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[1] In this paper the energy budget of wave group-induced subharmonic gravity waves in
the nearshore region is examined on the basis of the energy equation for long waves in
conjunction with analyses of a high-resolution laboratory data set of one-dimensional
random wave propagation over a barred beach. The emphasis is on the growth of forced
subharmonics and the deshoaling of the reflected free waves in the shoaling zone. The
incident lower-frequency subharmonics are nearly fully reflected at the shoreline, but the
higher-frequency components appear to be subject to a significant dissipation in a narrow
inshore zone including the swash zone. The previously reported phase lag of the
incident forced waves behind the short-wave groups is confirmed, and its key role in the
transfer of energy between the grouped short waves and the shoaling bound waves is
highlighted. The cross-shore variation of the local mean rate of this energy transfer is
determined. Using this as a source function in the wave energy balance allows a very
accurate prediction of the enhancement of the forced waves in the shoaling zone, where
dissipation is insignificant. The phase lag appears to increase with increasing frequency,
which is reflected in a frequency-dependent growth rate, varying very nearly from the
free-wave variation � h�1/4 (Green’s law) for the lower frequencies to the shallow-water
equilibrium limit for forced subharmonics �h�5/2 for the higher frequencies. This
observed frequency dependence is tentatively generalized to a dependence on a
normalized bed slope, controlling whether a so-called mild-slope regime or a steep-slope
regime prevails, in which enhanced incident forced waves dominate over breakpoint-
generated waves or vice versa. INDEX TERMS: 4546 Oceanography: Physical: Nearshore processes;
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1. Introduction

[2] The pioneering observations by Munk [1949] and
Tucker [1950] first brought to light the existence of low-
frequency (lf ) waves in the coastal zone, correlated to
incident groups of high-frequency (hf ) waves (wind waves
and/or swell). Because these lf waves were believed to have
been generated in the surf zone as a result of a beat
(subharmonic) phenomenon induced by the narrow-band
incident wind-generated waves, they were called surf beat.
(These subharmonic motions are also referred to as infra-
gravity waves; we do not want to use this term since it refers
to a frequency band below that of the gravity waves, which
is not appropriate here.) Because of their theoretical and
practical importance, they have been studied extensively,
theoretically as well as through laboratory experiments and
field observations. For detailed reviews, reference is made

to recent papers on the subject [Baldock et al., 2000;
Baldock and Huntley, 2002; Sheremet et al., 2002; Reniers
et al., 2002; Janssen et al., 2003]. The following comments
as well as the remainder of this paper are restricted to one-
dimensional (cross-shore) propagation.
[3] Two main mechanisms of generation of cross-shore lf

wave motions by grouped sea/swell waves have been
recognized. One is the quadratic difference interaction
among pairs of primary waves, resulting in group-bound
long second-order waves [Biésel, 1952; Longuet-Higgins
and Stewart, 1962]. These accompany incident sea/swell
waves from deep water, and are subsequently enhanced over
the sloping seabed in the nearshore zone as a result of the
continual forcing by the shoaling primary waves, up to the
zone of initial breaking [e.g., List, 1992; Masselink, 1995],
or even within the surf zone [Foda and Mei, 1981; Schäffer
and Svendsen, 1988]. The other mechanism is the genera-
tion of free waves by a moving breakpoint [Symonds et al.,
1982; Symonds and Bowen, 1984]. Schäffer and Jonsson
[1990] and Schäffer [1993] gave a formulation for the
combination of both mechanisms.
[4] Laboratory observations on a steep beach (slope 1:10)

by Baldock et al. [2000] and Baldock and Huntley [2002]
have indicated a clear dominance of breakpoint-generated
waves. However, no published field observations known to
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the authors have given indications of an observable contri-
bution from breakpoint-generated free waves to the total
wave-induced lf energy in the nearshore zone. It is likely
that this is due to the fact that the bed slopes in the
published field cases, of the order of a few percent, were
much less than in the laboratory experiments referred to.
The same is true for the laboratory experiments by Boers
[1996], where the bed slope in the shoaling zone was about
1:70. Analyses of the latter data by Janssen et al. [2003]
gave no indication of generation by a moving breakpoint.
List [1992] and van Dongeren et al. [2002] have indicated
that the importance of breakpoint generation relative to
(enhancement of ) incident bound waves increases with
increasing bed slope. We return to this question below.
[5] Numerical studies as well as observations indicate

