
Copyright 1976. All rights reserved

COMPUTATION OF
TURBULENT FLOWS
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W. C. Reynolds
Department of Mechanical Engineering, Stanford University,
Stanford, California 94305

1 INTRODUCTION

The computation of turbulent flows has been a problem of major concern since the
time of Osborne Reynolds. Until the advent of the high-speed computers, the range
of turbulent-flow problems that could be handled was very limited. The advances
during this period were made primarily in the laboratory, where basic insights into
the general nature of turbulent flows were developed, and where the behaviors of
selected lamilies of turbulent flows were studied systematically. For the engineer
there were only a limited number of useful tools such as boundary-layer prediction
methods based on the momentum-integral equation with a high empirical content.
Features such as sudden changes in boundary conditions, separation, or recirculation
could not be predicted by these early methods with any degree of reliability. Very
specific empirical work remained an essential ingredient of any engineer’s analysis.

Midway through this century computers began to have a major impact. First it
became possible to handle more difficult boundary layers by complex integral
analyses involving several first-order ordinary differential equations. By the mid-
1960s there were several workers actively developing turbulent-flow computation
schemes based on the governing partial differential equations (pde’s). The first such
methods used only the equations for the mean motions, but second-generation
methods began to incorporate turbulence pde’s.

In 1968 Stanford hosted a specialists conference designed to assess the accuracy
of the then current turbulent-boundary-layer prediction methods. (Kline et al 1968).
The main impact of this conference was to legitimize pde methods, which proved
to be more accurate and more general than the best integral methods.

Vigorous development of more complex and supposedly more general pde
turbulence models followed. Methods were first developed in which a pde for the
turbulence energy was solved in conjunction with the pde’s for the mean motion.
Then, in an effort to reduce the empiricism required, models incorporating a pde
relating to the turbulence length scales were studied. More recently there has been
intense development of models involving pde’s for all of the nonzero components
of the turbulent stress tensor.
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184 REYNOLDS

The ability of these more complex models to produce predictions for the detailed
features of turbulent flows has outstripped the available storehouse of data against
which these predictions Can be compared; moreover, the output of these programs
now includes quantities that are difficult if not impossible to measure. At the same
time that these rapid developments were being made in computation, some totally
new approaches to turbulence experiments were introduced (Laufer 1975). These
centered on the observation that turbulent shear flows possess a remarkable degree
of organization of their large-scale motions. New "selective sampling" techniques
were introduced to study these structures, and a great deal has been learned. As
yet the pale models have not made much use of the new experimental data, ~erhaps
because large-scale transport is not really consistent with the "local" ideas used in
pde models. A step in this direction was recently taken by Libby (1975).

One new approach that appears promising, and is just beginning to be carefully
explored, is the idea of using a very fast, very large computer to solve three-
dimensional time-dependent pde models for the large-scale turbulence. These would
incorporate a simple model of the small-scale turbulence in some semiempirical way.
At present these methods are in their infancy, but already they have begun to shed
some light on the simpler pde models, in some cases producing numerical values
for constants used in the "simpler" two~imensional steady pale models. As
experience with this approach grows, and as machines improve, it seems quite
likely that this type of ealeulation will eventually be useful at the engineering level.

This review outlines the essential ingredients and effectiveness of several levels of
turbulent-flow pale models:

1. Zero-equation models--models using only the pale for the mean velocity field, and
no turbulence pde’s.

2. One-equation models--models involving an additional pale relating to the turbu-
lence velocity scale.

3. Two-equation models--models incorporating an additional pde related to a
turbulence length scale.

4. Stress-equation models--models involving pde’s for all components of the
turbulent stress tensor.

5. Large-eddy simulations--computations of the three-dimensional time-dependent
large-eddy structure and a low-level model for the small-scale turbulence,

Zero-equation models are common practice in the more sophisticated engineering
industries, and one-equation models find use there on occasion. Two-equation
models, currently popular among academics, have not been used extensively for
engineering applications; probably because one can do as well if not better in most
problems with simpler methods. Stress-equation modeling is now under intensive
development; it is essential for handling the more difficult flows, and will probably
become standard practice in industry in ten years. Large-eddy simulations are just
in their infancy, and are serving mainly to help assess the lower level models.
However, in the long term, large-eddy simulation may be the only way to accurately
deal with the difficult flows that stress-equation models are presently trying to
handle.
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COMPUTATION OF TURBULENT FLOWS 185

Four other reviews have appeared recently covering selected aspects of the subject.
Reynolds (1974), in a publication long delayed in press, outlined the state of affairs
in 1970. Mellor & Herring (1973) provided an overview of one-equation, two-
equation, and stress-equati0n modeling as of mid-1972. Cebeci & Smith (1974)
have an entire book on the subject, concentrating primarily on their own zero-
equation approach. Bradshaw (1972) wrote an incisive and delightful review of the
interplay between model development and experimentation that should be
mandatory reading for all students of the field.

The present review concentrates on the hydrodynamic modeling of incompressible
flows, but sources of insight for extension to compressibility and heat transfer are
mentioned.

2 ZERO-EQUATION MODELS

The equations describing the mean velocity field in incompressible turbulent flow
are well known (Tennekes & Lumley 1972); they follow from the Navier-Stokes
equation by the usual decomposition of the velocity field into mean and fluctuating
components, u~ = Ui + ul, and may be written as

1
(], + Uj U,.j = - ~ p., + (2vS,j- R,j).j (2. la)

U~.~ = 0. (2.1b)

Here we use the Cartesian-tensor summation convention, in which repeated indices
are to be summed over all three coordinates. Subscripts after commas denote partial
differentiation, e.g., Ui.l = dUi/~xj, and the overdot denotes a partial derivative with

respect to time. R~j = u~u"1 (-pR~j is the Reynolds stress tensor), and S~ 
½(U~.~+ Uj.~)is the strain-rate tensor; v is the kinematic viscosity, p is the pressure,
and p the mass density. Note that S~ = 0 by (2.1b).

To close equations (2.1), additional equations must be provided for Ri~. In the
simplest models R~ is described by a Newtonian constitutive equation of the form

R~ = ½q2 ~i~- 2VT S~j (2.2)

where q2 = R~i, and vr is a turbulent or eddy viscosity that must be prescribed in
some suitable manner. The q2 term can be absorbed into p, and so need not be
calculated explicitly..

In a zero-equation model, vr is related directly to the mean velocity field Uv For
free shear flows (jets and wakes) one makes the usual boundary-layer assumptions
to simplify (2.1). Remarkable success is obtained with simple assumptions of the
form

vr = KAUb (2.3)

where AU is some appropriate velocity difference associated with the flow (e.g.
the difference between jet centerline velocity and the velocity of the external flow),
and b is a length scale characterizing the width of the jet. The constant K may
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186 REYNOLDS

vary from flow to flow, but is typically of the order 0.05-0.1. In this model the
turbulent viscosity is constant across the shear layer at any given downstream
station (see Schlichting 1968). A similar sort of assumption also works very well 
the outer (wake) region of turbulent boundary layers.

