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Atmospheric Diffusion shown on a Distance-Neighbour G'raph.

By Lewis F. RicEARDSON.
(Communicated by Sir Gilbert Walker, F.R.8.—Received November 7, 1925.)

§ 1. Tae NEED ror A NEw MEeTHOD.
§ 1.1. Introduction.

If the diffusivity K of a substance whose mass per volume of atmosphere is
% be defined by an equation of Fick’s type

_a)( dy. a,( dy _Q_ dy d ax\ 0 [ Ox
3 gy TP Lrgh= (K ax>*“ay< 3/ Z(EE

%, ¥, 2, t being Cartesian co-ordinates and time, %, %, % being the components of
mean, velocity, then the measured values* of K have been found to be 0-2
em.? sec.™® in capillary tubes (Kaye and Laby’s Tables), 10° cm.? sec.~* when
gusts are smoothed out of the mean wind (Akerblom, G. I. Taylor, Hesselberg,
etc.), 10® em.? sec.”® when the means extend over a time comparable with
4 hours (L. F. Richardson and D. Proctor), 10" cm.? sec.™® when the mean wind
is taken to be the general circulation characteristic of the latitude (Defant).
Thus the so-called constant K varies in a ratio of 2 to a billion.  The present
paper records an attempt to comprehend all this range of diffusivity in one
coherent scheme.

Lest the method which I shall adopt should strike the reader as queer and
roundabout, I wish to justify it by showing first why some known methods
are in difficulties.

§ 1.2. Does the Wind possess a Velocity ?

This question, at first sight foolish, improves on acquaintance. A velocity
is defined, for example, in Lamb’s ¢ Dynamics > to this effect : Let Az be the
distance in the & direction passed over in a time A¢, then the 2z-component of
velocity is the limit of Az/Atas At-0. But foran air particle it is not obvious
that Az/At attains a limit as A¢->0.

We may really have to describe the position z of an air particle by something
rather like Weierstrass’s function, of which F. Klein gives an entertaining
description (* Anwendung der Differential und Integralrechnung auf Geometrie,’
Leipzig, B. G. Teubner, 1902), say,

z = kt + 2 ()" cos (5™t),
3

* Tor references to publications, see the table in §5.2,
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where % is independent of ¢ and » is a positive integer. This gives a definite
position » to the air particle, because the series of co-efficients § -1 4 3 -
45 - . .. converges, and makes x a continuous function of #; but it gives no
limit to Awz/Al, because, as the series proceeds, the elementary waves, while
becoming shorter, become also steeper. It is not suggested that these particular
periods and amplitudes, which Klein chose for illustration, have anything to
do with the wind.

A general and beautiful theory of “ Diffusion by Continuous Movements ~’
has been given by G. I. Taylor.* It is expressed in terms of velocity.

Although this theory of Taylor’s is available, yet I think it will be a useful
adventure to try now to make a theory of diffusion without assuming that
Az/At has a limit.

§1.3. The Lagrangian Specification adopted.  Notation for Means. T'ime
Rate of a Mean.

In view of the foregoing considerations, let us not think of velocity, but only
of various hyphenated velocities, such as the one-minute-velocity, or the six-
hours-velocity, the words attached by the hyphen indicating the value of At

The position of a particle is, however, a continuous function of time. The
Lagrangian specification of fluid motion is applicable. A particle at the
point (a, b, ¢) at time zero, is at (z, y, 2) at time ¢.

Following Taylor, a square bracket [ ] will be used to denote a mean value,
so that [A] is the mean of any quantity A. The portion of space-time over
which the mean is taken will be specified as occasion arises.

Kven if (z — a) has no derivative with respect to ¢, yet [(# — a)] may have
guch a derivative. For instance, this happens with the Weierstrassian function
mentioned above, if the mean is taken over a time. Let us assume that
[(# — @)] has a derivative when taken over either a space or a time ; for there
is no evidence to the contrary.

§ 1.4. A Search for Natural Mean Values.

At first sight a good way of specifying diffusion would be to take the dis-
‘placements & — @, ¥ — b, z — ¢ of an air particle, and to form means of their
powers and products such as [z — o, [(z — a)?], [(z — @) (y — ©)], and the like.

But observation shows that the numerical values would depend entirely
upon how large a volume was included in the mean. To see this, imagine that

* ¢ Proc, Lond. Math, Soc.,” Ser. 2, vol 20, Part 3 (1920).
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we could introduce just two molecules of acetylene and trace their wanderings.
If initially they are 107" cm. apart it seems likely, judging by what is known
about molecular diffusion and by what one sees of the motion of smoke, that
after travelling for one second they would still be within 10 cm. of one another.
If, however, the two molecules are initially 107 cm. apart they may be caught
in two gusts moving in rather different azimuths, so that after one second their
separation may have altered by several metres.

Thus it appears that if y is a co-ordinate directed horizontally at right angles
to the mean-wind so that [(y — b)] = 0, then the value obtained after a fixed
time for [(y — b)?] would increase with the range of distance normal to the wind
over which the mean was taken.

Is there any type of mean that forms a natural standard ? We might try—

(i) A mean over a volume so large that its exact size did not matter, a limit
to [(y — b)*] being attained. This will not do, because Defant’s researches show
that no limit is attained within the volume of the atmosphere.

(i) A mean taken over a definite set of molecules. Suppose that we were to
let loose a sphere 0-01 cm. in diameter of acetylene, which has much the same
density as air. The sphere contains about 10'® molecules. For the first few
hundredths of a second its rate of diffusion will be the molecular one K = 0-2 ;
then micro-turbulence will spread it less slowly ; then, after a few seconds, part
may get caught in one of the gusts such as are shown by a pressure-tube
anemometer, while another part may remain in a lull, so that it is torn asunder
and gusts scatter it, K being 10%. Next squalls of several minutes’ duration
separate it more rapidly. Its rate of diffusion is now measured by K = 108
Then one part gets into a cyclone and another remains behind in an anti-
cyclone, and its rate of diffusion is measured by Defant’s value K = 104,
Finally, it is fairly uniformly spread throughout the earth’s atmosphere at the
rate of about one molecule of acetylene for every cube of surface air 70 metres
in the edge.

