).
Longuet-Higgins (1958) also showed that the bot-
tom streaming, which was derived under the con-
dition of constant viscosity in 1953, validates in-
dependently of the viscosity structure inside of the
wave bottom friction layer. The bottom frictional
layer is of order O(8") thick, where 8 = Vo/2v. A
more general model that allows the eddy viscosity
varies both with time and the distance from the bot-
tom was proposed by Trowbridge and Madsen
(1984a,b).

The bottom streaming condition with rotation and
viscous effects included has not been addressed pre-
viously, simply because attention has been focused on
the case of infinitely deep water. In a rotating frame,
there will be another bottom friction layer, which is of
order O(4,), 8. = V2v/f . Since ¢ > f, the wave bottom
friction layer is much thinner than the Ekman layer,
the Ekman veering effect within this thin layer will be
insignificant. In other words, we would expect that the
introduction of the Coriolis force would have little effect
on the wave stress within the thin wave boundary.
The following detailed analysis confirms this expecta-
tion.

To examine the bottom wave stress in a rotating
coordinate frame, one needs a solution for the pri-
mary wave motion of the real fluid near the bottom.
To simplify the problem, we follow Longuet-Higgins’
(1953) approach and take a constant viscosity. If
both Coriolis force and vertical frictional force are
retained in the momentum equations, the problem
is still formidable. However, from the inviscid so-
lution, we know that the wave crest parallel velocity
component, ¥, is proportional to f/¢. Hence we can
drop the Coriolis term in the x-momentum equation
since it is of negligible order O(f2/¢2). These sim-
plifications allow us to consider the following equa-
tions first:

ou 19p 3%
— =t
ot p Ox 0z

(56)

and then separately consider the solution for the ©
component,

%

Py (57)

D

—t+fi=

o =
The solution of (56) together with nonslip bottom
conditions and u approaching the inviscid solution in
the interior region is straightforward (Phillips 1977),
yielding
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. coshkz’ (kx — o) — ac
U =ao sinhkh COs o
sinhkz’ | as (k 1
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-8z’
sinhkh

cos(kx — ot + Bz’) (58)

X [e7% cos(kx — ot + Bz’) + e % sin(kx — ot + Bz") — cos(kx — ot) — sin(kx — a1)]. (59)

Knowing #, we can solve for D in (57) to obtain
. [ coshkz’
b= G ae sinhkh

_ﬂz’
sin(kx — ot) — (%)aa sienhkh

1 1 . ,
X [sin(kx —~ot+ Bz') — 2 Bz’ cos(kx — ot + Bz") + 3 Bz’ sin(kx — ot + Bz')|, (60)

where we have used the notation

zi=z+h

o 172
=)

B =

(61)

(62)

and have neglected the terms of order O(k?/8?). From (58) to (60), the wave stresses in the x— and y—

directions are

(ac)?

(ao)? (ac)?

g

(63)

() = (i) Z sinhZich sinh2kz’ — (%) m e %" sinhkz’[2 cosBz’ + Bz’ sinBz’ + Bz’ cosf3z’]

+ (LK) (a0’
(a)(ﬁ)4sinh2kh

The ratio of k to 8 can be expressed as

k_ @ o2 cothkh,
B g

where the dispersion relationship ¢ = gk tanhkh for
the surface wave has been used. Typically, ¢ is of order
1 s7" and the water depth 4 is not so shallow that cothkh
is much larger than 1. Then k/8 mainly depends on
the choice of the viscosity ». Typical values of » for
water ranges from 107° m? s~! for molecular viscosity,
to 1072 m? s~! for turbulent viscosity. Accordingly, k/
B = O(107*) ~ O(1072). Thus, the ratio is a small
number even for the turbulent conditions. Thus, kz’
is always a small number compared with 8z’ even when
z’is away from the boundary layer. Hence

(65)

.. , k .
e % sinhkz' ~ e P 'kz’ = 3 e PBz'.  (66)
Therefore the second term on the right-hand side of
(64) is O[(fk)/(B0o)] like the last term, which is neg-
ligible. As a result, Eq. (64) is reduced to

(owy =L (ao)?