that the rate of growth of shoaling bound waves as a
function of the local depth is higher than for free long
waves (Green’s law), but less than it would be if the
equilibrium theory of Longuet-Higgins and Stewart [1962]
were applied over a sloping bed. Despite the abundance of
numerical models, systematic dependencies controlling the
actual growth rate have not yet been established, even in
the most reduced case of one-dimensional propagation in
absence of dissipation. The present paper attempts to shed
some light on these questions, restricted to shore normal
motions. Results of a set of laboratory data with high spatial
resolution [Boers, 1996] are utilized for a detailed analysis.
We determine, among others, the local, frequency-resolved
rate of energy transfer from the primary waves to the
shoaling forced waves, instead of merely the cross-shore
variation of the total forced wave energy, so as to gain more
insight in the underlying processes.

2. Existing Model Formulations

[6] In this section we review theoretical models that are
relevant in the context of shoaling forced subharmonic
waves.

2.1. Uniform Depth: Equilibrium Solution

[7] The existence of group-bound subharmonic waves
appears to have been first pointed out by Biésel [1952],
who presented the second-order (in wave steepness) Stokes-
type solution for a long-crested wave system in uniform
depth, which to first order consists of an arbitrary number of
sinusoidal component waves of arbitrary frequency and
(small) amplitude, traveling in the same direction (purely
progressive system) or partly or wholly in opposite direc-
tions (including partial or complete standing wave system).
The solution contains bound superharmonics and subhar-
monics of pairs of interacting primary components. As a
special case, Biésel presented the equations for a narrow-
banded set of progressive primary waves, and noted that the
difference interactions therein give rise to group-bound long
waves in antiphase with the envelope of the primary waves.
[8] Apparently unaware of Biésel’s work, Longuet-

Higgins and Stewart [1962] (hereinafter referred to as
LHS62) presented the result to second order in wave
steepness of the difference interactions among pairs of a
set of primary waves of closely neighboring frequencies,
again for one-dimensional (1-D) propagation. Hasselmann
[1962] derived more general expressions correct to second

order including all sum and difference interactions between
pairs of components for the two-dimensional (2-D) case, not
restricted to narrowbandedness. The theoretical results
by LHS62 (1-D) and Hasselmann (2-D) for the forced
long waves have since become widely used and have
been validated against observational data in the laboratory
(1-D) [e.g., Kostense, 1984; Baldock et al., 2000] and in the
field (2-D) [e.g., Herbers et al., 1994].
[9] Assuming a steady state equilibrium solution for the

case in which the short-wave groups are much longer than
the water depth, LHS62 expressed the surface elevation of
the accompanying forced waves (z) in terms of the radiation
stress delivered by the primary waves (Sxx) according to

z x; tð Þ ¼ � Sxx x; tð Þ
r gh� c2g

� �þ const ð1Þ

in which r is the fluid density, g the gravitational
acceleration, h the mean depth, cg the group velocity of
the narrow-banded primary wave system and x a horizontal
coordinate in the direction of wave propagation. The
response given by equation (1) approaches resonance if the
primary waves are effectively in shallow water (kh � 1).
In that case, cg

2 = gh[1 � (kh)2 + O(kh)4] and (omitting the
constant) equation (1) can to order (kh)2 be approximated
as

z ffi � Sxx

rgh khð Þ2
ffi � Sxx

rs2h2
ð2Þ

in which k and s are the characteristic wave number and
frequency of the primary wave system (LHS62). Thus
other things (including Sxx) being equal, the shallow-water
low-frequency response varies with depth (assumed
spatially uniform) as h�2.