This diffusing dot is in a sense a natural standard. 1In the theory of the
diffusion of heat (see, for example, B. W. Hobson,* Encyk. Math. Wiss.,” vol. 4,
p- 187) something rather like this is found to be useful. A small dot of heat is
imagined to spread out as time proceeds into an unbounded medium. This
distribution of heat in space-time is taken as an element, like the point-charge in
electrostatics, from which more complicated distributions can be built up.
Can we do likewise for diffusion in the atmosphere ¢ Imagine at an instant a
gradient of concentration of acetylene in the atmosphere over an area measuring
100 km. x 100 km. T.et each cube of 10-2 cm. edge begin separately to spread

VOL. CX.—A. 3¢
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out in the manner described above, and let us superpose the separate spreadings
in the hope of finding the flux of mass down the gradient of concentration.
To do this we would naturally consider the change in a short time Af of, say,
1/100 second. But in this short time each dot spreads with molecular diffusi-
vity 0-2 cm.? sec,”. 8o any results deduced from the superposition of the
effects of the dots will correspond to molecular diffusivity and will ignore the
effects of eddies. This picture is false to Nature. So we must conclude that
in the atmosphere & spreading dot will not serve as an element from which general

distributions can be built wp.

§2. A Tyee or MEAN WHICH AVOIDS THE FOREGOING DIFFICULTIES AND
WHICH MIGHT WITH ADVANTAGE BE OBSERVED.

The fundamental idea of this paper is that the rate of diffusion increases with
the distance apart. To state this carefully let us revert to the two molecules of
acetylene, let loose at ¢==0 at the points (ay, by, ¢;), (@, by Cy). Ab time ¢
let their positions be (2, 91, 27), (%, ¥a, 25). The z component of their separation
is initially, @y — @, and becomes z, — @, at time #. Now let the release of a
pair of particles at the same points be repeated many times in succession, and
let [ ] denote a mean taken over these successive pairs. Consider the
mean square of the deviation of (z, — z,) from its mean at time ¢, that is,

[(zy — @5 — [@y — 2,])*] = [j] say.
Suppose, for example, that [z, — 2,]is a kilometre. Then gusts, which may be
seen on a lake or on a cornfield as patches of ruffled surface a fraction of a kilo-
metre long, would affect individual members of the pair #;, z, separately and so
would tend to increase [§]. We should get the average effect of such gusts if we
prolonged the time of averaging indefinitely. The time of averaging must not
be confused with ¢, the time of flight. It is an advantage to have a pair of
marked molecules. For if instead we considered molecules released one at a
time, then their mean square deviation from their mean position at ¢, namely,
[(z — [«])2], would depend on larger and larger eddies as the time included in the
average [ ] was increased, so that no limit to the average would be attained
until cyclonic changes were included. But when molecules are released in pairs
this is not so.  For if a cyclone passes over the district so that the wind changes
its direction through one or two right angles, these changes will occur nearly
simultaneously at the two stations one kilometre apart, so that they will not
have much effect on individual values of (#; — @,) nor on [j]. We have at last
found in [4] a mean which attains a limit, as the time of averaging is prolonged
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indefinitely, and yet only brings in the effects of eddies comparable in diameter
with [z, — x,] or less.

Direct observations of [4] have not been made so far as I know, but there is a
mass of published evidence about turbulence which strongly suggests that
{71/t is independent of ¢, if ¢ is neither too small nor too large, and that [5]/¢
increases with the distance between the starting points.

§3. A Sraristic For CLUSTERS.

§ 3.1. Introduction.

The failure of the dispersal of a point-charge to serve as a mathe-
matical element, from which the dispersal of an extended system may be built
up, appears to be intimately connected with the fact that in the atmosphere
the dispersal goes on in patches. That is tosay, asmall dense cluster of marked
molecules, represented by the dot in fig. 1 which, by molecular diffusion alone,
would spread through the successive spherical clusters shown in figs. 2 and 3,
actually seldom passes through the large spherical stage 3, because it is first
sheared into two detached clusters as suggested in fig. 4. These are carried
far from one another, and are likely to be again torn into smaller pieces as in
fig. 5. Meanwhile each of the torn parts is gradually spreading by molecular
diffusion. These diagrams are, of course, merely illustrative fictions.
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As a preliminary to describing the succession of changes, we must find out
how to describe the distribution at a single instant. The problem is rather like
that of finding some simple specification of the extent to which the population
is divided between cities, towns, villages and isolated houses, without making &
map ; forin the atmosphere a map of all the eddies would be too bewilderingly
complicated. We want something that gives us a general measure of the
spread of the molecules, thus serving the purpose of the standard deviation of
the whole aggregate of marked molecules from its mean, and yet at the same
time informs us about the internal details of the cluster. Both purposes will
be served, as will be shown, by the following method, whichis not intended as a
practical observation, but as a mathematical specification.

§3.2. Definition of the Statistic Q, the Mean Number of Neighbours per Length.

The air is supposed to contain a large number of ““ marked molecules.”
They might, for example, be acetylene. For simplicity, let us confine attention
to distribution of points on a straight line. Take any marked molecule,
which for reference we will call A.  With A as origin, divide the line by
sections at positive and negative integral multiples of a unit %, thus forming

? each of length 4. Count the number of marked molecules in each

“ cells
of these cells. When a molecule is exactly on the partition between a pair
of cells, half of it is attributed to each cell. Let k. A,, .1 denote the
number in the cell between [ == nh and I = (n 4~ 1) A where ! is the distance
from A measured in the positive sense, and #» is an integer. Let there be N
marked molecules altogether. A molecule might conceivably be considered
to be its own neighbour at zero distance, but we do not make this convention,
and therefore the sum of the numbers in the cells is N — 1. Next repeat the
performance with the origin at each one of the other marked molecules B,

C, D, in turn. Then form the mean

Qn, -1 :_1“ (An, n--1 + Bn. w1 + Cn—. n--1 + ete., to N terms).

N

In this way we obtain a set of quantities Qg 5, Qu, 2 Qon, s1..., which are
numbers of marked molecules per length, classified according to their distances
I from other molecules ; these distances lying in the ranges 0 to %, % to 2A,
2% to 3k, and so on. Next, it will be well to draw a diagram in which the
ordinate is Q,, ,i1 for the range of abscissee extending from I= nk to
= (n-1)h We may now drop the suffixes and regard Q as a function
of I. This (I, Q) diagram has many interesting properties.
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To illustrate the definition the lower part of fig. 6 was obtained by making
the prescribed counts on the linear cluster of 7 molecules marked above. The

1-0
!_r:J—L!
/P
Q

-0
5 4 3 2 %

1 2 3 4 5
[ -
Fi6. 6.
successive distances between the molecules are, in tenths, 2, 4, 6, 8, 10, 12, and

h is unity.
§3.3. Note on the Step h.