——5;— sinh2kz’,
o 4 sinh2kp S IERE

(67)

[2e7% cosfz" — | — e %' + Bz'e % sinBz’]. (64)

which is the same as the interior stress given by (12).
Equation (63) is the same as that given by Phillips
(1977), and we conclude that the earth’s rotation does
little to change the near-bottom stress distribution
compared to that in a nonrotating system (Longuet-
Higgins 1953, 1958; Phillips 1977).

From the above discussion, we now have a clear
picture of the distribution of wave forcing. On the free
surface, there is a wave-induced virtual tangential stress.
In the interior region, there is a Coriolis-induced wave
stress, whose distribution is concentrated mainly within
a Stokes depth and is directed /2 to the right of the
wave propagation direction. At the bottom there is a
wave stress in the same direction as the wave propa-
gation; it arises from the phase shift of the orbital ve-
locities across the bottom wave boundary layer.

3. Steady flow driven by winds and waves

a. General case

The wave forcing derived above is based on an as-
sumption that the wave direction is along the x axis.
Without difficulty, we can generalize the results to the
case of arbitrary wave direction, 6, relative to the x
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axis. Written in a complex plane, the wave body forcing
in the water column including a thin bottom layer is

A ]_c_‘?f\./ei f 9y oi6=7/2)
8 oz ¢ 0z
where
A= (ac)®> wave stress amplitude in the water col-
umn

e 1 ’ ’

X = T onhh (2Bz'¢ % "sinBz’ + 2e % cosBz’ — 1
e72%")  the vertical profile of wave stress in-

duced by the bottom friction

1 . ,
m sinh2kz

stress induced by Coriolis force,

e
1}

the vertical profile of wave
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Then the model for the steady flow driven by winds
and waves can be written as

subjected to
g=0 z'=0 (69)
v _Tov i Ton o, (70)
9z p P

The solution can be written as the sum of the classical
Ekman flow, gq,, the flow driven by Longuet-Higgins’s
two boundary conditions, g», and the flow driven by
Coriolis-induced wave stress, ¢s:

and k is the wavenumber in the direction of 8. Also q = T 2 ei¥=7/4) EI-M—Q (71)
introduce the following notation: pfoe coshah
g={u)y+i{v) complex velocity 7 S pi0-x/4) sinha(h + z)
T the amplitude of wind stress at 92 =~ 0fS. € coshah
the sea surface
7 = 2uck?a® cothkh the amplitude of virtual tan- 1 coshaz }
gential wave stress *t3 2 ()| 3 coshah + B(Bz )] (72
Y wind direction relative to the x
axis _[a’c e
6 wave direction relative to the x 9= by € F(z), (73)
, axis
oa’k . where we have used both z and z’ for convenience
—h) = ———— Stokes velocity at the bottom. ’
9(=h) = 3 Gonin Y and
F(z) = 1 . cosh.2k(2h +z) . ::osh(az) V2 et-imf Je 6.\ cosh(kh) sinha(h + z)
54 l(_@g) 2 sinh?(kh) 2 sinh?(kh) cosh(ah) 85/ 2 sinh(kh) cosh(ah)
by
(74)
B(Bz') = e — 2(Bz" + 2)e P cosfz’ — 2(Bz’ — 1)e " sinBz’, (75)
2v\!/2
b= |—+ (76)
%) |
1+
a = , (77)
de

and have neglected the terms O(ka?/83).

The first part of ¢,, similar in structure to the wind-
driven Ekman flow g, is the Ekman flow driven by
the virtual tangential wave stress. The second part
of g, is the bottom streaming modified by the earth’s
rotation. As Fig. 4a [ where B(fz’) is not plotted be-
cause it vanishes above the thin bottom wave
boundary layer] shows, the introduction of the
earth rotation restricts the flow in the two Ekman
layers. The bottom Ekman layer flow is driven by
the bottom streaming and the surface Ekman layer

flow is driven by the virtual wave stress. In this case,
the value of Stokes drift velocity at the bottom is
—0.34, so the value of the bottom streaming is —3/»
X 0.34 = —0.51.

