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Abstract-—In a nonrotating system, the shear Reynolds stresses exerted by
surface or internal gravity waves vanish on account of the exact quadrature
between the horizontal and vertical orbital velocities. It is shown that a
rotation of the system induces small in-phase perturbations, resulting in a
mean Reynolds stress which can generate low frequency currents. If both the
wave fleld and the ocean are homogeneous with respect to the horizontal
coordinates, the low-frequency response is an undamped inertial oscillation.
If either the wave field or the occan are weakly inhomogeneous, the oscillation
disperses in the vertical and horizontal directions due to phase-mixing of
modes with closely neighboring frequencies. Other effects which producs
small frequency shifts also contribute to phase-mixing, for example the hori-
zontal component of the Coriolis vector and nonlinear interactions with geo-
strophic currents. The analysis is based on operator representations which
avoid normal mode decomposition and yield simple integro-differential
operators for each phase-mixing process. Numerical regults are presented for a
continuously stratified model typical for a shallow sea (Baltic). The orders of
magnitude and qualitative features are in reasonable agreement with
observations.

Notation (numbers in parentheses refer to defining equations)

(1, 2) = interchange of components 1 and 2 (subscript)
al = mode amplitude

b = —gdplp = buoyancy field

buoyancy amplitude factor (2.8)

I

B
8;, 8, = 9y, 0/0L

J = vertical Coriolis component
F = horizontal Coriolis component
f =1(0,0,f1)

F = (0, f: f)

F,(k) = spectrum of mode » (3.2)
g = gravitational acceleration

%k = water depth
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H,, H, = field operators in cartesian and rotary coordinates (2.9),
(2.16)

H = H, without horizontal Coriolis terms (2.16)

H = H, - H (2.16)

Hy = zero’th order field operator (4.13)

H' = perturbation of zero’th order field operator (4.13)

H, = perturbation H' due to process p (see x5

I, I, I, = integral operators (2.12)/(2.27), (2.10), (2.11)

J = integral operator (2.13)

k = (ky, ky, 0) = wavenumber

ky = ki £k,

= (ki + K52

= horizontal scale length

= mass transport

vertical mode number

= {—gd;p/p)*"? = Brunt-Viisila frequency

= (deviation of pressure from equilibrium pressure)/p

PE = pressure amplitude factor (2.8)

q = (q., q_, q,) = source vector

I

g® = p*-q = component of ¢ acting on modes s

g° = ¢'e’¥t = source component s in corotating coordinate system
s = (%, 0) = mode-branch (polarization) index

t = time

T = phase-mixing time scale

u = (u,, %y, ug) current velocity

Uy = Uy £ TUy

ul, u® = Lagrangian and Eunlerian velocities

ust = Stokes velocity (3.8)

u = (%1, Uy, 0)

U = geostrophic current (4(vi))

X, Xy, ¥y Cartesian coordinates, a; eastwards, x, northwards,
g upwards

Ty = Xy kX

p¢ = eigenvector operator, s = +, 0 (2.2%)

B¢ = orthogonal operators to fi* (2.33)

B3, By = eigenvector and orthogonal operators for H, (4(iii))
g = operator (2.29)
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¢ = surface displacement

¥, = vertical wavenumber of mode n (4.10)

A, = eigenvalue of [ (2.19)

& = particle displacement

£ = pxy) = equilibrium density

S p = deviation of density from equilibrium value

= (u,, u_, p) = field vector
= (U, Uy, p) = field vector
P = B+ ¢ = component of ¢ belonging to mode-branch s
@b = ¢reis’t = field ¢* in corotating coordinate system ‘
X» = Pphase-mixing operator for modes s due to process p
p = w: wave-field inhomogeneity (4(i))
p = h: horizontal component of Coriolis vector (4(iv))
p = f: planetary effects (4(v))
p = I: wave-guide inhomogeneities (4(v))
p = g: geostrophic currents (4(vi))
Xaw * defined by Xgu = $Xw
w = s, n, k) =eigenfrequency (2.24),.(2.25) -
w’ = o - sf = frequency perturbation
Qs = ¢Q = eigenfrequency operators of H (2.31)
Q5 = eigenfrequency operator of H, (4(iii))
Q3F , = perturbations of frequency operator about Qf (4(iii))
v? =0+ &

n—e;ﬁ

1. Introduction

The spectra of ocean currents frequently show a pronounced, sharp
peak at the inertial frequency. Within the peak the two components
of horizontal velocity are found to be highly coherent, in quadrature,
and of equal amplitude, as one would expect for the rotating current
vector of a linear inertial oscillation of large wave length.