2.2. Sloping Bottom: Quasi-Uniform Depth
Approximation

[10] It is important to note that the results summarized
above represent bound waves of constant form propagating
over a horizontal bottom. They cannot be applied to shoal-
ing waves over a sloping bottom without further justifica-
tion. We return to this below. If, for the time being, this
approach is accepted, the variation of Sxx must be specified.
Assuming conservation of short-wave energy, the value of
Sxx increases with decreasing depth, whereas the denomi-
nator in equation (1) decreases, so that the response
increases. In very shallow water, such that kh � 1,
equation (2) applies and (still assuming conservation of
short-wave energy), Sxx � h�1/2, so that the bound-wave
amplitude would vary �h�5/2 as kh ! 0 (LHS62).
[11] It should be pointed out that LHS62 correctly make

the necessary reservations with respect to the applicability
of the steady wave results to shoaling waves, by noting that
the solution cannot depend on the local depth only, but must
depend on the entire form of the bottom profile because of
the expected appreciable depth variation within a distance
equal to the length of a wave group. Referring to the
applicability of the near-resonant solution (2) over a sloping
bottom, they state that its validity is limited (among others)
by the fact that the resonance needs time to build up. On the
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other hand, Longuet-Higgins and Stewart [1964] also indi-
cate that if the bottom slope is sufficiently gentle, so that
dynamical equilibrium has time to be established, z � h�5/2.
The conditions for which this applies have not yet been
established and are investigated below.
[12] Several authors implicitly or explicitly consider the

horizontal bottom equilibrium solution as a theoretical
shoaling law for bound waves over a sloping bottom. For
example, the deviation of the observed cross-shore ampli-
tude variation from a h�5/2 dependence has been used to
support conclusions about the presence or relative impor-
tance of forced long waves in a wave field [Elgar et al.,
1992; Ruessink, 1998a, 1998b]. However, the equilibrium
solution cannot a priori, without the necessary constraints,
be considered applicable to waves over a sloping bottom.

2.3. Mild Slope Approximations

[13] A wide variety of models for the calculation of
bound waves over a shoaling bottom has been developed.
The effects of a stepwise varying bathymetry on the
subharmonic response has been studied by Molin [1982]
for normal wave incidence and deep water conditions for
the primary (forcing) waves. This was extended for sloping
bottoms by Mei and Benmoussa [1984], assuming oblique
incident waves and intermediate water depth for the forcing
waves, on the basis of a WKB-type expansion previously
described by Chu and Mei [1970]. Part of this is reex-
amined by Liu [1989]. Liu and Dingemans [1989] have
extended the formulation to arbitrary, mildly sloping
bathymetry in two dimensions including bottom-induced
scattering. Deterministic and stochastic frequency domain
evolution models for shoaling primary waves, accounting
for quadratic wave-wave interactions have also been devel-
oped, on the basis of the classical long-wave equations
[e.g., Van Leeuwen and Battjes, 1990; Van Leeuwen, 1992;
Janssen et al., 2003], Boussinesq equations [e.g., Freilich
and Guza, 1984; Madsen and Sørensen, 1993; Herbers and
Burton, 1997] and fully dispersive second-order theory
[e.g., Kaihatu and Kirby, 1995; Agnon and Sheremet,
1997; Eldeberky and Madsen, 1999]. Last, we mention
direct numerical integration of (short-wave resolving)
Boussinesq equations [Madsen et al., 1997] or of the
(short-wave-averaged) radiation stress forced shallow-water
equations [e.g., List, 1992; Roelvink et al., 1992; Roelvink,
1993; van Dongeren, 1997; Reniers et al., 2002; van
Dongeren et al., 2003].
[14] All of these models require numerical integration to

establish the local solution at an arbitrary location, because
it depends on the entire bottom profile, as pointed out by
LHS62. Overall, comparisons with observations have con-
firmed the predictive capability of these numerical models,
but general trends in amplitude variation have not been
established.

3. Energy Transfer to Shoaling Forced Waves

[15] Application of the equilibrium relationship given by
equation (1) over a sloping seabed yields a growth rate of
the forced waves exceeding the rate for free long waves
(Green’s law), implying an energy transfer to these waves as
they shoal. Adopting the concept and formulation by
Longuet-Higgins and Stewart [1961, equation [9.2]] this

energy is delivered by the primary waves through gradients
in the radiation stress.
[16] In the steady state, and in absence of dissipation, the

energy balance for forced low-amplitude progressive long
waves can be written as [Phillips, 1977]

dF

dx
¼ R 
 � U

dSxx

dx

� �
ð3Þ

in which F is the phase-averaged energy flux per unit span
by the forced waves, R is the phase-averaged rate of work
per unit area done on the forced waves by the short-wave
radiation stress Sxx, U is the depth-averaged long-wave
particle velocity, and the angular brackets denote phase
averaging.
[17] In the constant depth equilibrium situation, there