This element of length should be chosen so that in ‘the average Q, ,i1
the element shall contain a considerable number, say, at least 100, marked
molecules over the values of I where they are most crowded. Otherwise,
random errors cf sampling might become apparent. KEven if this is done for
most of the diagram, there may be other ranges of [ where marked molecules
are so scarce that sampling errors might become noticeable. On the other
hand, if % were made too large the steps in the diagram might become too
wide ; whereas we want the stairs to look like a curve. These compromises
are perfectly familiar in statistical work, and are inevitable. Although men-
tioned here for completeness, they are really of no importance, as we may
easily have a billion molecules in the cluster. So that in future we shall
replace the stairs by a curve drawn through the centre of each step. In other
words, the mean number of neighbours per length, like the density, or the
concentration, attains a ““ quasi-limit ”” when the element of space has a magni-

tude lying in a certain range.

§3.4. The (I, Q) Diagram is Symmetrical about the Q Auwis.

For the distance between every pair of molecules is counted twice, as negative
from one end, as positive from the other. Therefore, if Q be expanded in powers
of ! only even powers can occur.
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§ 3.5. 4s Diffusion proceeds, the Area enclosed between the | Axis and the (I, Q)
Curve remains consiant.

For this area when expressed in units of 7 and Q is simply one less than the
whole number N of marked molecules. This is easily proved from the defini-
tion of Q. And by hypothesis N remains constant.

This property of the graph suggests that Q must satisfy a differential
equation of the type

50 9 some function of I which attains
Frin) a limit as I > © equalto that p-
attained as [->-—
for, if so
0 aQ
—dl = 0.
j o O

§3.6. The (I, Q) Diagram exhibits the Size of & Linear Cluster.

For if the distance between the cxtreme molecules at the opposite ends
of the cluster be L, then Q is zero for all values of || greater than|L|;
and Q is finite when I = - I.. Thus, the extreme width of the I, Q curve
is twice the extreme diameter of the cluster. The relation bhetween the standard
deviations will be discussed in §6.8.

§3.7. The Changing Form of the (I, Q) Diagram as Diffusion proceeds.

It is evident from the foregoing that if there is only one linear cluster, and
it spreads along its line, the (I, Q) graph must spread along the 7 axis. And
as the area under it must be constant, its mean height in the Q-direction must
decrease. ‘

Let us consider another very simple case (analogous to the melting of a
crystal).* Suppose that initially-marked molecules are equally spaced at
intervals of one centimetre all along the line without bound in either direction.
What will the (I, Q) graph look like ? No molecule will have a neighbour
nearer than a centimetre, so Q is zero for 0 < 1 < 1.

At 1==1 cm. neighbours are indefinitely common and @ is infinite. Again,
there are no neighbours in the range 1 < I < 2, and so on. The graph
consists of a series of infinities of Q at I== - (1,2, 83,4, ... em.) with ==
everywhere else.

Now suppose that diffusion takes place. Can we find the changes from Fick’s
equation ? Not from it alone, for Fick’s equation is a statement about the
gradients of a continuous function of position, whereas we have only particles

* Note added December 7.
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widely separated. If Fick’s equation is to be applied to this special example,
it would have to be by the aid of an additional hypothesis derived from the
theory of probability. Instead, I get the following from memories of snow-
flakes falling, of the Brownian motion under a microscope, or of foam circulating
on a millpond. With these in mind, it is evident that the perfect regu-
larity of the arrangement of marked molecules will soon be a little disturbed.
Molecules will acquire neighbours a little nearer and a little farther away than
the exact 1, 2, 3, 4, ... cm., and neighbours at these distances will no longer
be infinitely common. That is to say, the infinities of Q will be softened down
into peaks with spreading bases. In an early stage the bases will not join ;
there will still be no neighbours at distances, such as 4, 14, 2%, ... cms. In
this stage the area enclosed between each peak and the I axis must remain
constant. The form of the intermediate curve shown in fig. 7 is intended
merely to suggest that flattening proceeds more rapidly as [ is greater ; other-

wise, the curve is a guess. Later (§5.4, §6.7) some other cases will be
discussed quantitatively.

SAMPLES OF DISTRIBUTIONS EXTENDING BOTHWAYS
WITHOUT END

 MARKED MOLECULES) 'N'TIAL Tt s e e
IN POSITION INTERMEDIATE . e % e s @
ON A LINE. FINAL

NEIGHBOURS PER LENGTH
AS A FUNCTION OF

_ THE DISTANCE APART, [ }I\ j}U U
7

Q THE MEAN NUMBER OF 8 ‘ {
V)

F1a. 7.

§3.8. The Final State after Thorough Diffusion.

From the foregoing we should expect the final state to be represented by a
straight line parallel to the I axis. This expectation is confirmed by con-
siderations of probability. For there seems no reason why the number Q
of marked molecules per length should have any dependence upon the distance
to any molecule, when the distribution is purely random.

§3.9. 4 Failure of Conceniration as a Descriplive Idea.

In the preceding special example, if we are to speak of concentration at all,
we must take a long element of length, say 1,000 cms., in order to have a good
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many marked molecules in it. Then all that can be said about the concen-
tration is that it was initially independent of position and remained so always.
According to this view nothing happened. How different from the lively
process shown on the (I, Q) diagram !

§4. Ficx’s KQuaTioN AND THE DisTance-NEiGaBour DIiacGram.
§4.1. Introduction.

The new theory which is intended to apply to both eddy- and mole-
cular diffusion ought to be consistent with Fick’s equation in the special case
of no eddies. Let us now explore this connection.

We have seen that the idea of the ‘ concentration ” of marked molecules,
given as a function of position, has in one instance signally failed to describe
that which we wish to discuss. Fick’s equation, being based on the idea of
concentration as a function of pogition, has failed there also. Klsewhere we
shall find both very useful.

§4.2. Continuous Concentration.

In order to bring TFick’s equation into our theory we must suppose
that the concentration v, defined to be the number of marked molecules per
length, is a continuous function of z possessing derivatives Ov/dw, 02v/0%%.
This supposition is a little aztificial. But it seems likely that Av/Az really
attains with sufficient accuracy a quasi-limit when Az is neither too large nor
too small. Fick’s equation is then

ov 0%y
S

Next Q must be redefined in terms of v. The definition in terms of con-
tinuous concentration can be made to agree with that in terms of particles,
except as regards neighbours as close as or closer than the closest pairs of par-
ticles. As a reminder of this, often unimportant, discrepancy, the new function
will be denoted by small ¢. For instance, if each of the particles in fig. 7
were replaced by a small dot of continuous substance, then ¢ would have an
infinity at [ = 0 where Q is zero.