Inertial oscillations have been observed in the open ocean and in
enclosed basins, such as the Baltic and Mediterranean, and at all
latitudes and depths. The amplitudes are typically of the order
10 cm/sec, but can sometimes be considerably larger. The vertical
coherence scale is usually of the order 10 m; estimates of the hori-
zontal scale vary from 5 to 100 km, A characteristic feature of all
records is the intermittency of the oscillations: the filtered time
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series show a succession of distinct bursts, usually about five to
twenty oscillations long, separated by periods of quiet. There is
evidence that the bursts near the surface are correlated with high
local winds,(5:19.20.2) At greater depths, no clear dependence on
surface conditions has been found.

A recent survey of inertial current observations and various
hypotheses of their origin has been given by Webster (1968).

The theory of tidal generation (cf. Refs. (8), (13) and (22)) has
lost support with the gradual emergence of a clearer experimental
picture. Most of the features summarized above are difficult to
reconcile with tidal origin: the occurence of inertial oscillations in
small non-tidal basins, the occurence at all latitudes, the lack of
pronounced resonances at the critical latitude, and the intermittency,
which suggests generation by discrete events.

An alternative theory in which the inertial oscillations are assumed
to be driven by the tangential wind stress at the surface has more
points in its favour, in particular the intermittency and the near-
gurface correlation with the wind. However, to obtain motions
below the surface, the surface stress has to be transmitted into the
interior via turbulent shear stresses. Unfortunately, this means that
quantitative predictions depend critically on the parametrization of
the turbulence in terms of “eddy viscosities ”, “ mixed layers ”,
etc'(14,20)

In this paper, another mechanism is investigated in which the
driving forces are attributed to nonlinear interactions between high-
frequency gravity modes. The apparent “ damping ” of the inertial
oscillations is interpreted as the diffusion due to phase-mixing of a
large ensemble of modes with closely neighbouring frequencies. Thus
the generation process is regarded as weakly nonlinear and the decay
process as linear, as opposed to the usual turbulence picture in which
both processes are regarded as strongly nonlinear.

The approach is in accordance with the * weak-interaction ?
interpretation of oceanic turbulence. There is evidence that a broad
range of the ocean-current spectrum can be regarded as a super-
position of linear wave motions, rather than strongly nonlinear
turbulent fluctuations.® This implies that the nonlinear coupling
between the modes is weak and that all * turbulent” transfer
proéesses depending on this range of the spectrum can be analyzed
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rigorously by standard perturbation techniques. Instead of the
traditional picture of an insoluble, strongly nonlinear gystem,

- Oceanic turbulence appears from this viewpoint as a basically

reducible (but complex) transfer system similar to * turbulence *
in plasmas, @1 apn interacting phonon ensemble in the heat conduction
Problem, ) or Bretherton’s® interpretation of clear-air turbulence
in the upper atmosphere.

Adopting the weak-interaction viewpoint, the nonlinear Reynolds
stresses driving low-frequency currents in the ocean may be inter-
Preted as interactions between higher-frequency wave fields, rather
than turbulent stresses. The total stress can be divided into a mean
term, arising from quadratic self interactions of the waves, and a
fluctuating term, arising from difference interactions between pairs of
waves. Only the mean term is considered here.

The response of the ocean to the mean stress exerted by the waves
is closely related to the mass transport of a wave field. To avoid
complications induced by free-surface displacements and density
variations, the mass transport is normally analyzed in Lagrangian
coordinates; the difference between the local Lagrangian and
Hulerian currents, the Stokes current ust, is then a simple quadratic
function of the wave field.

In a nonrotating system, the shear components of the Reynolds
stress tensor vanish, since the horizontal and vertical components of
the orbital velocity are exactly in quadrature. Hence the Eulerian
current is also zero, and the mass transport reduces simply to the
Stokes current. Arguing from vorticity conservation, it has been
shown by Ursell®® that in a rotating system the Lagrangian current
cannot remain constant, but must rotate with the local inertial
frequency. The result is rederived here in terms of the wave-induced
shear stresses, which in a rotating system are shown to be nonzero.
The body force exerted by the waves is —f x ust, where f is the
(vertical) Coriolis vector. In the steady state, the body force is
exactly balanced by the Coriolis force f x ue acting on a Eulerian
current u® which is equal and opposite to the Stokes current. The
mean Lagrangian current u! = u® + ust is zero. Superimposed on
the steady state solution is an arbitrary inertial oscillation depending
on the initial conditions. In practice, the Stokes current is a
slowly varying function of time and space, and the wave-induecd
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current is determined by the integration of the body force over all
time and space. Hence in a rotating system the mass transport
currents are not simply a property of the local wave field, but
represent the cumulative low-frequency response of the ocean to a
variable, wave-induced force field.