should be no net energy transfer between primary waves
and bound waves, which is in agreement with the phase
difference p between the bound wave and the radiation
stress, expressed in equation (1) (so that the stress gradient
and the bound wave particle velocity are in quadrature,
resulting in a zero cycle-averaged energy transfer). For a net
time-averaged transfer to be possible, there must be an
additional phase shift, say�y (here defined as the phase lag
of a bound wave minimum elevation behind a maximum of
the envelope of the primary waves). This implies that local
application of the equilibrium solution for the amplitude on
a sloping bottom is in a sense inconsistent: the amplitude
variation implies energy supply and therefore a phase lag
different than the equilibrium value of p.
[18] Numerous authors have observed that shoaling

bound waves are lagging (increasingly) in phase behind
the primary wave groups (the equilibrium phase lag of p
will be understood from here on), in the field [Elgar and
Guza, 1985; List, 1992; Masselink, 1995] as well as in the
laboratory [Mansard and Barthel, 1984; Janssen et al.,
2000, 2003]. Similar lags have resulted from numerical
calculations in the time domain [List, 1992; Madsen et al.,
1997; van Dongeren, 1997] and in the frequency domain
[Herbers and Burton, 1997]. The existence of such phase
lag has been shown analytically by Bowers [1992], Van
Leeuwen [1992] and Janssen et al. [2003].
[19] The dynamical significance of this phase lag is that it

implies the possibility of a net energy transfer to the forced
waves, as required for observed growth rates exceeding
Green’s law. This fact has been pointed out and exploited by
van Dongeren [1997] and van Dongeren et al. [2002]. Other
than this, it does not seem to have received much attention.
We will investigate this process in detail, on the basis of a
laboratory data set obtained by Boers [1996], characterized
by a high spatial resolution, allowing a frequency-resolved
evaluation of local energy densities and fluxes considered
separately for ingoing and outgoing waves. Following the
description and analysis of these data, we return to the
question which parameter(s) control(s) the enhancement of
the shoaling forced waves and whether generalizable
growth rates can be established.

4. Experimental Data

[20] Boers [1996] carried out experiments in a wave
flume (L � W � H = 40 m � 0.80 m � 1.05 m) of the
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Fluid Mechanics Laboratory of Delft University of Tech-
nology. The flume was equipped with a hydraulically driven
piston type wave generator with second-order control [Van
Leeuwen and Klopman, 1996], suppressing generation of
free superharmonics and subharmonics. Active Reflection
Compensation was used to minimize rereflections at the
wave board. Wave control signals with a duration of 245.4 s
were generated and repeated 7–11 times per run, so that
wave conditions were irregular but deterministic and repro-
ducible. The fixed, smoothed concrete bottom profile used
in the experiments, a mimic of a sandy beach profile, is
shown in Figure 1. A horizontal bottom part of 5 m long
extends between the wave generator (midpoint of the wave
board position at x = �5 m) to the toe (at x = 0 m) of a short,
relatively steep (ffi1:20) approach slope leading to a longer,
more gentle (ffi1:70) slope and two bars. Using repeated runs
with the same control signals, synchronized surface eleva-
tion measurements were conducted at 70 cross-shore loca-
tions (indicated by dots in Figure 1). Velocity measurements
were conducted at 17 different cross-shore locations (indi-

cated by crosses in Figure 1) over a number of points in the
vertical. The measurement sampling frequency was 20 Hz.
[21] Experiments were carried out with a still water depth

of 0.75 m in the constant depth section for three different
wave conditions. In this paper only the low-steepness wave
condition (1C), in which the shoaling of hf and lf waves is
most evident, will be analyzed, with peak frequency fp =
0.29 Hz and initial significant wave height Hm0

,hf = 0.10 m
(defined as four times the standard deviation of the hf
surface elevation for frequencies between 0.20 Hz and
1 Hz). For this condition, there was virtually no breaking
offshore of the outer bar near x = 21 m (Boers, personal
communication). This is borne out by the cross-shore
variation of the hf significant wave height Hm0

,hf, shown
in Figure 2. The shoaling up to the outer bar is clearly
visible as well as the locally enhanced decay over the outer
bar and the inner bar.
[22] The high spatial resolution of the surface elevation

measurements makes it possible to use a quasi-continuous
presentation of the variance density in space, as shown in

Figure 1. Cross-shore bottom profile and still water level in Boers’ experiments. Dots and crosses
represent cross-shore locations of surface elevation gauges and velocity sensors, respectively.