§4.3. The Defimition of q applicable when the Diffusing Substance is Continuous,
not Molecular.

We take any point = on the line at which the concentration is v a function

of z and time only. It will sometimes be written v (x, t). We proceed from

x a further distance I to » -~ I. Let the concentration at @ -1 be v,. Here
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v, unlike v, must be regarded as a function of three independent variables
x, I and ¢, and may accordingly be written v, (z, [, ¢). The analogue of
A, na1 in the previous definition is here simply v, regarded as a function of I
while zis fixed. Then, because in taking the mean, each particle comesin once
a8 origin, we must here form a weighted mean, the weight being v. We thus

armve at
A

v(z, 1) . vy (z, 1, 1) dz

¢ = Limit =
S f v (@, 0) du
—9

@)

This leaves ¢ a function of [ and ¢ only.

If there is a limit there can only be one, so that to a given function v ()
only one function ¢ () as defined in this way can correspond. As we shall see
later, the converse is not true.

It generally happens that the integrals in the numerator and denominator
attain their limits separately, and when this occurs we can write the definition
in the simpler form

4w
q = %J v (Q’}, i) .V (9], l, t) dm. (2)

-0

where

N — rw vds, 3)

-— 00

50 that N is the whole number of marked particles as in the definition of Q.

§4.4. Correspondence of Aveas on the (x, v) and (I, q) Graphs when the Areas are
Finite.

-+ re
I IH_J v (@), i (2, 1) de dl.

v - V-

Since the termini are independent of one another, changing the sequence
of integrations makes no difference to the result. Integrate first with respect
to I Then as the range is infinite, the inner integral transforms thus :—

4o ; + o 00
§ vy db == j v, di == _( vdx = N.
Therefore, on inserting this value of the inne: integral
+

{:qdzzgr

oV —

wvd = N.

+oo +®
j gdzzf v dz,

-0

a tesult which we shall often Tequire.
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§4.5. The Differential Equation for the (I, ¢) Graph when the Diffusion s
Fickian.

It will now be proved that—

When there is no mean motion or eddies then ¢, the mean number of neigh-
bours per length, is related to the time ¢ and the separation ! by a differential
equation like Fick’s, which relates the concentration v to the time ¢ and the
position z; but for ¢ the diffusivity is double that for v. Tt is assumed that
vdv/dz vanishes at infinity.

If 1 == vv,, then because 0v,/0x = 0v,/0l and 02v,/dz? == 0%, [0, it may be
proved without any assumption about vanishing at infinity, or about Fick's
equation, that

9 9 2 9 N2,
PU oy P GO 0w, O (1)

ot ax ol ol o* T 0
In view of Fick’s equation, namely,
Ov 0% 0%y . Oy o
= Kz and S FE=K i), 2j
ot = M Tw 0a® @
the second member of (1) transforms, into
( oV 8v> 1 o1l 3)
o T E TR a ’
Thus v, vy no longer appear separately, and their product IT satisfies the linear
equation
oll {82H 011 82m ;
=K 9L . {4
n - M tmat o W
Now :
[ 11 . ds— Ny, (5)

and on integrating the [I-equation with the proviso that ofl/dx and 011 /0! both
vanish as 2 > -} o and — o0 we obtain

9 _ ox 97 | |
a =Ko ©

Compare this with (2) and the theorem is proved.

*84.6. Theorem : The Effect of a Mean Motion independent of x disappears wher.
the number of Neighbours per Length is related to Separation and Time.

For, by the definition, ¢ is independent of the choice of the origin of «, and

so, if the mean velocity @ is independent of x, we can get rid of 4 by giving s

* § 4.6 was added, and the corresponding alterations were made, in §5.1, $5.2, §8. ou
December 7.
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suitable velocity to the origin of z. This can be done even if @ is an arbitrary
function of time.

For simplicity in § 4.5 it was assumed that there was no mean wmotion.
Actually when K has been derived from observations of smoke or of balloons,
the mean velocity has customarily been taken into account by using as the
definition of K some equation more or less equivalent to §1.1 (1), in which %,
9, W appear.

We see now that

ov , _O0v__ 0%
ot +u or 0z® W
leads to
% . 9x O 5
ot 2K o’ : @

in which % does not appear.
Incidentally it is of interest to take the form (1) in place of §4.5 (2) in forming

the IT-equation. We thus obtain

ol | _ ol {8211 (! 0? H}

K 6

w M CwmatrE )
and, on integration with respect to z, the term in % vanishes if II has the same
value for all indefinitely great values of |z|. Thus we arrive again at equation
(2) of the present section,

(3)

§ 4.7. * The Present Theory, written for Diffusion on a Straight Line, is
applicable also to the Projection of Three-dimensional Diffusion on to this Straight
Line.

For let p be the number of marked molecules per volume, and let them be
diffusing according to

de__ 0 ( ) dp> ) ap>

-k + 5, (K on) T (K5 (1)
Now project each molecule normally on to the z-axis, and let v’ be the number
of projections per length. Then

+® ptw ‘
v'zj J' o dy dz. @)

Let us assume that p vanishes at infinity in such a way as to make v’ finite.
On integrating (1) with respect to y and 2 so as to produce an equation inv’,

0 [ Op\ .
the term 3 ( K 95> yields

[ e ap]dz,
-0 Y->— ©

* §4.7 and consequent explanations elsewhere were added on December 7,
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and we may usually safely assume that the integrand vanishes. The term

88 ( K ap\ behaves similarly. Thus there results
‘ ov’ o
A 3
0z K 0*’ ®)

This is the interpretation that must always be given to the present theory
before it can be applied to observations.

§ 5. Non-Frckian Dirrusion.
§ b.1. Generalisation for Atmospheric Eddues.

When the diffusion is molecular both equations § 4.6 (1) and § 4.6 (2) correctly
describe it. When the eddies of the free atmosphere come into action neither
of these two equations describe the phenomena correctly ; but whereas in
Fick’s equation the defect appears to be incurable, it is very easily remedied in
the new equation now presented. That is to say, the chief advantage of the
variables ! and ¢, to which all the foregoing is merely preparatory, appears
when we consider the effects of eddies. For, as already stated, observation
shows that the rate of diffusion increases with the separation I of neighbours.
We can represent this by writing

Aegro.%) )

where T (I) is an increasing function of I. In passing it should be noted that
it would not do to write the second member F (I). 0%/dl% for ﬂnenj ;3? dl

would not necessarily vanish and the total namber of particles would not be
fixed. '
If we were to modify Fick’s equation by writing
dv av d Ov)
i = - f(2) o)

S 0 )
that would mean that the diffusivity depended on position, an effect altogether
different from the one represented by I (1), and one which will not be studied in
this paper. Instead, the paper discusses anatmosphere in which the diffusivity
is independent of position, but depends on separation.