The solution can be represented formally as a superposition of
normal modes. The prominence of the inertial peak in the low-
frequency spectrum is due to the degeneracy of the modes at zero
wavenumber, the frequencies of all modes converging to f (in the
f-plane approximation) as the wavenumber approaches zero, Hence
if the horizontal scale of the driving field is large, the response will
be concentrated primarily at the inertial frequency.®®)

The situation is particularly simple if the driving wave fleld is
homogeneous in the horizontal, corresponding to excitation at zero
wavenumber. In this case, the current vectors of all modes rotate
with the same frequency f and their superposition yields an inertial
oscillation which, once generated, continues to rotate indefinitely
with its initial vertical distribution. If the scale of the driving field
is large but finite, the initial horizontal and vertical distribution is
gradually modified by the phase mixing of modes rotating with
slightly different frequencies. The net effect is a dispersion of the
oscillation in the horizontal and vertical directions. In this way, a
finite scale inertial oscillation, generated, for example, by the passage
of a storm, can decay locally without loss of total energy.

Phase-mixing can be caused also by other effects. Any perturba-
tion which removes the degeneracy at zero wavenumber and intro-
duces mode-dependent frequency shifts yields the same dispersion-
type behavior. Horizontal inhomogeneities of the wave guide,
planetary variations of the Coriolis parameter, the horizontal com-
ponent of the Coriolis vector and nonlinear interactions of the low-
frequency motion (in particular with geostrophic flows) all contribute
to phase-mixing. Planetary effects, although frequently discussed in
the literature (e.g. Ref. (18)) are found to be negligible compared
with the other smaller-scale processes.

For a general analysis of phase-mixing, the normal mode approach
is not very useful, since the modes can be represented analytically
only for special stratifications. Asymptotie methods such as the
WKBJ approximation or stationary phase expansions are also not
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immediately applicable, since they apply to single-mode solutions.
The complete field can be reconstructed from the individual modes
Only if the phase relations between the modes are known. In many
applications, the field can be treated statistically and the phases
assumed to be randomly distributed (Gaussian fields). However, the
Pronounced intermittency of observed inertial oscillations indicate
that in the present case the fields are essentially non-Gaussian: the
evolution and decay of the oscillations is dependent on the detailed
Phase relations between an ensemble of modes. Accordingly, a
representation and expansion of the full solution, including all
modes, is needed. TFor this purpose, an operator (Green function)
representation of the solution appears a more natural starting point
of the analysis. By expanding the solution about the degenerate
state, a characteristic operator is derived for each phase-mixing
process. The operators can be obtained directly from the equations
of motion using eigenvalue formulae from the perturbation theory
of linear operators.

Computations are presented for the particular case of phase-
mixing due to wave-field inhomogeneities, using a continuously
stratified model representative of the Baltic. The orders of magnitude
of the amplitude response and decay time are in reasonable agreement
with observations, but the details indicate that other processes, in
particular the scattering due to wave-guide inhomogeneities (non-
aniform depth), may also be important in the real situation.

2. Equations of Motion; Normal Modes
(i) EQuarIioxns or MoTIOoN

It js assumed that the motions to be considered are of a horizontal
scale small compared with the radius of the earth or the lateral
dimensions of the ocean. The ocean can thus be described to first
order as an incompressible, stratified fluid of infinite horizontal extent
in a rotating Cartesian coordinate system. The corresponding
aquations of motion are given in the Boussinesque approximation by

0ty — fup + fug + 010 = — 0;(uyuy) (2.1)

Oty + fuy + 030 = — 8;(uyu;) (2.2)



470 GEOPHYSICAL FLUID DYNAMICS
diug — fuy = b + dyp = — B(uzn;) (2.3)
2.b + N, = - 9,(bwy) (2.4)
g;u; = 0 (2.5)

At the free surface », = 0, the solution must satisfy the dynamical
and kinematical boundary conditions

P gl o= = LBp + (N2
and
a(C Uy == aa(ua‘:) (2 = L 2).

correct to quadratic terms.  Eliminating the surface elevation from
the left hand side. this may he written

Bop - gy = — 13450 p + (N¥2)Q)} + gOu )y = 0 (2.5)
The boundary condition at the bottom is
wg == 1, rg o = b (2.71

We have included the terms arising from the horizontal Coriolis
parameter [, If comparable with the remaining terms in the equa-
tions of motion. these give rise to considerable formal complications,
and it is usually assumed that they ean be ignored. In the present
applications, the justification for this ix not immediately obvious.
Fortunately, however, the terms can he readily incorporated in the
perturbation scheme considered later in See. 41 it is found that they
are usually negligible, but not always.