In the wall region of a turbulent boundary layer it is essential to consider the
cross-stream variation of the turbulent viscosity. Outside of the viscous region a
commonly used form is

vr = ~u. y. (2.4)

Here x is the "K~rm/m constant" (approximately 0.4), u. is the "shear velocity,"
u. = (z~,/p)1/2 where z~, is the wall shear stress, and y = x2 is the distance from the
wall. Very close to the wall, where viscous effects are important, success has been
had with simple modifications of (2.4) that reflect the effect of the wall in suppressing
turbulent transport, for example

vr = xu, y[1 - exp (-y+/A+)]2 (2.5)

where y+ = yu,/v, and A+ is an empirical constant.
Alternatively, many have used the "mixing-length model," which can be generalized

by

VT = 12(2SnraSnm)112 (2.6)

where l is the "mixing length." In the wall region of a turbulent boundary layer,
but outside of the viscous region, the velocity field is known to behave as

OU _ u,
(2.7)

Oy xy

where U = UI is the flow velocity parallel to the wall. This is the only important
element of U~o. With l = xy in the wall region, (2.4) and (2.7) are equivalent.

Patankar & Spalding (1970) were among the first to document boundary-layer
computation methods of this type, and now make programs available on a
commercial basis. More recently Cebeci & Smith (1974) devoted an entire book 
the subject, emphasizing their own particular computational models and processes
of this general type. A Stanford group under W. M. Kays and R. J. Moffat has been
working with these methods for several years, with the distinct advantage of doing
this in parallel with their comprehensive experimental program on turbulent
boundary layers with wall suction, blowing, pressure gradient, and heat transfer.
Their own particular model is certainly one of the most advanced of this type, and
I have chosen to delve into it in more detail to illustrate the empiricism and
capabilities of such methods. Their present program is called STAN-5, and is
available upon request for reproduction costs (Crawford & Kays 1975).

The boundary-layer simplifications of (2.1) produce

~ + Oy Ox t- v + Vr) (2.8)

where we have used Ui = (U, V, 0), xi = (x, y, z), and p* = pip + qZ/3. In a boundary-
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COMPUTATION OF TURBULENT FLOWS 187
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layer calculation, p*(x) is derived from the pressure distribution applied by the
external flow. STAN-5 uses (2.6) specialized to boundary-layer flows,

VT = 12 ~y . (2.9)

In the outer region it uses l = ~o.99, where 60.99 is the thickness of the boundary
layer to the point where U is 997o of the free-stream velocity U~o. The factor 3, is
provided with a dependence on the momentum-thickness Reynolds number
Ro = OU~o/v in order to better predict low-Reynolds-number flows,

f0.085
2 = max ~0.25R~-°"25(1 - 67.5F) (2.10)

Here F is a wall-layer blowing parameter, Vo/Uoo, where Vo is the velocity of injection
into the flow through the wall.

The inner regions are handled by assuming that

l = )cy[1 -exp (-y+/A+)] (2.11)

with x = 0.41. The parameter A+ is given as a complicated function of both the
pressure gradient and blowing rate, shown in Figure 1. There v~ = Vo]u,, and
p+ = (dp/dx)(v/pu3,). empirical fit to Figure 1 isused in STAN-5. The parameter
A+ determines the thickness of the viscous region; this will not change suddenly
if p+ or v~" changes suddenly; to accommodate this delay, STAN-5 uses a "lag"
equation,
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1 ~ 8 REYNOLDS

dA+ A~+ -A+

dx + = 4000
(2.12)

where A~+ is determined from Figure 1, and x+ = xu,/v. In handling the heat-transfer
problem, similar models and empiricism are required; for details see Crawford &
Kays (1975).

For a particular flow of interest, U~(x) and p(x) are known, and a "starting"
profile U(xo, y) must be prescribed. The numerics are actually executed in STAN-5
using the stream function as a dependent variable and the mean vorticity as
independent variable, as in Patankar & Spalding (1970). The mesh points are
closely spaced in the wall region, and then expand out away from the wall.

The resulting velocity distributions, temperature distributions, skin friction, and
heat transfer are typically in excellent agreement with experiments, except for layers
very close to separation. Figure 2 shows one of the greater triumphs of the
STAN-5 model, the heat-transfer predictions for a turbulent boundary layer sub-
jected at first to strong blowing, which is removed midway through a section of
very strong acceleration, which in turn is terminated downstream. The rapid

St

0.00~

0.001 -

I

RUN 111369-2

I

STRONG

BLOWING
I NO-BLOWING

STAN-5 PREDICTION
JONES & LAUNDER (1975)

I I I I
I 2 3 4

X,ft
Figure 2 STAN-5 prediction.
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COMPUTATION OF TURBULENT FLOWS 189

changes in heat-transfer coefficient that accompany the cessation of blowing and
acceleration are extremely difficult to predict; every element of the empiricism
reflected above is essential to the success of this calculation. Recent extensions of
STAN-5 have given excellent predictions of the heat transfer for discrete-hole
injection in full-coverage film cooling.

Two other groups are experienced in the use of zero-equation methods for a
wide variety of problems. The first is that of T. Cebeci and A. M. O. Smith at
the Douglas Aircraft Corporation. They have extended their calculations to
compressible flows, flows over axisymmetric bodies and bodies with longitudinal
curvature, and have done extensive calculations on aircraft wing and body systems.
Their particular model, as well as their numerical technique, is outlined in detail
in their book (Ccbeci & Smith 1974), which is highly recommended to potential
users of zero-equation methods. Cebeci et al (1975) have extended the procedures
to three-dimensional turbulent boundary layers~ A second group is that at Imperial
College, under D. B. Spalding. Patankar & Spalding’s book (1970) describes their
zero-equation approach for turbulent boundary layers, and another book by
Gosman et al (1969) describes their modeling of recirculating flows. The most finely
tuned zero-equation model for boundary layers is probably the STAN-5 program
developed at Stanford as an extension of the Patankar-Spalding approach
(Crawford & Kays 1975).

Zero-equation models like STAN-5 are extremely useful in engineering analysis.
However, they fail to handle some important effects, such as strong surface curvature
and free-stream turbulence, all important on turbine blades. Nor are they accurate
near separation points or in boundary layers subjected to extremely strong
accelerations. The more advanced models, which incorporate a pde for the
turbulence kinetic energy, were originally introduced in the hope of providing
additional generality and at the same time to reduce the extensive empiricism that
is essential to success in a zero-equation model.

3 ONE-EQUATION MODELS

An equation describing the dynamics of the turbulence kinetic energy can be derived
from the Navier-Stokes equations by simple manipulations (Tennekes & Lumley
1972),

42 d- Uj(q2),j 2(~- 5)J1,1" (3.1)

Here ~’ = - Ril U~,j is the rate of production of turbulence energy, e = 2vs~j s~ is the

rate of energy dissipation, and Jj = , , , - 1 ....(uiu~uj+p p uj-2vu~,js~) is the diffusive flux
of turbulent kinetic energy, all per unit of mass. We use s~ = ½(u}.j + u~,~).