There are two vertical scales in g;. One is the Ekman
depth, 8, = V2»/f, imposed mternally by friction and
Coriolis parameter. The other is the Stokes depth, 6
= 1/(2k), which is imposed externally by the surface
wave field (Fig. 4.b). The nature of g; critically depends
on the ratio of 8,/ 8,. When the ratio is infinitely large
(which gives the nonrotating case), g approaches zero.
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FIG. 4. The vertical structures of wave-driven steady flow, scaled by a%c/d,. (a) Flow driven by viscous-induced wave stress. (b) Flow
driven by Coriolis-induced wave stress. (c¢) Flow driven by both Coriolis- and viscous-induced wave stress, with (d) as its 3D sketch. The
parameters are 4 = 50 m, §,/h = 0.23, 6,/ h = 0.65, 8 = =, which is toward minus x direction.

When the ratio approaches zero (which gives the in- The summation of ¢, and g3 provides an unified
viscid case), g5 becomes a return flow—an Eulerian formula encompassing Longuet-Higgins’s viscid but
flow of the same magnitude as the Stokes drift but with nonrotational theory and Ursell and Hasselmann’s in-
the opposite sign. viscid but rotational one,

2 : j0
ale[V2 5 o sinha(/ + z) e’ coshaz .
ws = o + g3 = —= —£ cothkhe'f—/4 - + B Y + - F ,
4 @ a by | 4 Oy cothiene coshah 8 sinh?kh \~ coshah (Bz) | + e ()
(78)
where we have used g,., to denote wave-driven steady flow. In comparison with the wind-driven flow, how large

We shall examine its various limiting cases next. Figure is the wave-driven flow? We notice that 7/(pfd.)
4c shows the vertical structure of flow driven by both Co- = ka?a(k$,) and a’c /8y = 2ka’s. While ka’c is the
riolis- and viscosity-induced wave stresses, and Fig. 4d is amplitude of Stokes drift, with the usual value of about
its 3D sketch [again, B(3z’) is not plotted]. 10 cm s™! (Bye 1967), and k3, is usually of order 1
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(Madsen 1978; Weber 1983b). Therefore the wave-
driven flow is of the order of 10 cm s~!.

b. Some limiting cases for wave-driven flow

Here we focus on the discussion of some of the lim-
iting cases for the steady wave-driven flow, g,..

® When f—> 0 and 4 is finite, then o = 0, §, -> o0,
and

qz*[i(h+2)+§qsz(—h)]e"”- (79)
u 2

F(z)—> 0. (80)

Thus,
qw.vz[I(h+z)+§qsl(—h):|ew, (81)
m 2

which, if added on the Stokes drift, recovers the Lon-
guet-Higgins mass transport theory for a nonrotational
viscid fluid.

Historically, Longuet-Higgins was the first one who
obtained the virtual tangent stress. The algebra involved
is complicated. Doubts were then raised by Huang
(1970). He pointed out that the Longuet-Higgins for-
mula for wave mass transport blows up when a deep-
water limit is taken [as you can see from (81)]. This
is the so-called Longuet-Higgins paradox. Unliiata and
Mei (1970) then reexamined the wave mass transport
problem using a Lagrangian approach. Their result
showed that the Longuet-Higgins result is indeed cor-
rect, given its underlying assumption that a steady state
for the mass transport has been reached. The paradox
arises because in a nonrotating system for deep water,
the virtual surface wave stress remains unbalanced.
Madsen (1978) then introduced the Coriolis force into
the model to balance the virtual wave stress, success-
fully resolving the Longuet-Higgins paradox.

e The limit f— 0 and A = oo is an unfair case.
This is equivalent to demanding that a steady state is
achieved in an infinitely deep water as was originally
demanded by Huang (1970).

e When f# 0 and v = 0, then o = o0, §, > 0,
and

>0 (82)
cosh2k(h + z)
F(2) =~ o Snn (k) (83)
Thus
quws = —q:lew’ (84)

which recovers Ursell’s (1950) and Hasselmann’s
(1970) theory. The theory states that in a rotating in-
viscid ocean the Lagrangian mean flow must vanish.
By adding Stokes drift velocity to the above Eulerian
velocity, we obtain the required zero Lagrangian mean.
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Thus, our model yields a unified formula for the wave-
driven flow in shallow water between viscid but non-
rotational Longuet-Higgins theory and inviscid but ro-
tational Ursell and Hasselmann’s theory.