The system is assumed to he horizontally homogeneous. However,
gradual variations of f. & and N2 will also be considered in See. 4
as perturbations of the homogeneous state. Variations in Boand N2
are found to modify the solutions appreciahly, whereas planetary
effeets are negligible,

Of primary interest later will be the low-frequeney response of the
linear svstem on the left hand side of Bgso 2.0 1270 o the non-
linear foreing terms on the right. Incontrast to the traditional view -
point, in which the nonlinear terms are assoviated with strongly
nonlinear turbulent eddy fhuxes, it is assumed that the components
in the nonlinear terms can be represented to first onder as wave
solutions which satisfy the linearized equations of motion,

The waves oecuring in the nonlinear souree terms are assumed ot
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“ high > frequency, o > f, whereas the response is determined for
“low " frequencies, @ < N. The inequalities here refer to asymp-
totic regions in which the equations of motion can be simplified.
Since f < NV, the ““ high ” and ““ low ” frequency ranges overlap. In
practice, however, the low-frequency response is found to lie close
to f, so that the frequencies of the driving wave fields lie well above
the response frequencies.

The linearized equations of motion and boundary conditions have
normal-mode solutions ¢ with exponential dependence in time and
the horizontal coordinates, ¢ ~ exp[i(k-x — ot)], k = (ky, ks, 0).
In the following, we summarize the relevant properties of these
modes in the asymptotic regions of interest.

(ii) Hier-rrEQUENCY MODES (w > f)

In this case, the Coriolis terms in Eqs. (2.1)~(2.3) can be neglected.
The normal modes are of the general form

Uy Ut
Uy U‘.nk
Ug = U expli(k + x — wt)]
b B}
P Py
iley Og/K?
ko Oafk?
= 1 H(aq) expli(k - x ~ wt)]
—iN?w
)
0 (2.8)

where f(x;) is a (real) vertical eigenfunction. The form of the
eigenfunction is irrelevant for the later discussion, but the phase
relationships will be found to be important.

(iii) Low-rrEQUENCY MODES (w <N)

Tn this case, the term 3,u, in Eq. (2.3) can be dropped (hydro-
static approximation). At any time instant, the fields u, and b are
then determined by the fields u;, u; and p. Eliminating u, and b
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with the aid of (2.3). (2.5) and the boundary conditions. the ling
eqquations of motion for the remaining components take the fy,

3, o — iH, . = 0

1y
where ¢, = | uy | and the linear operator
D
0 -if ig -8, -il,d, 0"
Ho=| i o i) +] 0 0 1)
ilo, ilo, 0 ifr, ~il,8,
with
o " 1 o
I = .\'”-’1[.:','1| ey s g[. dry
J '3 oo Jon
Cry
[, = day
J ~N
" 1)
I, = day .
I3

The operator I ean he reduced to a single integral by integrag
parts and noting that N2 g aglngp,

"0
I sy ‘ oy

where

[}
J o ‘. . {1y . ag) day
N h

with

[ : ¢ I plary) p(00, hoorh iy

Ty n ey oy, wy o xy o0
For small wavenumbers, the dominant part of /7, is the

rotation matrix comtaining the vertical Coriolis parameter it
left of the first matrix on the right hand side of 2290 T
venient to dingonalize this sulnnatrix by transforming to
veloeity components

", (g« tuy)

oo, fHy)
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. Defining similarly
9, = 0y £ 0y,  hy =y & iky, (2.14)

the equations of motion transform to

0, ¢ ~uH, ¢

Uy

where ¢ = (u_) and
P

~f 0 o, (1,0.02) - (iL,3,/2) 0
H, =( 0 f ia_) f< (I,0./2) -(iL,0,/2) ©
1o {2 4I9./2 O ( Ib/2) ~(fI,/2) —il, 9,