Alternatively, (3.1) can be written with e replaced by the "isotropic dissipation"

~ = vu~,.~u~,) and Jj replaced by J~ = u~ u~ u~+p- lp’u~- v(q2),j. This second form 
appealing because of the direct appearance of the gradient diffusion of q2 by v in
J~’. Some authors have incorrectly termed 9 the dissipation. At high Reynolds
numbers the isotropy of the small-scale turbulence renders ~ = 5, but this is not
true at low Reynolds numbers, or near a wall.
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190 REYNOLDS

In one-equation turbulence models, (3.1) forms the basis for a modal equation
for the turbulence velocity scale q. Typically (2.2) is used as a constitutive equation,
and the turbulent viscosity is modeled by

Vr = c2ql. (3.2)

The length scale I is prescribed, much as in the zero-equation approach typified
by STAN-5. The dissipation and transport are modeled in terms of the scales q and
I. It is well known that, at high Reynolds numbers, the rate of energy dissipation
is controlled by inviscid mechanisms (nonlinear interactions that cascade energy to
smaller scal~s) and that the small-scale motions adjust in size to accommodate the
imposed energy dissipation. Hence, by dimensional analysis

~ = c3q3/l. (3.3)

The diffusive flux is usually treated by a gradient-diffusion model,

Jy = - (c,, vr + v)(qz),j. (3.4)

STAN-5 has the capability of incorporating this one-equation model for
boundary-layer analysis. The zero-equation approach described above is used for
y+ < 2A+ ; for y+ > 2A÷ equations (3.1)-(3.3) are employed, using (2.10) and 
to prescribe I. Guidance in selection of the constants is -obtained by using the
well-known fact that, immediately outside of the viscous layer, (2.7) holds, and the
production and dissipation terms are essentially in balance. Using (2.7), (2.9), 
(3.2) in this region, one finds c2 u./q. Setting ~- ~ = 0 in thi s region, one
obtains ca = (u./q)3 = c3~. STAN-5 uses c2 = 0.38, c3 = 0.055, suggested by experi-
ments that show qZ/u2. -’~ 7 in this region, and ca = 0.59, which was determined by
comparing calculations with the one-equation model with those of the zero-equation
model. As a "boundary" condition on the qZ calculation, which is carried out only
for y÷ => 2A+, STAN-5 requires that q2 be such that vr at y÷ = 2A+ matches vT
generated by the mixing-length model (2.9) at this point. Kays and his co-workers
have used this model to explore the effects of free-stream turbulence on boundary-
layer heat transfer (Kearney et al 1970) and presently are using the model to study
the effects of rapid changes in free-stream conditions ("nonequilibrium" boundary-
layer behavior).

Norris & Reynolds (1975) proposed a one-equation model that shows promise
as an alternative to the highly empirical A + correlation and empirical lag equation
needed if one is to get good results in the viscous region. Their intent was to
develop a one-equation model that is valid right down to the wall. Noting that at
low Reynolds numbers the dissipationshould scale as vq~./l 2, they use

~=c3~- 1+ . (3.5)

They argue that the length scale should do nothing special in the viscous region,
but should behave like l = xy right down to the wall. Near the wall, q ~ y, and so
(3.5) near the wall becomes ~ cacsvqZ/l2 and ~ approaches a constant asy - ~ 0.
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COMPUTATION OF TURBULENT FLOWS 191

This is indeed the proper physical behavior of the dissipation. Finally, they use
(3.4), but assume that the turbulent transport is suppressed by the presence of the
wall, and hence

vr = c2ql[1 - exp (- c6qy/v)]. (3.6)

Note that this produces vr~y* as .y~0. At the wall (3.1) becomes
-2~+v~2q2/~y2 = 0, which requires cacs/x2 = 1 if q ~ y near y = 0. Having
established ca, this determines c4. Finally, a value for c6 can be estimated from the
known behavior for a fiat-plate boundary layer, and they used c6 = 0.014.

Norris and Reynolds applied this model to channel, flow with blowing from one
wall and equal suction on the other. For I they used a smooth fit between l = 0.4y
near the wall and l = 0.136 in the center, where fi is the channel half-width. The
mean velocity profiles calculated in the wall region, and the change in skin friction
over the no-blowing case, are in excellent agreement with the corresponding data
for flat-plate boundary layers. Since the main effect on A÷ is that of o~, and the
Norris-Reynolds model seems to handle that quite well, it does seem likely that it
will handle the pressure-gradient system as well. A boundary-layer version of this
model is being prepared to study this conjecture.

A similar approach was adopted by the Imperial College group, reported by
Wolfshtein (1969). However, Wolfshtein allowed the length scale to depart from
xy in the viscous region, but kept the same behavior (3.3) for the dissipation. When
placed in comparable forms, the constants used by Wolfshtein and by Norris and
Reynolds are quite similar.

Norris and Reynolds discovered an interesting aspect of the behavior of their
model. They solved the channel-flow equations by guessing a wall dissipation,
integrating outwards from the wall, and then adjus.ting the wall dissipation until
the proper conditions were satisfied at the channel centerline. The calculation proved
enormously sensitive to the wall dissipation, and a double-precision integrating
scheme had to be used. The guessed dissipation had to be within one part in 10a

of the proper value before the calculation could even continue to the centerline (if
the value was further off, q2 either blew up quickly or went negative). This very
narrow window meant that a wide variety of centerline conditions could be satisfied
with almost identical distributions of mean velocity and kinetic energy in the viscous
regions; computationally the model confirmed the concept of the law of the wall !

Most workers have abandoned one-equation models in favor of two-equation or
even stress-equation models. However, it may be that one can do better with this
sort of one-equation model in most flows of interest, for it may be easier to specify
the length-scale distribution than to compute it with a pde. This would be
particularly true if the length scale really should be governed by the global features
of the flow through an integral-differential equation. Hence, further study of
extended one-equation models is encouraged.

Mellor & Herring (1973) discuss some of the earlier work on one-equation
models, citing numerous references of particular calculations. The serious student
of this subject will find their review particularly useful as a resource for compu-
tational examples.
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192 REYNOLDS

4 TWO-EQUATION MODELS

In attempts to eliminate the need for specifying the turbulence length scale l as a
function of position throughout the flow, several workers have explored the use of
a second turbulence pde, which in effect gives I. The groups at Imperial College
and at Stanford both experimented with ad hoc transport equations for 1, with no
real success. However, success has been had by both groups and others using a
¯ model equation based on the exact equation for the isotropic dissipation ~; this
equation can be developed from the Navier-Stokes equations by appropriate
differentiation, multiplication, and averaging, and is

~ + Vj~,j = -- W - Hj,j. (4.1a)

Here

W = 2vu;,j u)~ u~,~ + 2v2u~,2j U;,kk

+ 2v(u;,~ u;.k U.~,k + U;,k Uj,k Ui,a) + 2vu~i U;,k Ui,~x (4.1 b)

n j = vu; ~, u~.k u~ + 2VU’.t,k p~ -- V-~ ,~. (4.1 C)

H~ represents the diffusive flux of ~ in the j direction.
The systematic workers first have insisted that their two-equation models describe

properly the decay of isotropic turbulence, and then have worried about the
behavior of their models in homogeneous flows where the transport terms vanish.
For the isotropic-decay problem, (3.1) and (4.1) reduce 

E(k) " E=Akm/

kL kd
k

Figure 3 Model spectrum.
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~2 ~. -2.~, .~ = - W. (4.2a, b)

W is a scalar for which a closure assumption is needed. In this problem W must be
a function of the only other variables around, q2 and ~, and from dimensional
arguments must be (at high Reynolds number)

W = ¢7~2/q2.¯ (4.3)

The exact solution for the decay is

q2 = q~(l + t/a)-n, ~ = ~o(l + t/a) -tn+ l), (4.4a, b)

a = nq2o/(2~o), n 2/ (c7-2). (4.4c, d)

Here q~ and ~o are the initial values. Early experiments suggested n = 1, which
gives c7 = 4. Comte-Beilot & Corrsin (1966) (hereafter denoted by C-BC) 
special care to obtain better isotropy, ant) their data reveal n values in the range
1.1-1.3. Lumley & Khajeh-Nouri (1974b) (hereafter denoted by LK-N2) suggested
that slight anisotropies are responsible for these differences, and proposed a higher-
order model to take this into account. But this theory does not explain the different
values observed in truly isotropic decay, as revealed in Table 3 of C-BC. It seems
more reasonable that the structure of the low-wave-number portion of the spectrum
is responsible for these differences.