Equation (84) suggests a mechanism for generation
of the wave-induced return flow. Traditionally the fol-
lowing explanation of the wave-induced return flow is
given: a surface wave field produces a steady Stokes
drift. When the drift hits a physical wall, water piles
up there and a pressure gradient is generated that drives
a return flow in the opposite direction to the wave
propagation to compensate for the Stokes drift (Fig.
5). This mechanism crucially depends on the existence
of the physical wall and it is quite hard to picture it in
a region where the lateral boundary is far away. The
Coriolis-induced wave force offers an alternative
mechanism for generating the compensating return
flow. As is indicated by (84), the Coriolis force-gen-
erated return flow is a depth-dependent mirror image
of the Stokes drift, whereas a pressure force-generated
return flow would be depth independent (Fig. 5b).

Equation (84) then predicts there will be a mean
return flow component in a velocity time series re-
corded by any current meter (fixed in Eulerian space)
where there are surface waves. Any attempt to explain
the observed current dynamically without considering
the surface wave effects may lead to wrong conclusions.
We will discuss a possible example of this later.

e When 4 —> o

1 2kz VE (—ir/4) 59 az
F(Z)_’2+i(6e/«ss,)2[e 2 ¢ \5,)¢
(85)
g —> T VEei(B—vr/&t)eaz (86)
/5.
eZkz_v_Ee(—iﬂ'/‘i) & e
a’s 2 1)
Gws = e 2 =
O 2+ i(ﬁ)
' Oy
T )
+ V2eito-mih ez (87)
ofd.

which, if added on Stokes drift, recovers Madsen’s
(1978) deep-water solution in Lagrangian form.

4. Unsteady flow driven by waves

We now investigate unsteady wave-driven flow. First,
we consider the transient solution to a suddenly im-
posed steady wave forcing, and second, the response
to varying wave forcing.

a. Transient solution for a suddenly imposed steady
wave forcing

Denote g’ as the transient response to a suddenly
imposed steady wave forcing. The total response is then
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FIG. 5. (a) A traditional explanation for wave-induced return flow—a physical wall blocking
the wave-induced Stokes drift is a necessity for generating return flow. (b) Another explanation
for wave-induced return flow—return flow can be generated without lateral boundary, and the
vertical distribution is a mirror image of the Stokes flow for the case of no friction.

the sum of ¢’ and the steady solution g,,, which we
have already obtained as in (78). The transient re-
sponse is governed by

anl o aql
Va_'z'_lfq E—O (88)
g’ =0 z=—h (89)
a ’
v M —0 z=0 (90)
9z
g =—qws t=0 and —h<z<0. (91)

This is an eigenvalue problem in space with

cos(w,z), (92)

2n + 1
wn = T (93)
(n=0,1,2,3,-++) (94)

asits eigenfunctions and eigenvalues, respectively. The
transient solution is found to be

o0
g’ = 3 Cre "V cos(w,z),
n=0

(95)
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where v, is given by

v 1/2
o= w,,(;) (96)
SR o

C, can be determined from the initial condition; that
18,

0
—Gws = Z Cn COS(O),,Z),
n=0

(98)

which gives

0

2
C==31,

and the further computation is not included here.
The total solution, say, g, is then

Gws cos(w,z)dz, (99)