§5.2. Reduction of Existing Observations.

Let us next consider some observations which show how F () depends on [
The observations have been made for other purposes, and are not quite what



Atmospheric Diffusion on o Distance-Neighbour Graph. 723

is desirable here. The quantity usually measured has been K in the equation
§ 1.1 (1) or something equivalent.

In accordance with §4.5 (6), F(l), if it were merely a constant, would be
equal to 2K. Actually, many values of | co-operate in the diffusion, but those
which are largest not only produce most diffusion, but also have most weight
in determining K, when K is calculated from the mean squared deviation from
the mean. Thus, it seems likely that we shall get the right order of magnitude
both for F (1) and [, if we put F (I) equal to 2K and lequal to the standard devia-
tion of the particles from their mean. As [ varies in the ratio 1:10°, even very
crude estimates of F (I) show its relation to I quite clearly.

When K has been obtained from the variation of wind with height, 2K is
still assumed to be roughly equal to F (I) and the corresponding [ is taken to be
the mean vertical separation of the anemometers that were used in finding the
second derivatives of the wind-components with respect to height. When the
observations were obtained from pilot balloons, we know that I cannot be less
than the vertical displacement of a balloon between two sightings, so that [
will probably not be less than 100 metres. On the other side I cannot be greater
than the height of the observation above the ground. The mean of these two
distances has been taken to be I.

The distance at which molecular motion is the chief cause of diffusion in
free air may be roughly estimated in the following way :—Suppose that a very
thin lamina of marked molecules could be produced in still air. The concen-
tration should be arranged to be greatest in the central sheet and to diminish
towards the outer sheets according to the law of error. The thickness of the
lamina, as measured by a standard deviation from the mean, would then increase
so that*

(standard deviation)==4/(2K¢) where ¢ is the time from indefinite thinness.

Now, the value of K due to molecular diffusion is about 0-17 cm.2 sec.™ !,
Hence, we have the following :-—

0
0

0-001/0-01 1
0-018/0-058 0-58

These numbers show clearly that molecular diffusion is very effective when the

0-1
0-18

time in seconds .. . .. ..

thickness as measured by standard deviation, cms.

lamina is 0-01 cm. thick and much less so when it is 0-1 em. thick. Now, if
we look at cigarette smoke in the open air and ask ourselves at what separation
molecular motion will produce rather more effect than the eddies, it is not
difficult to make a guess. I putitat!=5 X 1072cm. The integral power of
ten is really all that matters.

* < Phil. Trans.,” A, vol. 221, p. 6 (1920).
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The data are summarised in the following table :—

Reference. K l
cm.? sec™! cm,

K from molecular diffusion of oxygen into nitrogen (Kaye
and Laby’s ‘Physical and Chemical Constants’).
For I seo preceding discussion.

1-7 x 1072 5 x 107*

L_Y__/

K at 9 metres above ground from anemometers at heights
of 2, 16 and 32 metres (W. Schmidt, ¢ Wien. Akad.
Bitzb.,” Ila, vol. 126, p. 773 (1917)).

3-2 x 10% 1-5 x 108

L.\(..J

K from anemometers ab heights of 21 to 305 metres |
(Akerblom, F., ‘Nova Acta Reg. Soc. Upsaliensis’ | » 1-2 x 10° 1-4 x 10¢
(1908)).

K from pilot balloons at heights between 100 and 800
metres (Taylor, ¢ Phil. Trans.,” A, vol. 215, p. 21 (1914),
also Hesselberg and Sverdrup, ‘ Leipzig Geophys. Inst.,”
Ser. 2, Heft 10 (1915)).

6 > 10t 5 x 10t

K from tracks of balloouns either manned (L. F. Richard-
son, ¢ Weather Prediction by Numerical Process,” p. 221)
or not manned (Richardson & Proctor, °Royal
Meteorological Society Memoirs,” No. 1).

108 2 % 108

'\..___\1,__,__,' . ~ J ]

Volcano ash, same reference as last .........coovvveivcvvcinnn. 5 x 108 5 x 10¢

Diffusion due to cyclones regarded as deviations from |)
the mean circulation of the latitude (Defant, ¢ Geog. % 101 108
Ann.,” H. 3, also (1921), ¢ Wien. Akad. Wiss. Sitzb.,”

ITa, vol. 130, p. 401 (1921)).

| —

Since, when not obstructed by the ground, smoke spreads about as much
horizontally as it does vertically,* the observations at the smaller values of I,
though made in the vertical, can be treated as applicable to the horizontal.
Thus the whole collection is coherent.

The logarithms of K and ! when plotted on a graph (fig. 8) are seen to lie
close to a line of slight curvature. It is hardly worth while to discuss details
until observations have been made in a manner appropriate for the
determination of ¥ (I) rather than of K. How such observations could be
obtained will be discussed in § 7.

The straight line on the logarithmic diagram which corresponds to K ==
0-2 I also fits the observations almost as well as the curve in the limited
range between [ = a metre and [ = 10 kilometres. For mathematical
simplicity this formula will be used in the illustrations which follow.

Thus in this range ¥ (I) = 0-4 % approximately, when the units are
centimetres and seconds.

* (1. L Taylor.
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The equation for the changes in the (I, ¢) graph is then

9 _ 0 (ms9q ~
at“ezﬂ(l az>’ (1)

where the constant ¢ is of the order of 0-4 cm.® gec™. This equation

summarises the subject.

LOG,, (DIFFUSIVITY K IN CM2 SEC™)-

0 5 10
LOG,, (SEPARATION L in cMm)
Fie. 8.

§6.3. Analogy with the Diffusion of Heat.

The fundamental equation §5.2(1) can be brought into touch with some
standard mathematical forms by changing the variable I to I'® = « say.
Tor this transforms the equation into

0 €20 Ok

F-slarat g
which is Fourier’s equation for the diffusion of heat in a homogeneous solid,
where the isothermal surfaces are concentric spheres of radius o, and the
diffusivity is €/9. The equivalence of the equations in « and [ is complete,
except at [ = 0, where a source of sink might occur. In choosing a solution
we must be sure whether it makes the whole number of marked molecules
independent of time.
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§ 5.4. Non-Fickion Diffusion of an Initial Point-Cluster on o Line.
A solution due to ¥ourier,™
q = A (4te)9)~32. Parony (1)
in which A is independent of ¢ and «, represents a process in which at ¢ == 0

all neighbours are indefinitely close, and as time proceeds. they spread out
continually. The corresponding value of N is

N = r qdl = A (4tg/9) 32 r G . e . da

Putting | ‘
g = L
! 41ef9
it is found that
L Ne)
N = 3A ~ e PR dp. (2)

Thus N is independent of time, as required, and there is no source at [ == 0,
excepb ab ¢ == 0.
Fig. 9 exhibits this function in the special form

o1

g = 1051732 o™ )

when ¢ is given its observed value of 04 C.G.S. units.