The influence of the low-wave-number spectrum on n can be shown using the
spectrum of Figure 3, following a similar analysis of C-BC. The low-wave-number
part of the spectrum is assumed to be permanent, and the high-wave-number
portion moves down as ~ becomes smaller. The peak, which corresponds to the
energy-containing scale, occurs at wave-number kL. To the left of the peak we take
E = Ak’~; it is known that E ~ k* for k -~ 0, but this might not include ttie energy-
containing range and so we allow a less gradual growth in this range. For k < ko
the k* behavior might exist, but we do not need to deal with this region. To the
right of kL we use the Kolmogoroff inertial-subrange spectrum E ,-~ k-~13. The
constant ct is universal for this spectrum, and has a value of about 1.5. In the
inertial subrange, energy is transported up the wave-number scale by nonlinear
interactions, and the spectrum is controlled solely by the rate at which energy is
being processed upscale (i.e. by the dissipation ~). At high wave-numbers, viscosity
is important, but this range does not contain significant energy and need not be
considered here in detail. It is a simple matter to calculate the energy contained in
this model spectrum from q2/2 = S E(k) dk, assuming ko ,~ k~ a kd. One finds

q2 = ~t (m~ -l- ~) k Z 2/3..~2/3. (4.5)

It is interesting that the form of the large-eddy spectrum enters through m, but its
strength (A) does not. Equation (4.5) shows that the length scale of the energy-
containing eddies is q3/~ [compare (3.3)], and hence the time scale is q2/..~.

Matching the two portions of the spectrum gives

~ = [a~2/~/A]~Om+ ~!.
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194 REYNOLDS

Then, using (4.5)

~ = C [q2]t3m + S)/tZm + 2) (4.6)

where C is a constant. Substituting in (4.2a), and solving for q2, one obtains (4.4a)
with n = (2rn+2)/(m+3). So, rn = 4 gives n = 10/7, m = 2 gives n = 6/5, and rn = 1
gives n = I.

It is clear that the details of the low-wave-number portion of the spectrum are
instrumental in determining n ; since these details are in no way represented by the
scales ~/2 and ~, there is no way that this model can exactly predict the decay of
laboratory grid turbulence. However, it is possible to make a fairly rational choice
of c7. We really should expect the model to work only when the large-scale structure
is devoid of any scales, i.e. when the large-scale energy is uniformly distributed over
all wave vectors. This occurs only when ~bu(k) is the same at all k low wave-numbers.
The three-dimensional energy-spectrum function used above is E(k)= 2~k2$u(k),
and represents the energy associated with a shell of wave-vector space. Hence, in
"equipartitioned" large-scale turbulence,1 E(k) ~ 2. On t his basis we r ecommend
n = 6/5, which gives c7 = 11/3, This is close to the value used by LK-N2 and the
Imperial College workers.

When strain is applied to the flow, there is every reason to expect an alteration
in W; something must provide a "source" of ~, and this must depend in some way
on the mean flow. Lumley has argued that this cannot come from the terms in W
explicitly containing the mean velocity, but must come from the first two terms in
W [see (4.1b)], which are very large but of opposite sign. Lumley feels that the
alteration of W by strain should be modeled in terms of the anisotropy of the
Reynolds stress tensor. If we follow this approach, and represent the anisotropy
through

b~ = (R~- qZri/3)/q2, (4.7)

then the first scalar that can be formed from the anisotropy measure is b2 = b~jb~.
Lumley therefore proposes

W = (c7 - csb2)~/q2. (4.8)

LK-N2 use c7 = 3.73 and cs = 30.
In a two-equation model b~ must be produced from the constitutive equation

(2.2), with vr given 

VT = C9q4[~. (4.9)

To match (3.2) and (3.3), c9 c2c~. Then, b~j = 2c9q23i~/~ and b2~- 4c29qa,.R2/~,

where S2 = S~S~. The turbulence production is #~ = 2c9q*$2/~. and hence b2 =
2c9#/~. Hence, in this model (4.8) may be written 

x There is no real reason to require E(k) ~ ~, as required by analyticity i n kask --, 0

(see Hinze 1959). The boxlike grid certainly could create a directionally dependent dE/dk
for k~0.
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COMPUTATION OF TURBULENT FLOWS 195

~g" = (¢7- C1.0~/~)~2/q2 (4.10)

where Clo = 2CSC9.
Using Lumley’s value of Ca = 30 and the other constants given earlier, Clo = 1.25.

The group under B. E. Launder at Imperial College has explored two-equation
models extensivdy, using forms equivalent to (4.10) with Clo = 3.1.

It seems most desirable to determine c~0 by reference to experiments in nearly
homogeneous flow, where the transport would not confuse the issue. There are two
types of such flows, those involving pure strain and those involving pure shear.
Tucker & Reynolds (1968) (hereafter denoted by TR) and Mar6chal (1972) studied
the pure-strain case; Champagne, Harris & Corrsin (1970) (hereafter referred to 
CHC) and Rose’(1966) studied homogeneous shearing flows. In 1970 equation (4.10)
was proposed as a generalization of models used by Launder and others, and the
constants were evaluated by reference to the TR and CHC flow (see Reynolds
1974). For that evaluation c7 = 4 was used. Recently L. H. Norris and I repeated
the evaluation for the preferred value of c7 = 11/3. We carefully evaluated the
production term from the data in these two flows, and used this as input to (4.10).
The q2 history was carefully differentiated to get an initial value for ~, the ~
and q2 equations were solved simultaneously by an accurate forward-difference
integration, and the q2 histories were compared with the experimental data. We
found that Clo = 2 gives excellent agreement in both flows, as found in the earlier
work. Hence, if one elects to use (4.10) in any model, the choices c7 = 11/3, Clo = 
are recommended.

At this point we have a two-equation model that can be tested against the
homogeneous TR and CHC flows. In a prediction the Ri~ and hence ~ must be
derived using the constitutive equation (2.2) with (4.9). Remarkably good results 
obtained for the TR flow with c9 = 0.025. As noted below, (4.9) gives c9 = 0.020
using STAN-5 constants. With this value the two-equation model underpredicts
~ in the TR flow, and does not produce enough anisotropy in the Reynolds
stresses. When applied to the CHC flow, the two-equation model "fails miserably
in prediction of both shearing and normal stresses.