Qe = Gus + 2 Coe™ "V cog(w,z).  (100)
n=0

Figure 6 shows different views of the development of
the flow driven by a steady wave. Panels (a) and (b)
show the development of vertical profiles of u and v.
The profiles start from zero in the interior region, grad-
ually accelerate, oscillate at the inertial frequency and
finally settle down to the steady responses (where the
most dense lines) on a momentum diffusion time scale
of (h/6.)*. The final nonzero value of u at the bottom
is the bottom streaming just above the thin wave bot-
tom boundary layer (which is not plotted there). Panels
(c) and (d) are time series of the surface values of u
and v. Figure Se is the hodograph of u versus v at dif-
ferent depths.
When 4 — 0, (95) and (99) are replaced by

q’=f Clw)e™ ™" cos(wz)dw  (101)
0
in which
2 0
Clw) = ——f Gus cos(wz)dz.  (102)
T J-

The deep-water transient solution may be rewritten as

oo ~z'2/4p
"= —e_'f’f ws(Z2 — 27) dz’, (103)
q 9 ( Varo (
since
f C(w) cos(wz)dw = —g (104)
0
o0 1 172
f e~*™ cos(wz)dw = = (1) e~/ (105)
0 2 \ut
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The total solution for deep water is then

© —z'2/4u
— — ,-ift ’ ’
qw - qws e f (]ws(Z -z ) dZ . 106

—o0 Varvt ( )
When v approaches zero,
—z2/4ut

lim = 6(2), (107)
0 Vdrnut

where 0(z) is the Dirac delta function, and Gws ap-
proaches minus g, as described by (84). Therefore
(106) becomes

gw = [—qy + e ¥g,)e”, (108)

which recovers Hasselmann’s (1970) inertial oscillation
solution in an inviscid deep ocean. Hasselmann pro-
posed the Coriolis-induced wave force as a new gen-
eration mechanism against those of tidal generation
and wind generation for the inertial oscillations often
observed in the open ocean.

b. Solution for unsteady wave forcing

Notice that the wave forcing is related to a?. There-
fore, when the forcing is unsteady, we can multiply the
squared wave amplitude by a time-dependent function,
say {(¢). In a small time step Az’, the forcing increment
is proportional to 9{(1’)/8tAt’; hence the corresponding
water response increment is

a5t

——q.(t —t")Ar".

Py (109)

If the initial response is zero, the summation of all
these small increments amounts to the total water re-
sponse to the time varying forcing,

_ (e
a o Ot

gu(z, t — t")dr’, (110)

where g, is given by (100) [or (106) if the water depth
is infinite].
For a suddenly imposed steady forcing, we have

§(1) = H(1), (111)

where H(¢) is the Heaviside step function with the def-
inition as

1, whenr=0
H(t) = (112)
0, whent<0
and one of its properties is
dH (1)
—= = 6(1), 113
o () (113)

substitution of which into (110) immediately recovers
the response, g, to the suddenly imposed steady
forcing. .
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curves in (a) and (b) are the values of f1/(2n). The velocity is scaled by the strength of Stokes drift, a’o/dy.

For a suddenly imposed wave and afterward sub-
Jjected to decay due to both internal friction and bottom
friction, we have

g-(l) - H( t)e—(4uk2+uﬂk/sinh2kh)l ( i 14)

[this energy dissipation rate can be worked out by sub-
stitution of (58) and (59) into (124) and retaining the
leading terms in interior and bottom regions, respec-
tively (also see Phillips 1977, pp. 52-53), whereby
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a§(2) vBk
Y [5([) (41//{2 +Slnh—2kh)H(l)J

% e—(4uk2+vﬂk/sinh2kh)t_ (115)

The time-varying form of the wave energy given in
(114) validates for wave decay due to a molecular vis-
cosity or due to a constant eddy viscosity. When wave
breaking processes exist, the form of {(¢) is subject to
great uncertainty, and how to seek a proper form is
beyond the scope of this paper. We notice that this
problem has been recently addressed by Weber and
Melson (1993a). The idea there is that although the
form of {(¢) for breaking waves is difficult to obtain,
the wave heights before and after breaking and the time
duration for the breaking process may be known, say,
from experiments. Thus, one can calculate A{(7)/ At
for approximation to d¢(¢)/dt. As we can see from
(110) that it is the time derivative of {(¢) not {(¢) itself
that matters for the time-varying wave-driven flow.