At ¢ = 0 the graph would consist of an infinity of g at [ = 0, and ¢ = 0
elsewhere. One graph shows the distribution at ¢ = 100 seconds. Neighbours
as distant as 4 metres are now not scarce. Five minutes later, at ¢ = 400
seconds, neighbours at 40 metres are noticeable. In the corresponding
distribution in space the isopleths of concentration are parallel planes. The
standard deviation of the marked molecules from their mean position will
be investigated in § 7.1. ’

§6. RETURNING FROM NUMBER OF NEIGHBOURS AS 4 FUNCTION OF SEPARATION
TOWARDS CONCENTRATION AS A Funorion or PoSITION.

§6.1. Introduction.

In the course of the theory we began with concentration v given as a func-
tion of position 2. We wished to know what became of the distribution when

* See B. W. Hobson, ¢ Wirmeleitung, Encyk. Math. Wiss.,” vol. 4, p. 195.
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diffusion occurred. Fick’s equation being contrary to the facts, and no suit-
able adjustment of it being in sight, we had to change the variables from
(@, v) to separation I, and mean number of neighbours per length ¢. This

was easily done. Then the equation g-g—-: € Z%(lm g%> gave the changes

in the (I, ¢) graph. But, after all, it is v as a function of z that we should
like to know; so that, after the diffusion has occurred, we wish, if
possible, to change the variables (I, ¢) back again to (x, v). This is not so
easy, and can only be done in part.

40
’(9= 100

al =0

“
[}

N
o

NEIGHBOURS PER LENGTH

~—
o

£CIS. I ——
[} 10 20 30 40
SEPARATION | IN METRES

Fre, 9.

As with the problem of integration, a general method is lacking, and so it
seems desirable to give typical examples and a variety of processes suited to
different circumstances.

It would be too much to expect that the (/, ¢) graph should give us enough
information to allow the distribution of particles in space to be reconstructed
in all its details. For the process of taking a mean has been used in forming
q to get rid of a superabundance of detail. The process is irreversible.
We cannot evolve the detail again from the mean. -

The origin of  is not represented by anything in the (, 9) graph.

VOL. CX.—A. 3D
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§6.2. Not every Even Function f(l) which is Positive for all Values of I can serve
for the Number of Neighbours per Length.

Try, for instance, to imagine how the
population could be distributed on a
line so as to produce a (I, Q) diagram
S like fig. 10. If you have neighbours at

/\ \\ many distances lying between 5 and 8

T ey, k., some of them must have neighbours
I —  KILOMETRES at distances less than 3 km., so the
‘ diagram would have to have a central

hump. As drawn it cannot be an ([, Q) diagram.
However, when, as usual, g5 has been produced by diffusion from ¢,, and
qa corresponded to vy, then if the mathematics fits the physics, as it appears

to do, there must exist a vy corresponding to ¢y.

§6.3. The Central Value of q.

+o

This is evidently ¢(0) = % J Vidz when v vanishes at infinity.
§6.4. Umfo?‘mity.

Given that v = b a quantity independent of .

Therefore v, (2, I) = b also.

And by the definition of § 4.3

o A
b* dz
= Limit —5=%—- = b.
Zrob| dw
—8

So g is independent of 1.
As to the converse, see under Fourier series,

§6.5. A4 Single Linear “ Town.”

Given that
1 10
Y T e @“zz
4/ (2n)
Then
N = ‘ vdz = 1.
Also T

wy = le—% {ereey 1 —av2eravoyr e tem
27 27t



Atmospherie Dyffusion on a Distance-Newghbour Graph. 729

Therefore
® 1 - (14) 1 (T° sy /0 l >
R RV 1 "Wt 75
V .
. ¢ = q.

V4

See also a note at the end of §6.7.

§ 6.6. Expansion wn a Fourier Series.

There may be distributions of congentration, extending indefinitely in both
directions, for treating which Fourier series will be suitable.
Let

N—>w

v(@) = tAy+ = {A, cosnx -+ B, sin na}, (1)
n=1

n being a positive integer and the constant A, being so chosen as to make v
everywhere positive. Then it may be shown that

100+ %) {f‘g’f +R(A2 + B2 . cos nz} + finite terms

— Limi v
g 3:1;%11: % Ao (04 A) + finite terms
= }A, + _1-7%” (A,%2 4+ B,?) cosnl. (3)
AO n=1

The fundamental wave-length in ¢ and v has been taken as 2r. Any other
value could be introduced by changing the units of z and 7 in the same ratio,
and the relations between A,, B, and C, would remain as stated.

In particular if g= } C, simply, then v==g¢ is a solution, and on account
of the generality of the Fourier series it appears to be the only possible one.

§6.7. The Correspondence of Diffusion from Points on the x and 1 Axes.

Time is not involved in the connection between the position-concentration
graph and the distance-neighbour graph ; but we can bring in time as an aid
to finding the connection. Suppose, for example, that the diffusing substance
is initially concentrated in five masses each consisting of n particles near five
equidistant points on the a-line at intervals b of #z. Then there are neighbours
near | = 0, 4 b, 4+ 2b, . 3b, -+ 4b, but for no other values of I. The relative
numbers of neighbours in these five classes are easily counted.

Next, suppose that Fickian diffusion occurs. Both graphs change, but at

3D 2
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the same instant they must always correspond to one another. Kig. 11
shows the two graphs at one instant.

0-4

T A
LUV AN

01
v ./ g N
Jo 2 3 4\5 00 4 -3 -2 -l Q12 3 4ANS

Fra, 11

Now, a given distribution of v in 2 may be seen from the definition of ¢
to lead to a unique function ¢ of I. Thus, ¢ (I) does not depend on how v (z)
came to be, but only on what v (2) is. We have arrived at the correspondence
in this example by Fickian diffusion. But if the same v (z) had been produced
by non-Fickian diffusion, orin any other way, it would correspond to the
same ¢ ([).

The simpler problem of § 6.5 may also be solved in this way.

§ 6.8 Moments. Standard Deviation.