Figure 2. Cross-shore variation of hf significant wave height.
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Figure 3 (left). The values shown were obtained by fre-
quency averaging of raw estimates with a Hamming win-
dow of 12 points, giving 13 DOF and a resolution of
0.026 Hz. The dark bar represents the region of maximum
variance densities near the incident peak frequency fp =
0.29 Hz. It shows weak rhythmic cross-shore variations that
may be shown to fit a nodal structure corresponding to
(partial) reflection at the waterline for f = fp, thus signaling a
weak reflection of the hf energy, which however is ignored
in the following. Shoreward from the outer bar (crest near
x = 21 m), a strong decrease of the variance density of the hf
waves is observed, because of wave breaking. At x = 28 m
most of the incident hf wave energy was lost (about 95%)
[Boers, 1996]. Figure 3 (right) shows the spectra of surface
elevation at two cross-shore locations, one offshore and the
other near the outer bar.
[23] Curved spectral ridges and troughs are visible in the

low-frequency, nearshore region in Figure 3 (left). These
correspond to a nodal structure of the lf waves, indicating
that the lf wave field is a superposition of shoreward and
seaward propagating components. Janssen et al. [2003]
present a detailed analysis of the lf wave signals. Using
cross correlations with high spatial resolution, the incoming
lf waves were shown to propagate shoreward at a speed
slightly less than the group velocity of the primary wave
(the peak frequency value). The outgoing wave speed
matches very closely the free long-wave speed. This is
utilized below for the separation of the total signal in an
incoming and an outgoing component.

5. Amplitude Variation of Incoming and
Outgoing lf Waves

[24] Because we are primarily interested in the process of
energy transfer to the forced waves, we separate the signal
of the total lf motion in incoming and outgoing components
using an array method, based on surface elevation data at a
number of adjacent wave gauges. We use a least squares
estimation procedure [Zelt and Skjelbreia, 1992], modified
for a nonuniform water depth [see also Baldock and

Simmonds, 1999]. As a check, we make point estimates
based on colocated data on surface elevation and horizontal
particle velocity [Guza et al., 1984] at the (fewer) locations
where these are available.
[25] In view of the applied second-order wave board

control, which suppresses generation of free harmonics,
and active reflection compensation at the wave board, we
assume in the analyses to follow that the incoming lf signal
is due to bound subharmonics only.

5.1. Separation Procedure

[26] In so-called array methods the incoming and outgo-
ing lf waves at a certain location are estimated using surface
elevation measurements at a number of adjacent wave
gauges, a so-called local array. The decomposition is carried
out in the frequency domain, on the basis of surface
elevations for a local wave gauge array consisting of P
gauges ( p = 1,. . . P) in locations xp centered around a
reference location xr. The complex amplitude of the mth
harmonic of the total signal at xp is denoted by Zm,p:

Zm;p ¼
1

N

XN
j¼1

z xp; tj
� �

e�i2pfmtj ð4Þ

where j is a time counter, N is the total number of data
points per time series and fm = m/D, with m = 0, ±1, ±2,..
(two sided) and D the record duration. Zm,p is taken to be the
sum of an incoming (Zm,p

+ ) and an outgoing component
(Zm,p

� ). The values of these at the reference location xr are
estimated from the set of equations given by

Qþ
m;p;rZ

þ
m;r þ Q�

m;p;rZ
�
m;r ¼ Zm;p for p ¼ 1; . . . ;P ð5Þ

The operators Qm,p,r
+ and Qm,p,r

� account for amplitude and
phase variation of the mth harmonic between reference
location xr and location xp for the incoming and outgoing
waves respectively, assuming linear propagation and
conservation of energy. Even though this is not necessarily
correct for the forced waves, it is expected to give