A weakness of (2.2) is that it forces the principal axes" of Ri~ and Si~ to 
aligned. This is true in pure strain (the TR flow), but is not true in any flow with
mean vorticity (e.g. CHC). One is tempted to try a modified constitutive equation
(see Saffman 1974)

q2
Ri~ = ~- ~i- 2vr Si.i- c~ ~ 12(Sik ~kj + Sjk ~kl) (4.11)

where fl~ ~= 7(U~,~- Uj,i) is the rotation tensor. In a two-equation model I could 
expressed in terms of q2 and @. Equation (4.11) does produce the right sort 
normal stress anisotropy in shear flows, but the new terms do not alter the shear
stress, and hence (4.11) works no better than (2.2) for the CHC flow. Two-equation
models also fail to predict either the return to isotropy after the removal of strain
or the isotropizing of grid-generated turbulence (C-BC). This failure arises because
of the need for a constitutive equation for the R~. Thus, one should not really expect
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196 REYNOLDS

two-equation models to be very general, although they might be made to work well
with specific constants in specific cases, such as boundary layers.

In spite of these difficulties with models based on constitutive equations, their
simplicity makes them attractive. Two-equation models have been studied by a
number of groups, and it is significant that these workers inevitably turn to stress-
equation models because of the difficulties outlined above. Stress-equation models
have their own problems, and so there probably is still considerable room for
development of two-equation models. Of particular interest is turbulent-boundary-
layer separation, where anisotropy of the normal stresses is known to be important.
Since (2.2) will not give this properly in a shear layer, but (4.11) can, the use 
(4.11) in conjunction with two-equation models Should be explored further.

To use the two-equation model outlined above in an inhomogeneous flow, one
needs to assess (or neglect) the effects of inhomogeneity on W, and also to model
the transport term Hi. Jones & Launder (1972, 1973) (hereafter referred to by 
and JL2, JL meaning both) assume that W is not modified by inhomogeneity and
use a gradient-diffusion model for Hi,

Hi = - (v + cl z vr)~,j (4.12)

with c12 = 0.77. Lumley (see Lumley & Khajeh-Nouri 1974a, hereafter denoted by
LK-N1) argues on formal grounds that the diffusive flux of dissipation should
depend as well on the gradients in turbulence energy, and vice versa, in the manner
of coupled flows such as thermoelectricity and thermodiffusion studied by the
methods of irreversible thermodynamics. If this is true, one should use models of
the form

J~ = - A~ ~q,~- A~ ~-~,~, (4.13a)

H~ = - A2~q~- A22-.,~,.~. (4.13b)

Lumley and his co-workers have done this in their stress-equation modeling, but as
yet no users of two-equation models have adopted this approach. Equation (4.13)
allows for up-gradient diffusion of turbulence energy, a real phenomenon in the
central region of a wake, while the simpler uncoupled models do not. This is an area
worthy of further experimentation within the structure of two-equation models.

The ~-equation model described above works fairly well at high Reynolds
numbers, but fails near a wall where viscous effects are important. JL proposed
ad hoc low-Reynolds-number modifications that seem to work reasonably well in
the wall region, and Hanjali6 & Launder (1974) (hereafter denoted by HL) proposed
further modifications of the ~ equation for use with their stress-equation model.
Clearly the W term has to be modified, for in the "final period" of decay of
isotropic turbulence q2 ~ t- 5/2 instead of t- 6/5. If the turbulence Reynolds number
Rr = q4/(~v) is small, then the inertial terms in the dynamical equation are
unimportant, and in isotropic turbulence I4’ is dominated by the second term in
(4.1b). At low Rr, ~ ~ vq2/l2, so that l ~ (vq2/~)~/2, and W ~ v2q2/P ~ ~2/q2.
Hence, at low Rr, W = c~2/q2, which is of the same form as the high Rr behavior
(see 4.3). Setting n = 5/2 in (4.4), c~ = 14/5, which is consistent with the models 
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COMPUTATION OF TURBULENT FLOWS 197

HL and JL. A smooth transition between c7 and c~ is needed; a form similar to
that used by JL and HL but consistent with c7 = 11/3 and c~ = 14/5, is

W = ~ fl(Rr)~2/q2 (4.14a)

where

33
fl = 1 - ~ exp [- (Rr/12)2]. (4.14b)

Remember that this is just for the part of W that is nonzero in homogeneous
isotropic turbulence.

Equation (4.14) presents problems near a wall, where ~-~ const and q2~ 
Launder and his co-workers get around this by ad hoc modifications of their model
equations. HL replace ~2 by ~ where ~ = ~-v(~q/~x~) 2. Unfortunately they
refer to ~ as the isotropic dissipation, for some reason confusing it with ~. In
spite of this semantic problem, their assumption does seem to work in boundary
layers. However, this reviewer would prefer an approach in which ~-~ const as
y-~ 0, which is correct physically.

An alternative approach to handling this part of W near a wall is

11
W = ~- fr(R r) [ 1 - exp (- c l a qy/v)] ~2/q2. (4.15)

This gives W ~ const as y --* 0. The use of (4.15) should be explored.
The third and fourth terms on the right in (4.1b) vanish at high Rr because 

the small-scale isotropy. HL planned to include these at low Rr by lumping them
with the first two terms in (4.1b) by further modification offv However, they found
that this was not necessary. The last term in (4.1b) was neglected by JL. It was
modeled by HL in a complex way involving products of two second derivatives of
the mean velocity and the Reynolds stresses.

JL2 used the two-equation model to study a limited number of boundary layers,
including the "difficult" flow shown in Figure 2. The predictions of their model are
seen to be noticably less accurate than those of the STAN-5 one-equation model
shown.

One difficulty with using the ~ equation as the basis for a second model equation
has escaped the model developers. This arises from the second term in (4.1c), the
pressure-gradient-velocity-gradient term in the transport H~. Since the pressure field
depends explicitly upon the mean velocity field (see Section 5), mean velocity
gradients can explicitly give rise to ~ transport. This could be an extremely
important effect, especially near a wall. The omission of this consideration would
seem to be a serious deficiency in all ~-equation models that have been studied
to date.

Other two-equation models have been heuristically conceived. Of these the most
well developed is the Saffman-Wilcox (1974) (hereafter denoted by SW) model.
Instead of a @ equation they use an equation for a "pseudovorticity" ~

~2 + Uj(O2),~ = [g(U,,j Uid)~12 - ~f~] f~2 + [(v + avr)(f~2),~],~. (4.16)
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198 REYNOLDS

In conjunction with this they use the q2 equation (3.1) with

~ = ct*(2S2)~/2q2/2, ~ = fl*q2~/2.

They use (3.4) for the q2 transport, setting c4 = a*, and for vr they set

vr = q2/(2.Q). (4.18)

The constitutive equation (2.2) is used to provide Rij for the mean-momentum
equations. Their recommended constants are ~ = 0.1638, ct* = 0.3, fl = 0.15, fl* =
0.09, a = 0.5, a* = 0.5.