=H +H. (2.186)
The general solution of Eq. (2.15) has not been given. We follow
the traditional practice at this point and ignore the horizontal
component f of the Coriolis vector by setting H = 0. The effect of
A -will be considered in the Sec. 4 as one of various perturbations of

the model.
The operator H of the reduced equation

3¢ ~iH¢p =0 (2.17)

i
<

(2.15)

PN

now has separable eigenfunctions ¢

Hepp + o = 0
where
b = B u(xy) expli(k - x ~ wt)] (2.18)
and the eigenfunction i, and polarization vector B¢ satisfy the
separate eigenvalue equations

Il//n = 'ln‘//n (}'n = oonst) (219)
and

_f 0 —k+
( 0 I —lc_> pr = —op (0= wkmn,s) (2.20)
— (A k_[2) — (A, k. [2) O

On account of the reality of the original equations, normal modes
of opposite index are related by

sk = (o'l (2.21)

»




474 GEOPHYSICAL FLUID DYNAMICS

where the subseript (1, 2) denotes interchange of the first and second
vector components of ¢.
Equation (2.19) is equivalent to the usual differential form

(cf. Refs. (1), (17) and (26))
Oa(N 20y, + AW, = 0 (2.22)
with the boundary conditions
goa i, + N, =0 at Xy = 4
Oy, =10 at Jy o=l
The vertical eigenfunctions satisfy the orthogonality relation
[ i
YWty = 8, [ W iy (2.23)
h Jon
After solution of the vertical eigenvalue prohlem. the eigen-

frequency follows by solving the eigenvalue eguation (2.20) for the
{ A A § ! | !
polarization. The eigenfrequencies are found to he

wf = & (fE+ Ak (gravity waves) (2.4
" = 0 (geostrophie flow) 2.25)
with associated cigenveetors
(w* + [k, k.t
o= [ tws =)k o8 = =5 B k f {2,206

loy k* 1

The sequence of eigenvalues 4, deereases monotonieally, the
cigenvalue of the zero'th, harotropic mode standing out several
orders of magnitude above the cigenvalues of the internal modes
n o= 1,2+, The ratio 4, 7, is wiven approximately by wizfg kNG
which for the ocean is typically of the order Tods? For Large values
of this parameter, the boundary condition (2.6) can be replaved tor
internal waves hy the tlat-top boundary ecandition a, 0.0 Thix s
equivalent to replacing the operator 7, Eq. (2.12), by

1 (o

R T (2.27)
-

%
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In the f-plane approximation, all geostrophic modes have zero
frequency. The degeneracy can be removed by allowing for the
latitudinal variation of the Coriolis parameter, which transforms the
geostrophic modes into finite-frequency planetary (Rossby) modes
(cf. Sect. 4(v)).

Of more interest for the present problem is the degeneracy of the
gravity modes at zero wavenumber. In this limit, the horizontal
divergence of the current vanishes. By continuity, the vertical
displacements and the associated gravitational restoring forces are
then also zero, and the ““ gravity > modes degenerate into inertial
oscillations, in which the horizontal current vector rotates with the
local (mode-independent) inertial frequency (cf. Egs. (2.24),
(2.26)).

The observed current spectra agree well within the inertial peak
with the zero-wavenumber limit of the linear theory. The two
components of horizontal velocity (measured at a fixed depth) are
found to be highly coherent, indicating a highly linear interrelation-
ship, and the phase and amplitudes correspond to a nearly circonlar
rotation, as predicted by (2.26). Thus it appears consistent to
describe the low-frequency reponse to first order by the linearized
equations of motion (2.17) of a homogeneous system at zero wave-
number, treating all other effects, such as nonlinear advection,
horizontal variations of the fields or the physical system, etec., as
small perturbations. The magnitudes of these perturbations can be
determined from the analysis. Experimentally, we may conclude
a priori that these effects must be small at frequencies close to the
inertial frequency, otherwise inertial oscillations (in the limiting
sense in which the term has been defined here) would not be observed.

The normal modes can be used to construct the general solution of
(2.17) by superposition. We shall adopt an alternative approach
more appropriate for an expansion about the degenerate state which
involves only a partial decomposition of the solution into the three
normal mode branches s = =+, 0, leaving the horizontal and vertical
mode structure unresolved. For this purpose, it is convenient to
interpret B¢ in Eq. (2.18) as an operator, independent of the wave-
number and vertical mode index. This is achieved simply by
replacing ik, by 8; and 1, by I. Introducing suitable normalization
factors, the expressions (2.26) can then be written

3
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1 0,8 )
v (1) -5 ()
0 S\ i
0 Ia, d,¢ .
1)+ 5 de| = (B dy ¢ (2.28)
0 %

0
p=10)+

1

( 2 _ IYZ)IIZ — — 1 Iyz .
-V jﬁ#b‘fz—‘Z? —gp o Weae %) (2.29)

i

B

where

Equation (2.20) can now also be interpreted as an operator
equation

Hps = - pQs (2.30)

where

Iy (v )

= sQ (s = +,0) (2.31)

is a scalar “ eigenoperator ”’ of the matrix operator H.