Figure 3. (left) Spatial evolution of the variance density spectrum of the measured surface elevation;
density ratio for adjacent iso-density curves is 100.5. (right) Surface elevation variance density spectra at
two cross-shore locations.
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improvements in the calculated separation compared to a
uniform wave approximation, particularly due to the
inclusion of variation of the phase speed across the local
array. Thus

Q�
m;p;r ¼ c�g;r=c

�
g;p

h i1=2
ei y�

m;p�y�
m;rð Þ ð6Þ

Herein, cg
+ (incoming, group-bound waves) is set equal to

the linear theory group velocity of the primary waves at the
peak frequency, and cg

� (outgoing waves) is set equal toffiffiffiffiffi
gh

p
, appropriate for free long waves. These velocity values

have also been used in the calculation of the phases y±, by
integration of the corresponding wave number from xp to xr.
[27] The system of equations (5) consists of P equations

with two unknowns, Zm,r
+ and Zm,r

� . Thus when P > 2, the
system is overdetermined, for which a least squares solution
can be found. The system of equations (5) can be written as

Qþ
m;1;r Q�

m;1;r

Qþ
m;2;r Q�

m;2;r

..

. ..
.

Qþ
m;P;r �Q�

m;P;r

2
66666666664

3
77777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

Zþ
m;r

Z�
m;r

2
4

3
5 ¼

Zm;1

Zm;2

..

.

Zm;P

2
666664

3
777775 ð7Þ

If the phase difference across the local array is relatively
small, the matrix B becomes ill conditioned. The decom-

position method then becomes highly sensitive to noise in
the measurements. This means that a minimum array length
is required to obtain stable estimates, which minimum can
be decreased for decreasing water depth and increasing
frequency. On the other hand, the assumptions used in
equation (6) will introduce larger errors in the separation
results for longer arrays. Thus there are conflicting demands
on the array length. The results shown below are based
on five-gauge local arrays for the higher frequencies ( f >
0.11 Hz) and on nine-gauge arrays for the remaining, lower
frequencies.
[28] As a check on the wave gauge separation results, we

applied the approach utilizing data from colocated sensors
for horizontal particle velocity and surface elevation,
assuming these variables to be related as in long waves
[Guza et al., 1984]. The principal advantage of this method
in our application is that it is not affected by spatial
variations in the wave field, unlike the gauge array method.
Also, singular behavior does not occur because the
corresponding matrix has nonzero eigenvalues, independent
of the frequency. For these reasons, the colocated method is
a good basis for testing the array method, but because
velocity data were available at far fewer points in the
cross-shore profile than the surface elevation data (see
Figure 1), it is not preferred a priori for the final analyses.

5.2. Results for Total lf Wave Heights

[29] Although the separation procedure was carried out in
the frequency domain, we first present results integrated
over the lf spectrum. Figure 4 shows the cross-shore
variation of the total wave height Hm0

,lf for the incoming

Figure 4. Hm0
,lf values for incoming (upper set of data) and outgoing (lower set of data) lf waves, based

on array method (dots) and colocated method (crosses). Dashed curve: Green’s law over approach slope,
initiated with LHS62 solution in the constant depth portion (dark triangle). Drawn curve: Green’s law
initiated with outgoing wave height at x = 8 m.
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as well as for the outgoing lf waves, estimated from the
corresponding Fourier amplitudes according to

H�
m0 ;lf

¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXfmax
fmin

2 Z�
m

�� ��2
vuut ð8Þ

for fmin = 0.03 Hz and fmax = 0.20 Hz. Results of both
separation techniques are shown; they are in good agreement.
This was also the case for the frequency bands separately (not
shown here), indicating that the results of both can be
considered reliable. In the remainder of this paper only the
results of the wave gauge array method will be used, because
the spatial coverage available for this method is much larger
than it is for the colocated method (see Figure 1).
[30] Unfortunately, no data are available in the constant

depth portion between the wave maker and the toe of the
slope. Instead, the hf signal at the toe of the approach slope
(at x = 0 m) was used to determine the value of the incoming
Hm0