Formulae are usually fitted to frequency curves by way of moments (vide
Karl Pearson, ¢ Biometrika,” vol. T, p. 263). Consider, therefore,

»—LJMZ"‘ g di == p,, say (1)
x| s SAY,
which is the “ nth moment-coeflicient ” of the ¢ (I) distribution about its mean
l=0.

We shall treat only the case in which N and all the moment-integrals are
finite, as occurs when ¢ and v vanish entirely in the outer regions.

Therefore, in accordance with the definition of ¢ in § 4.3,

1> [ T-r0
!

ST f Lt @ hdod, 2)
Now, the limits of integration are independent of one another, so that we may
change the sequence of integrations without changing anything else. Let us
integrate firet with respect to !, remembering that p (x) is independent of I.
Therefore

T+ 0 " pleron
m=xl @[ guen.r a da. ®)
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Since v, is the concentration at the point (x -- 1), the inner integral is the nth
woment-coefficient of the distribution of concentration taken about the point
@. On comparing equations (1) and (3) it is seen that :—

the nth moment-coefficient of the distribution ¢.(l) of neighbours,
about its centre | == 0, is the mean of the nth moment-coefficients
of the dustribution of marked wmolecules taken about every marked
molecule n turn. 4)

Since ¢ (I)is an even function of [ its moments of odd order about == 0 all
vanish. That is,
0 == Py == g == g == [y, ete. (5)

For the even moments the expression can be simplified. The most interesting
case is n= 2. Let x,,the centre of the distribution v (), be defined as usual
by the equation

jlmv (%) . (@ — z,) dz = 0. (6)

There is a familiar theorem in mechanics concerning radii of gyration round
parallel axes. Inlike mannerit can be proved that if 6,2 be the second moment-
coefficient of v (z) about the centre 2, and ¢,2 be that about any other point z,
then

o = 0,’ + (& — z,)% (7

From (7) and (4) it follows that

+ o
Qe == LJ v (1,) . {GMLZ "‘" (x - wm)z} dw
NJ..

9

== 20‘7}1“ * ( 8 )

Now the standard deviations of ¢ (I) and v(z) are respectively 4/ u, and g,,.
Hence, we have proved that : the standard deviation of the q (I) area from its
centre 1 = 0 s A/2 times the standard deviation of the marked molecules from their
centre x,. A glance at the distance-neighbour graph thus gives us a good
impression of the size of the cluster on the line.

The skewness of the v(z) distribution is not given us by the (I, ¢) graph,
because skewness depends upon a moment of odd order. But the higher even
moments could be found. For the fourth moment-coefficient I find

) 4w

The proof of this is omitted for brevity.
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§ 7. Tae DeETERMINATION OF THE DIFFUSIVITY BY OBSERVATION.
§7.1. The Standard Deviation of a Linear Cluster formed by Diffusion on a
Straight Line from a Point, the Diffusivity for Neighbours being F (1) = <I'’,
where ¢ 1s independent of 1. The Determination of ¢ from Observations.

It has already been proved in § 5.3 and § 5.4 that under these circumstances
we have ¢ given by §5.4 (1).
To find the second moment py which is defined in §6.8 (1), put, as before,

e P2 1
Hefd ()
Then it may be shown that
us = 3A (453/9)*} BE3 B, | (2)
Now if we denote
| e dp vy s, )

J—»

it may be proved by integration by parts that

9
Sy == e B, 4
) P “)

Also it is well known that Sg = /7. Andso

TXBEX3%1 105, o §
IR AA TN i ==11-63. b
T Txa VIV 5)

Dg ==

Also for finishing the calculation of N which was begun in §5.4 we shall need
Sy = 4/ 7 = 0-886. (8)

With these substitutions it follows that

3A (de/9)° 11063 \/:z 10)
o= e (el T 7

But by the theorem (§6.8 (8)) of the previous section v,,, the standard deviation
of the marked molecules from their mean position on the line is v/ (3u,)

So
‘ JO) o / 70 \; 82
\/ (42e/9)" J (§4"§/ (el)™, (8)
Or solving for ¢
243 l/u -/ 0.42/3
c == == Bl 9
o (70/ T t ®)

This formula enables the coefficient ¢ in the diffusivity for neighbours <** to
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be determined from the scatter of particles on a straight line. The particles
will really move in three dimensions, but the formula can be applied to their
projections on the line, as was shown in §4.7.

Suppose now that the formule we have thus deduced from the non-Fickian
diffusion of neighbours with diffusivity el*® represents the true sequence of
events, but that the observations have been reduced instead by the formula*
which is a necessary consequence of the Fickian diffusion of concentration with
constant diffusivity K, namely,

O’
K=, (10)

what values will be obtained for K ?
Eliminating ¢ between equations (9) and (10) it is found that

/ 70\]/3 ’ )
=1{5%) -c.0." = 0-330eq,"". 11
o) -oon'’ = 03300, (11)

This shows that K, obtained in this way, will increase as the 4/3 power of the
size T of the scatter, as, in fact, K does (see fig. 8).

Tf we regard F (I) as what we wish to find from published values of K, then
we must put

K
" 12
F(op) = e0, " = -2 303 K. (12)

As a necessary preliminary to finding out that F (I) was nearly of the forin
el* I made, in § 5.2, the guess that we should obtain the right order of magnitude
for F () and ! by putting F (I) == 2K and | = ¢,,. These imply that F (0,,) =
2K. It is seen that the guess is amply justified.

But we may now revise the value of ¢ from 0+4 to 04 X 3/2=0-6 cm.?*

sec.”. This is only a mean value roughly applicable under average circum-
stance in the range one metre < ! < 10 kilometres. A more detailed study will
‘reveal variations of 10 times or more in & according to the up-gradients of
temperature and mean-wind and other circumstances. KEven so, ¢ will be
remarkably more constant than the diffusivity K for concentration, which, as
we have seen, varies with [ about a billion times.

* This formula was deduced by Einstein in connection with the Brownian motion
(¢ Ann, der Phys.,” vol. 17 (1903)). Something like it was employed by G. I. Taylor for
reducing the Scotia kite ascents (‘ Phil. Trans.,” A, vol. 215, p. 10). The formula was
given explicitly and much used by the present writer in “Some Measurements of
Atmospheric Turbulence ** (¢ Phil. Trans.,” A, vol. 221). In the latter paper there are two
independent proofs of the formula, one of which in Section IV is a correct deduction from
Fick’s equation, the other in Section V is quite spoilt, alas, by a wrong sign in
equation 3, p. 9, and a risky assumption about correlations. This error affects

equation (32) on pp. 15 and 27 of the aforesaid paper, but the rest of the paper holds
good independently.
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‘Various observers (Dobson, Richardson, Roberts) have separately noted the
fact that the width of an individual trail of smoke from a point source, when
measured by its standard deviation ,, from its mean line, is such that g, is
roughly proportional to £2, This implies that the diffusion is Fickian in certain
short ranges of I, the diffusivity for neighbours K () being there independent of
{. When an enormously wider range of [ is considered we have seen that ¥ (I)
is proportional to I*3 roughly.