The production term ~ as given by (4.17a) is inconsistent with the o
constitutive model; this seems to be an internal inconsistency in the model, but
it may in fact be a strength. The ~ model is based on the experimental fact that
the structure of the turbulence in the wall region of a boundary layer is essentially
independent of the strain rate, and hence ~ should be proportional to q2. Hence,
the SW model is a curious blend of the "Newtonian" and "structural" alternatives
(Reynolds 1974).

For isotropic-turbulence decay the SW-model equations may be solved exactly.
The high-Rr behavior, q2 ~ t-6/5, is obtained if fl*/fl = 3/5, as suggested by SW.
I recently tested the SW model against the TR and CHC flows, using "starting"
values for f~ carefully calculated from the initial q2 decay rate. In neither case were
the results at all impressive. Moreover, the SW model does not display the proper
decay of isotropic turbulence at low Rr. Therefore, it does not appear that the
SW model is or can be any more general than any other two-equation model. Indeed,
both Saffman and Wilcox are independently exploring stress-equation models
(Saffman 1974, Wilcox & Chambers 1975), neither version of which presently works
very well in the TR and CHC flows.

The SW model has been tested against only a limited body of boundary-layer
flows. The model works surprisingly well in the viscous region, but has the
troublesome point that f~ must be infinity at a perfectly smooth wall. SW use a
"large" value of f~ at the wall to produce mean-velocity curves that are in excellent
agreement with expe~’iments for smooth walls. In effect, SW match their solution
to experimental data by judicious choice of the value of the wall f~. In SW they
considered only zero-pressure gradients with no transpiration. More recently
Wilcox & Chambers (1975) examined a few cases of pressure gradient and trans-
piration, and made a useful comparison of the SW model with other two-equation
models, including JL. By judicious selection of the wall value of f~ they could
match some of the Stanford transpired boundary layers; their calculations indicated
a strong effect of blowing on the wall t). Thus, the SW method will require a graph
of the wall f~ as a function of pressure gradient and blowing parameter, similar to
Figure 1. Wilcox also found it essential to use accurate values for the free-stream
value of f~, which he also had to carefully deduce from experimental data. It
appears that the sensitivity of the SW model to free-stream conditions may be
significantly greater than that of the JL model, and certainly is much greater than
that of one-equation models.

(4.17a,b)
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COMPUTATION OF TURBULENT FLOWS 199

One is led to conclude that the SW model should not be used as an engineering
tool until such time as it has been developed much further. Regarding ~ as a
reciprocal time scale may be useful in guiding these developments.

5 STRESS-EQUATION MODELS

In turbulent shear flows, the energy is usually first produced in one component
and then transferred to the others by turbulent processes. Exact equations for Ro
can be drived from the Navier-Stokes equations (Tennekes & Lumley 1972); for
an incompressible fluid,

~ij ~t" Uk Rij,k = Pij + T~j - Dij - Jijk ,g. (5.1 a)

Here P~j is the "production tensor,"

P~j = - RiR Uj,k -- Rjk Ui,k = -- (Rik Ski + Rjk Ski) + (Rik f~kj + Rj~, [~ki). (5. lb)

Note that P. = 2~. Here T~j is the "transfer tensor,"

1
Ti.~ = -~ p’(u~,j + u~.,,). (5.1 c)

This "pressure-strain" term is responsible for energy exchange between components.
Note that T, = 0 by continuity. Dij is the "isotropic dissipation tensor,"

D~j = 2VUl,k U~,k (5.1d)

and D. = 2~. The tensor Jo~ is the diffusive flux of R~.

Jijk = - (p’u; 6~ + p’uj 6i,) + u~ u’.l u’~ - vRi~,k. (5. ! e)
P

Note that J~i, = J~.
P~ is explicit, but models are needed for To, D~2, and J~. In addition, one must

either specify l or use a ~ equation. We first discuss the high-Reynolds-number
modeling of (5.1), particularly as applied to homogeneous flows, and then discuss
the problems and status of extending this model to inhomogeneous regions,
particularly near walls where Rr is small.

The one fact that seems very clear from experiments is that at high Rr the
small-scale dissipative structures are isotropic. Hence all workers now use

O,j = ~@6~j. (5.2)

The transfer term T~ has been the subject of most controversy and experimen-
tation. In a flow without any mean strain, this term is responsible for the return
to isotropy. However, in deforming flows the situation is much more complicated.
Guidance is provided by the exact equation for the fluctuation pressure, derivable
from the Navier-Stokes equation (see Tennekes & Lumley 1972),

1
- p’,. = - 2u~a U j,,- u~a u~., + u~,j u~.~ = 0 ~ + 0~- (5.3)
P
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The source term in this Poisson equation contains two parts, each of which is
responsible for a part of the pressure field. The part determined by 91, which
involves the mean deformation explicitly, we denote by iv’t, and the remainder by
iv]. Following LK-N2, the explicit dependence of the P’x contribution to TU can be
obtained for homogeneous fields in terms of the Fourier transform of the velocity
field. Let

p’~. = f/~(k)[exp (ik" x)] (5.4)

In homogeneous flows the mean gradients are constants, so (5.3) gives

i) = ~2u~ ~ u ~,,. (5.5)

Then, the part of the pressure-strain term associated with iv] is (we adopt the
subscript choice of LK-N2 for convenience in comparison)

Tlw = -~ P’t(u’v,q + u’~a,) = ~(k)[ fi~(k’)k’a + fi~(k’)k~] 

Using (5.5) and the statistics of random transforms, (5.6) becomes

where

("/’k.~ kq k1 kv k \ dk

(5.6)

(5.7a)

(5.7b)

Eql~ation (5.7a) is identical with an expression developed by Rotta (1951) 
slightly different arguments.

Models for Gu~ have been proposed by Launder and Lumley and their co-workers.
There are various constraints that Guya must satisfy. From continuity, G~vv = 0,
G,v~ = 0. Also, G~t~ = R~a. For isotropic turbulence these suffice to define G~pq.
Hanjali6 & Launder (1972) first used a model of G~.~ that involved linear and
quadratic terms in the R~. Later Launder, Reece & Rodi (1973) (hereafter denoted
by LRR) dropped the quadratic terms. LK-N2 also used nonlinear terms, but later
Lumley (1975a) argued that the model must be linear in the Reynolds stresses because
for a field that is the sum of two uncorrelated-fields TI~ should be the sum of their
individual T~;i~. Lumley (1975a) sought to resolve certain inconsistencies between
the calculations and experiments by allowing G~w to depend in a complicated way
on scalars developed from combinations of the mean deformation and bU (see 4,7).
But this violates the condition that the Guy~ should not be changed by a sudden
change in the mean strain rate. If this condition is imposed, and we insist on linearity
in the Reynolds stresses, then the G~a model (in a homogeneous field) must be of
the form

Gova = {_ T,X ~.~V~+.i~(flvOjq +fiar~)v)}ql I 2 +s{~(b~v(5ja +b~a6~,)1 s

-.}(b~v 6,, + b~ 6~v) + A ~ [b~ fin- ~(b~, 6~, + b~, 6~a,)
-)(bjvb,,+bj, b,,)+b,qbu]}q ~. (5.8)
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Using this in (5.7a), the part of T,j explicitly related to the mean field must be