The above analysis is for a monochromatic and uni-
directional wave field. However, since the model in
question is linear, we can sum up the different responses
to the different wave frequencies and directions when
the wave field is random. All we need to do is to replace
a?in (78) by

2S8(o, 8)dade,

where S( o, 0) is the wave energy directional spectrum,
and then integrate (78) over a suitable range of fre-
quencies and directions. The results described by (100),
(106), and (110) will formally remain the same.

5. Comments on the need to include wave stress

In many of the coastal wind-driven circulation ex-
periments the Coriolis term in the alongshore momen-
tum equation is found to be dynamically large but un-
correlated with the other first-order terms (Allen and
Smith 1981; Pettigrew 1981; Lentz and Winant 1986;
Masse 1988; Lee et al. 1989). The data listed in Table
1 is cited from Lentz and Winant to illustrate this im-
balance.

The problem has been attributed to instrumental
noise (Lentz and Winant 1986) and to small-scale
alongshore pressure gradients (Pettigrew 1981) but still
remains a puzzle. The Coriolis-induced wave stress may
offer a partial explanation for the imbalance. Generally,
near the coast there is a shoreward. propagating wave
component. According to (84), there will be an Eu-
lerian return flow in the water column. The recorded
current will certainly include this return flow, while
the external forcing, the surface wave field, responsible
for this flow would not normally be included in these
experiments; hence an apparent imbalance arises. A
wave of 10 sec period and 1.26 m amplitude is sufficient
to Jaccount for the uncorrelated term f {u} = 5 X 107°
m? s~2 in Table 1. This suggests a need for the studies
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TABLE 1. Alongshore momentum imbalance in a coastal
experiment (Lentz and Winant 1986). The notation { } means depth
integration, F means the divergence of the alongshore component of
the horizontal Reynolds stress, and the others should be self-
explanatory.

Terms Magnitude (10™° m? s7%)
{v}, 5
{uv},, {v?}, 1
S{u} © S5
gHy, 5
" g dp ]

=~ —dz 1
{ 2 po Oy
TS'
—_ 5
Po
N
— 5
Po
{F} 0.2

of shelf dynamics to include wave forcing, whlch has
usually been neglected.

The wave forcing has an interesting dependence on
bottom topography. This is reflected in two aspects.
One is that the function sinhk# (or the like) explicitly
appears in the wave forcing. Another is the wave shoal-
ing and refraction processes that a train of waves will
experience, since the wave phase velocity and group
velocity are a function of water depth. Both of the pro-
cesses will result in a change in wave height. The wave
heights directly affect the size of wave forcing as can
be seen above. The refraction process also will result
in a tendency for the wave front to become parallel
with the depth contours. Therefore, taking a circular
bump on an otherwise flat bottom as an example, when
a train of waves passes the. bump, there will be con-
centration of wave forcing above the bump, and more-
over, even if the bump is symmetrical in its geometry,
the concentration of the wave forcing will generally be
asymmetrical because the waves usually propagate
through the bump from one side to the other. In con-
trast, the wind forcing is totally independent of the sea
bottom topography. Further exploration of this unique
feature of wave forcing may be interesting.

6. Summary and discussion

Wave forcing has been examined for a rotating vis-
cous fluid of finite depth. A simple Eulerian model is
presented to accommodate the wave forcing in addition
to wind forcing. The model yields a general formula
for the wind- and wave-driven flow for both steady and
unsteady forcing, for arbitrary water depth and arbi-
trary wave direction. The solution for wave-driven
steady flow recovers the Longuet-Higgins (1953) wave
mass transport theory in the limit f— 0, and recovers
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Ursell’s (1950) and Hasselmann’s (1970) zero mean
theory when the limit v — 0 is taken; in the deep-water
limit, it becomes the Eulerian counterpart of the Mad-
sen Lagrangian solution in deep water.