[Note added December 7, 1925.—The observations collected by Richardson and
Proctor in the range ¢,, = 3 km. to 86 km. fit well with the slope of the smecoth
curve in fig. 8.

These apparently contradictory facts may perhaps be reconciled if we regard
variations in K, defined by §1.1(1), as being due to variations in the type of
mean chosen in forming #, ¥, @ in the same equation. As long as the mear is
always taken over the same length andtime, K may well be more or less constant.]

§7.2. Theory of a Second Method by which the Diffusivity ¥ (1) might be observed.

It has just been shown that the value of ¢ in &l == T (I) can be extracted
from observations made with a wide range of 7 all in operation together. While
this is possible mathematically, it seems, from the standpoint of practical
physics, to mix too many phenomena and unnecessarily to assume that e is
independent of 1. It would be better to observe separately at or near each
selected . This can be done by a process which will be derived from the
non-Fickian equation

_ 9 |
=51 F 05

Q>
=

SEIRe3)
SR

Q>
==

<

Suppose that the
plane parallel lamine, distant [/, from one another and similar to one another.

‘marked molecules ’ are initially concentrated in two

The neighbour-distance diagram then consists of three sharp peaks, as suggested
qualitatively in fig. 12. The central peak shows the very close neighbours

o

Fre. 12,
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which each marked molecule has in its own lamina. The lateral peaks show the
neighbours in the other lamina. The spreading of the central peak will go on

very much as if there were only a single lamina (§5.4,§ 7.1), and does not concern

us now. If the lamine are observed during a time such that they spread

through only a small fraction of ly, then we may regard F (I) as a constant and

equal to F (lp) in this short range of 7, and may write accordingly

oq ‘azq
Fri (lo) . R

An appropriate solution of this equation is

N _(Z—Tl))g
q = AtTie HF W),

which implies that the peak on the (I, ¢) diagram has the form of the normal
curve of exrror, ¢ playing the part of the “ frequency.” The standard deviation
of the curve from its mean I, is {2(F (l)) }V2.

In determining the standard deviation from the observations it is, of course,
essential that the individual values of (I — ly)? should be weighted in the
proper way. On referring back to the definition of Qin §3.2 it is seen that we
must form every possible pair of marked molecules, one from each lamina, so
obtaining a set of distances I. Let [ Jo denote the mean for all members
of the set. Then in ordinary circumstances [l]g = l,. 'We next form the mean
squared deviation from the mean and thus find

P (1)) = b o), "

In practice the ““ marked molecules * could be replaced by balloons, for those
values of ly which are many times the diameter of a balloon. This is co because
T (1) increases notably with . C. H. Ley* has invented a valve which allows
a balloon to rise to a pre-arranged height and then lets out some gas so that the
balloon ceases to move through the air. That is the type of apparatus required.

When there are only one or two observers, they could not manipulate many
balloons at once, but they might observe pairs of balloons on successive days.
Iet us try to adapt the observation to this situation. Imagine first, for the
sake of the argument, that the observation with many balloons arranged
initially in two parallel laminee ly apart, is made, and let us denote (I — )2 by p

* < Quart. Journ. Roy. Meteor. Soc.,” p. 247 (1911).
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for short. Thus many values of » are obtained on one occasion. Next
imagine that this observation were repeated once a day for a year, the time
¢ being in all cases the same ; and not too small nor too large. In this way a
double set of values of p is obtained, thus:—

Days.  Pairs on one day ——>

l P Pz Pis Pu
v P21 Paz Pas

The mean value of ¥ () for all these observationsis ¥ (ly) = [ples the double
suffix denoting the double mean, @ for rows, 8 for columns. We cannot proceed
further without making the assumption that we obtain the general mean of p
if we select at random one value of p from each row of the double set and take
the mean of them. This looks passable.

If so

T () == Hﬂs)

() =",

which can be determined by flying a pair of balloons on each of the many days.
This measure of atmospheric diffusion is in agreement with that to which we

were led by a search for a natural mean (§2).

§8. SummaRry, CONCLUSION AND ABSTRACT.

The atmospheric diffusivity in Fick’s equation has been found by various
investigators to increase from 0-2 to 10% cm.? sec.™ as the size of the cluster
of diffusing particles increases from 10~ to 10% cm. The effect is due to eddies
of many sizes acting together. There is apparently no way of modifying
Fick’s equation in order to describe this phenomenon. But a new mathematical
method is here developed in which instead of thinking about concentration
as a function of position, we think about ¢, the mean number of neighbours
per length, as a function of I, their distance apart. Formal definition is given
to this idea, and various properties of it are investigated. For simplicity
only distributions on an unbounded straight line are considered, or projections
of three-dimensional distributions on to the line. TIf the movement of concen-
tration v is described by Fick’s equation.

dv , _oOv . 0%
o "% R
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where ¢ is time, z is distance, % is mean velocity, and K is diffusivity.
Then it is proved that

afl__‘Ka‘l

ot o
If, however, the diffusion is “ non-Fickian,” as in the atmosphere, then the
former of these equations cannot be generalised, but the latter can, taking the
form

Q)lé)

J (¢
i
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A discussion of existing observations shows that a rough average value is
F ()= 06 I'® cm.2 sec.”® for the atmosphere, when [ lies between one metre
and 10 km. The diffusion of a lamina is worked out from these principles. The
diagram obtained in this way exhibits the size of a cluster because it is proved
that the standard deviation of the (I, g) area from its centre I == 0 is 4/ 2 times
the standard deviation of the cluster from its centroid.

Two methods are prepared for the observation of F () by balloons or smoke.

Various allied topics are examined.

§9. List or RECURRING SYMBOLS WITH THE SECTIONS WHERE
THEY ARE DEFINED.

K) 77” Z, Y, Z, t, §J-1> A, §12a []: §13; Q; k) N: An,n%—b ls § 32: v, §42 ;
4 vy §4.3;5 11,8455 F(0),§5.15 5, §5.2; 0, §5.3; B,§54; 0y ey §6.8.