TI~j = 7(~ 1 + A t )So q ~ - ~A3 ! [Rik Ski + R~k Ski + ~I~2 3ij]

--~(~+-~ At)[g~kflk~+ g~kf~k,]. (5.9)

This is precisely the form used by HL.
The part of T~ associated with g2, which we denote by T2~, should not change

instantly when the mean deformation is changed, and hence should not depend
explicitly on the mean deformation. LK-N2 ignored this requirement, and allowed
F2~j to depend on the rotation tensor. Lumley (1975a) has now abandoned this
position. Launder and his co-workers, and others, have followed Rotta in assuming

T2ij = -- Ao~b~. (5.10)

The constant Ao determines the rate of return to isotropy. Its value has been the
subject of much uncertainty. The TR flow implies a value Ao = 6, while the C-BC
data suggest that a much lower value is appropriate. HL and LRR use Ao = 3.0;
LK-N2 use Ao = 3.21. LRR point to the advantages that would be obtained if a lower
value of approximately 0.6 could be used, in which case the behavior near a wall
would be much more accurately modeled. Lumley and his co-workers add additional
nonlinear terms in the b~, feeling that the rate of return to isotropy should depend
upon the degree of anisotropy. It does not seem that the data justify the inclusion
of higher-order terms, and so (5.10) is recommended, at least for homogeneous flows
away from boundaries at high Rr.

L. H. Norris and I recently studied this problem using the exact solution of the
model equations for the return to isotropy in homogeneous turbulence without
strain. Using (5.2) and (5.10) in (5.1), for this 

/;~ = - (,4o- 2) ~ b~. (5.11)

Equations (4.2) again describe q2 and 9. The exact solution for the decay is (see 4.4)

bij = bij0(.1 + tiff)-(A2-2)n12 (5.12)

where bijo are the initial values. Note that A0 must be at least 2 if isotropy is to
be restored. Norris and I used the data of C-BC’s Table 1, and first gimply solved
(5.11) for (Ao-2). Subsequently we compared the solution (5.12) to the data, 
n = 6/5. There is a great deal of scatter, because the anisotropies are rather small.
There was absolutely no systematic dependence of Ao on either anisotropy or RT.
Based on this work, we recommend Ao = 5/2.

Kwak, Reynolds & Ferziger (1975) studied the TR flow in a numerical simulation,
and found a much slower return to isotropy than indicated in the TR experiments.
However, different components return at decidedly different rates. Shaanan, Ferziger
& Reynolds (1975) carried out a similar calculation for a shear flow similar to that
studied by CHC. In a computation the shearing can be removed, which cannot be
done experimentally. These calculations also showed a marked difference in the
return rate for different components, probably because of great difference in the
length scales in the three directions. We conclude that current stress-equation
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202 REYNOLDS

models will not do a very good job in handling the return to isotropy; however,
the models may work well in flows dominated by other effects.

The constant AI should be evaluated by referenc~ to homogeneous flows, such
as the TR and CHC flow. LK-N2 used -2.456, which was obtained by a
comparison with a rapid-distortion analysis of homogeneous strain. Later Lumley
(1975a) argued against this approach, and settled on -1.23 (in a more involved
model). LRR use a value of -1.45 [their c2 = -({+~-~A1)], which they base 
homogeneous experiments. I recently found that - 1.5 is a reasonable compromise
between -1, which works better for the TR flow, and -2, which works better for
CHC, and now recommend A1 = -~.

Inhomogeneities greatly complicate the T/j modeling, especially Tlij. LRR add a
complicated term inversely proportional to the distance from the wall. Recently
M. Acharya and I extended LK-N2’s analysis for Tti~ to a flow near a wall. We
took Fourier transforms in only the xl and x3 directions, and solved the ordinary
differential equation for the transform amplitude/~(y). This leads one to a messy
integral expression in which T~i~ .depends upon the mean velocity gradients at all
points in theflow. In a wall region one might well expect T~ij to be determined by
a region at least as wide as the distance to the wall, and henc, a complex integral
model is really needed for such flows. This is a very unsatisfactory aspect of
present stress-equation modeling, and an area that should receive considerable
attention in the future.

In addition to modifications in T~, inhomogeneities require modeling of J~k. The
gradient-diffusion model is usually employed; HL and LRR set

2
= - A2 -~ (Rin Rjk,n + R~, Rik,n + Rkn Rij,n). (5.13)

Hanjali6 & Launder (1972) gave some justification for this form by consideration
of the dynamical equation for u~ u) u~. Lumley (1975a) used somewhat more extensive
arguments to provide in effect further justification for this form. Since Ji~k contains
one pressure-velocity term, and since p’ will have a part (fit) that depends
explicitly on the mean velocity gradients, it does seem that Ji~k also should be
explicitly linear in the mean gradients, though this need has escaped notice.

Other modifications n~cessary near a wall have been suggested by LRR. In
particular, they propose to allow anisotropy in Dij at low Rr, and have concocted
a smooth transition between (5.2) and

D~j = 2Rij .~/q2, (5.14)

which they incorrectly imply is exact as Rz-, 0.
Two approaches have been used in stress-equation modeling. The earlier work

(Donaldson 1972) involved specification of the length scale and use of (3.3) 
determine ~. HL used the @-equation model outlined above in conjunction with
the Rii equations. At this writing, this work is in a state of rapid development, and
undoubtedly improvements will be made by the time this article is released.
Interested persons should follow most carefully the work of Launder and Lumley.
It will be some time before these models are sufficiently well developed to be
better than simpler models for use in engineering analysis.
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COMPUTATION OF TURBULENT FLOWS 203

An interesting use of stress-equation models is suggested by a contraction of
(5.13),

q2
Jiik = - A 2 -~ (Rk, q,~, + 2Ri, Ri~.,). (5.15)

If this is compared with (3.4), its counterpart in the one- or two-equation models,
an important difference is seen; equation (5.15) does allow for a flux of q2 to 
driven by gradients of other than q2. Moreover, if the constitutive equation (2.2) 
used with (3.2), the q2 flux will be driven by mean velocity gradients. These
effects are not incorporated in (3.4); an approach to improving the simpler one- and
two-equation models might be to use the more complex stress-equation model as
a guide to the nature of new terms that should be included.

There is a basic difficulty in this general approach to turbulence models. One
would like to model only terms that respond on time scales short compared to
that of the computed quantities. It is well known that the smM1 scales respond to
change much faster than the large scales, and hence it is reasonable to express a
quantity dominated by small scales, such as D~j, as a function of quantities dominated
by large scales, such as R~. However, terms like J~ have time scales comparable
with that of R~i, and thus one really should not expect an equilibrium constitutive
relationship to exist between J~ and Rij. In general, it seems that higher-order
statistical quantities take longer to reach steady state than lower-order statistics;
for example, in a channel flow the "entrance length" for the mean velocity is rather
short, While the entrance length (or the Ri~ is known to be quite long. Any model
obtained by truncation at some statistical order would suffer from this difficulty.
What one really needs to do is truncate at some level of scale, and thereby take
advantage of the fact that the smaller scales do adjust faster to local conditions.
Then, by truncating at smaller and smaller scales, one has at least some hope of
convergence, a hope that is at best dim when one truncates at higher and higher
orders of statistical quantities that have comparable time scales. The large-eddy
simulation described in the next section provides one avenue to a scale-truncation
approach.