The effect of surface waves on the mean flow is two-
fold. One is a wave-induced body force distributed
mainly within a Stokes depth from the surface. It arises
from rotation. The second one is the wave-induced
virtual shear stress at the sea surface and wave-induced
streaming at the bottom, due to the fluid viscosity. By
adopting an Eulerian viewpoint, we can easily incor-
porate these two wave effects into classical fluid prob-
lem as demonstrated by the present discussion. In the
course of validating the Longuet-Higgins virtual tan-
gent stress in a rotating system, we found a succinct
way to rigorously rederive the stress and thereby re-
vealed its essence. The virtual tangent stress is the pro-
jection on the surface slope of the two viscous normal
stresses acting on x and z planes, respectively.

The size of the wave-driven flow is typically com-
parable with that driven by winds. When the sea be-
comes very rough, the wave-driven flow can be very
significant. With inclusion of the wave stress, some
problems confronting us such as alongshore momen-
tum imbalance found in many coastal experiments of
wind-driven circulation may be resolved.

The solutions obtained here are local solutions in
the same sense that the Ekman transport due to the
wind is a local result. In deeper water, the inviscid so-
lution in which the Stokes drift is exactly balanced by
an upwave Eulerian current (Fig. 5b) provides a rea-
sonable first approximation for the solution including
viscosity. However, the inclusion of the viscous terms
leads to a net transport in both downwave and along-
crest direction. In infinitely deep water the fluxes (only
in alongcrest direction) are small compared to typical
Ekman transports (Weber and Melson 1993b). How-
ever, in finite depth the transports associated with the
bottom boundary layer become increasingly important
(Fig. 4), giving significant depth-integrated flows in
the wave direction and to the right of the wave direction
(in the Northern Hemisphere). A full regional solution
then needs a mass balance condition imposed by the
appropriate boundary conditions. There is the possi-
bility of strong local flows associated, for example, with
large swell propagating over complex shallow topog-
raphy, analogous to the rip currents in nearshore cir-
culation patterns.
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APPENDIX

Wave Energy Dissipation and Virtual Tangential
Stress in the Rotating System

We follow Phillips’s wave energy dissipation ap-
proach to examine the Longuet-Higgins virtual tan-
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gential stress in a rotating system. Since we are partic-
ularly concerned with the viscous effects near the
boundary, let us introduce a vertical shear stress, 97,/
dz, into the x-momentum equation as

_g 9 10

. 116
dx p 0z ( )

.
o /0T

Integrating the above equation from z = 0 to z = 7,
and then phase averaging, we obtain

Kai) _ o » 1
<;4tn> — @) _f<”’7>=*;<1xz> at z=0,
(117)

where we have used

" 34 )
(5= (%),

ot ot

=&§f2—<dﬁ> z=0; (118)

0<J:fﬁdz> ~f(07)y z=0; (119)

e there is no horizontal variation' in wave ampli-
tude, so that (1 gd3%/dx) = 0;
e 7., = 0 at the real surface.

According to (7)-(11), # and W are in quadrature
and so are D and 7. Thus (117) is reduced to

o i

1
Py _;<sz>. (120)

From (7) to (11), one can calculate the total wave
energy per area below the plane z = 0, denoted as F,
to be

E = (2k)'pa®s? cothkh, (121)

where the high-order terms of O(f?2/¢?) have been
neglected. From (7) to (11), one can also verify that

k

p{iti)|io =~ E, (122)
whereby
adn k OE
==—. 1
P o ot (123)

z=0

! This assumption is made to simplify the discussion. The classical
wave radiation stress (Longuet-Higgins and Stewart 1960) will take
care of the term {§ g872/dx), if there is horizontal inhomogeneity
in the wave amplitude.
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For the plane wave in question the energy dissipation
rate per unit area is given by

oL
(5] {65
((G)) (G ). 20

from which we can see that the energy dissipation rate
associated with the strain in v will be of order of £2/
a?; hence we can omit it in the calculation. Substituting

(7) to (9) into the above expression, we have

E
%t— = —2ua’s’k cothkh. (125)
Thus from (117)
_ . &an) _ _k9E
Tz P o Ot
= 2uok?a® cothkh. (126)

A second-order motion then is set up on z = 0 to bal-
ance this shear stress; that is,

u Q%LZ—Q = 2uck?a?® cothkh. (127)
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