The operator IV2/f? occurring in the expansions (2.29) and (2.31)
is of order gh(2n/Af)? for the barotropic mode and (NA/nif)? for the
nth internal mode, where A is the wavelength of the mode, cf.
Sec. 4(ii). It is shown in 4(ii) that-the operator can usually be
regarded as a perturbation for the internal modes, but not for the
barotropic mode. Hence inertial oscillations observed in the ocean
can contain only internal-mode constituents.

In order to decompose the general solution into its three polariza-
tions s, we introduce further the orthogonal projection operators
B¢, defined by

Beo B =68 (5,8 = =,0), (2.32)



WAVE-DRIVEN INERTIAL OSOILLATIONS 477

(TR +f) 1 310 )
Bt = (2021 <f(Q ~f)a%ry—2> - <0) + 0 (_Ia+> I
~2ifo, 0 - dif

il fa_ 0, /io-
EO = (292)‘1<~—7:Ifa+ >'= <0> +_—<—z3+>+
202 + 2172 1) \eyyy |
(2.33)

The general solution of (2.17) may now he written ¢ = ¥,_+ b”(bs,
where ¢° = fs. ¢. The equation for the scalar field ¢* follows by
multiplying (2.17) from the left with =

0:¢° +18Q¢p* = 0 (s = =, 0) (2.34°

The equations of motion

0,9 —iH¢ =q (2.
. 7+
in the presence of a forcing field ¢ = | ¢_ | reduce similarly to
9o
0:¢p° + 1sQp* = ¢° (8 = %,0) (2.36)
where
' ¢ = psq. (2.37)

In the following sections, we investigate the low-frequency
response for the forcing field q arising from quadratic interactions
between high-frequency waves. The problem is considered in three
successive stages of approximation :

(a) The high-frequency wave field is regarded as statistically
stationary and homogeneous. The high-frequency modes are
described by the zero’th order equations (2.8), in which all
Coriolis terms are neglected. (Stokes solution, Sec. 3(i)). It
is found that in a rotating system the Stokes solution is valid
only for times small compared with the inertial period.

(b) The correct solution for a rotating system is obtained by
allowing for first-order Coriolis effects in the high-frequency
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wave field. The high-frequency wave field is still treated as
strictly homogeneous, but is allowed to vary slowly with time.
The wave field is found to generate undamped inertial
oscillations (Sec. 3(ii) ).

(c) The source is generalized to include slow variations with
respect to both space and time. The spatial variations are
found to induce vertical and horizontal dispersion of the
inertial oscillations through phase-mixing (Secs. 4(i), (ii)).
The operator notation has been introduced in this section
primarily for the analysis of this process. Further phase-
mixing processes obtained by relaxation of some of the
idealizations of the model (homogeneity of the physical
system, linearity of the low-frequency response) are con-
sidered in later sections.

3. The Homogeneous Problem
(i) TEE Mass TRANSPORT IN A NONROTATING SYSTEM

Consider first a forcing field consisting of a statistical ensemble of
high-frequency modes of the form (2.8),

u i
(p) = ), ak < ﬁ> exp[t(k - x — wt)] + complex conjugate
(3.1)

k,
b " Bg

Assuming the field to be statistically stationary and homogeneous,
the mode amplitudes satisfy the relations

{ay =0,  (akiaii) =0
2<aﬁl(a’ﬁ§)*> = 51(11{2 5'n1’ﬂ2 Fn1(k1)Ak (3‘2)

1

where 4k is the infinitesimal wavenumber increment of the Fourier
sum and F, (k) is the power spectrum of the mode n. The cornered
brackets denote ensemble means.

If the frequencies of the wave field are high compared with the
inertial period, we can presumably take the mean values of the
quadratic terms on the right hand side of Egs. (2.1)—(2.6) in con-
sidering the low-frequency response. The mean term arises from
quadratic self interactions of waves with their complex conjugates,
whereas the fluctuating component represents difference (and sum)
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