Lumley (1975b) and Corrsin (1974) discuss the modeling of turbulent transport
in inhomogeneous fields from a more basic point of view. Corrsin provides criteria
under which the gradient transport approach might have some validity, and
becomes very skeptical about the validity of the model in boundary layers. Lumley
argues that the transport model should contain a combination of gradient transport
and convective transport, and develops a simple model that includes both effects.

An interesting identity that might be useful in a different approach to turbulence
modeling is

R~j,j = - e~k U) ~O’k + ½q2,i (5.16)

where o~; = eOkU’k,s is the fluctuation vorticity. When this is used in (2.1a), the
Reynolds "stresses" disappear (except for a "Reynolds pressure" q2/2) and are

replaced by "Reynolds body forces" F~ = e~iku~O’k. Stress-equation models try to
model R~I, and then take their gradients. It might be easier to model the body forces
Fi directly. For a physical discussion of the F~, see Tennekes & Lumley (1972).
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6 LARGE-EDDY SIMULATIONS

This line of approach is just beginning to bear fruit. The idea is to do a three-
dimensional time-dependent numerical computation of the large-scale turbulence.
It is impossible to compute the smallest scales in any real flow at high RT (and
will be forever), so they must be modeled. Care must be taken to define what it is
that is being computed and the early work was not done with sufficient care.

In 1973 we began a systematic program of development and exploration of this
method, in close cooperation with NASA-Ames Laboratory. The first contribution
was made by Leonard (1974), who clarified the need for spatial filtering. We now
define the large-scale variables by (see Kwak, Reynolds & Ferziger 1975)

f~x) = f G(x- x’)f(x’) (6.1a)

where the filter function is

G(x-x’) = L\,~J exp[-6( x-x’)2/A~]. (6.1b)

Here Ao is the averaging scale, which need not and should not be the same as the
grid mesh width. We use this particular filter because of its advantages in Fourier
transformation. When this operation is applied to the Navier-Stokes equation, and
an expansion is carried out, one finds (neglecting molecular viscosity)

O,+U$U,,$= - ~., + - ~44 (~)~,-R,~ +O(A~) (6.2)
-~,J

where - pRij are the "subgrid-scale Reynolds stresses." The unusual term appearing
before RU is an additional stresslike term resulting from the filtering of the nonlinear
terms; we now call these the "Leonard terms," and view - pAZ.(Ui U~),~/24 as the 
"Leonard stresses."

We have explored two models for the RU, both based on (2.2). The first 
Smagorinsky’s (1963) model,

2 I12vr = BIA.(S..S..) . (6.3a)

The second uses the rotation in place of the strain rate,
2 I/2vr = B2A°(fl.,.fl..) (6.3b)

In these expressions SU and f~i$ are the strain rate and rotation of the calculated
local time-dependent large-scale field. The qZ term in (2.2) is again absorbed with
the pressure. Note that the subgrid terms R~i are 0 (A~), and hence if they are
important the Leonard stresses are also likely to be important. Moreover, a
difference scheme must be used that is accurate to O(A~); this important require-
ment was overlooked by many of the early workers.

Kwak, Reynolds & Ferziger (1975) solved the isotropic-decay problem, adjusting
Bx or B~ to obtain the proper rate of energy decay. The calculations were started using
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COMPUTATION OF TURBULENT FLOWS 205

an isotropic field with zero skewness, but the proper skewness develops in only a few
time steps. The predicted results for the large-scale field are compared with the experi-
mental results of Comte-Bellot & Corrsin (1971) filtered with (6.1). We find that 
averaging scale Ao must be twice the computational mesh scale A for a satisfactory
calculation of the spectral evolution. We find that calculation in a mesh containing as
few as 163 points gives remarkably good spectral predictions; better results are ob-
tained with 323 points, and it is reassuring that the same constants B~ or B2 fit both
sizes. The skewness, which is dominated by smaller scales, is predicted much more
accurately in the 323 calculation. Good results are obtained with both (6.3a) and
(6.3b). Figure 4 shows the results for the 165 calculation. On the basis of this work, 
now use B~ = 0.06 or B2 = 0.09. It is surprising that B2 ~ B~, because, as Tennekes
& Lumley (1972, equation 3.3.44) show, Sz ..~ ~z for large Rr. This paradox remains
to be understood.

Next we simulated the TRflow, first with an initial distribution that matched

cm3

sec~

I0

I I I I I I I I I I

/ \ tU° 42

= f
\o 

! t:0= 98

COMPUTED POINTS
¯ O SMAGORINSKY MODEL
"-- ~ VORTIClTY MODEL
-----EXPERIMENTAL DATA
- (FILTERED)

O. 1.0

k cm"t

Figure 4 Decay of isotropic-turbulence-t63 calculation.

I I I II
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the anisotropy of the TR flow and later with an isotropic initial distribution. One
has problems in setting anisotropic initial conditions that are free of shearing
stresses, and so the isotropic starting is probably a better approach. It is remarkable
that the salient features of the TR experiments are captured quite well in a
computation using only 163 points! The results are shown in Figure 5; the
calculation was executed on a CDC 7600, using 120 time steps, in approximately
5 minutes.

Shaanan, Ferziger & Reynolds (1975) are experimenting with a staggered-grid
approach that is second-order accurate and does not require explicit inclusion of the
Leonard stresses. They have validated the constants BI and B2 with this method,
and have also explored the CHC flows. There are some difficulties in providing
suitable initial conditions, so comparison with experiments is not easy. Neverthe-
less, the salient features of the CHC flow can be produced with 16s calculations!

We have started work on the two-dimensional mixing layer, in which we expect

IO’a

iO’4
IO

Figure 5

- o \ %u Uo -

- --., ° o

IOO ~00
DOWNSTREAM DISTANCE IN INCHES

~ars¢-¢ddy simulation (16z) o~ the TuckCr-Rcyno]ds flow.
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to find a sharp boundary between the turbulent field and irrotational external
flow. The vorticity model (6.3b) will offer the advantage of yielding zero subgrid-
scale stresses in a vorticity-free region, and this is the reason that it is of interest.
We plan to extend the computation to "infinity" using inviscid-flow theory, and
the matching of the computation with the inviscid analysis will require use of a
difference scheme that does not produce vorticity improperly. It will be some time
before we will feel prepared to handle a wall flow accurately. In the meantime,
the simulations of Deardorff (1970) and Schumann (1974) provide some initial
experience with channel flows.

One objective of this work is to test the turbulence models, particularly the
stress-equation model. We can compute the pressure-strain terms directly (both
and T21~), and are doing this presently. We had hoped that the calculations would
serve as a basis for evaluating constants in the stress-equation models; instead they
seem to be highlighting the weaknesses of these models, as discussed in Section 5.
However, the fact that a very coarse grid produces such remarkably good results
leads us to believe that large-eddy simulations might, after considerable development,
eventually be useful for actual engineering analysis. Interested readers should also
follow the work ofOrszag & Israeli (1974), who are carrying out similar calculations
using Fourier rather than grid methods.
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