,lf according to the LHS62 equilibrium solution (1), by
integration of the local radiation stress spectrum (obtained
from the spectrum of the hf envelope squared, see equation
(13)) over the frequency range from 0.03 Hz to 0.2 Hz. (The
use of the equilibrium solution is justified because of the
second-order wave board control and because we use it only
in the constant depth region.) The result (dark triangle in
Figure 4) is somewhat lower than the value that would be
obtained by extrapolation of the values observed over the
slope to the toe location. The mild amplitude increase over
the steep approach slope is of the order of that given by
Green (short, dashed curve) and far less than according to
the LHS62 equilibrium solution, which would be a factor of
about 4 from the toe at x = 0 m (h = 0.75 m) to x ffi 8 m (h ffi
0.40 m). We return to this in the Discussion.
[31] From the start of the more or less plane, mild (1:70)

slope near x = 8 m to the crest of the outer bar near x = 21 m,
the lf wave height increases from about 1.3 cm to about
3.0 cm, an enhancement factor of about 2.5, considerably
exceeding the energy-conserving value (Green) of about 1.2.
The corresponding gain in shoreward lf energy flux on that
interval is about 3.5%of the hf incident flux, corresponding to
a reduction in incident short-wave heights of less than 2%.
[32] The incident hf waves in the present case were of low

steepness (initial Hm0
about 0.6% of the deep-water wave-

length at the peak frequency). Higher-steepness incident
waves break further offshore, i.e., in relatively deeper water.
This shortens the cross-shore extent of effective energy
transfer to the forced waves, because the forcing is consid-
erably reduced when the short waves start breaking, as a
result of the overall decrease in short-wave amplitude as
well as the reduction in groupiness (see Figure 4). Therefore
it is expected that the incoming bound waves are enhanced
less in the shoaling zone as the incident short waves are
steeper, and that consequently the relative amount of inci-
dent hf energy transferred to the subharmonics is reduced
with increasing incident wave steepness, becoming even
less than the small fraction mentioned above. This would
imply that in many cases the transfer of short-wave energy
to lf motions has a negligible effect on the short-wave
energy balance in the shoaling zone.
[33] Figure 4 shows that at the most shoreward location

for which separated lf signals are available (x = 28 m), the

outgoing lf wave height is nearly 0.65 times the incident
value at that same location, implying an energy loss
shoreward of this location of about 60% of the local incident
flux. This is a remarkably high value, considering the short
stretch in which it occurs (2 m in the flume, or about 1/4 of
the local wavelength of the most energetic lf components,
with f ffi 0.05 Hz). About 95% of the hf energy is dissipated
offshore of this region [Boers, 1996], so the inshore interval
concerned is indeed the extreme shallow-water fringe of the
profile (compare also with Figure 1). Analyses of data
obtained at the Duck field site by Henderson et al. [2000]
have also shown a significant dissipation of lf energy in a
narrow strip near the waterline, particularly for moderate
wave conditions with negligible dissipation on the bar. In a
follow-up paper, Henderson and Bowen [2002] show that
the observed nearshore dissipation is not inconsistent with a
(quadratic) bottom friction process, using a reasonable value
of the dimensionless resistance coefficient, but contributions
from enhanced turbulence due to wave breaking and swash
processes may be expected to play a role as well. In a
similar analysis of the Duck data, Sheremet et al. [2002])
have likewise reported significant lf energy dissipation in
the surf zone, as do Baldock et al. [2000] on the basis of
their laboratory data. However, both these papers do not
mention possible dissipation mechanisms.
[34] It can be seen in Figure 4 that the outgoing lf waves

deshoal in close agreement with Green’s law (plotted in the
figure, initialized at x = 8 m), in agreement with previous
results showing that these are free, longwaves that essentially
conserve energy on the cross-shore interval considered. (As
we shall see below, this energy conservation does not hold
over small propagation distances of discrete Fourier compo-
nents of the outgoing lf waves, which exchange energy with
the incident wave groups in an oscillatory manner.)
[35] Figure 4 shows that the heights of the incident lf

waves exceed those of the outgoing waves at all measure-
ment locations. This is consistent with the fact that for these
experiments the strongest cross correlation between the
short-wave envelope and the incoming lf signal at the same
offshore location occurs at near-zero time lag [Janssen et
al., 2003], in contrast with the well-known observation by
Tucker [1950] (and many after him) that the incident short-
wave envelope at some offshore location was more strongly
(negatively) correlated with the outgoing waves than with
the incoming waves, as inferred from the time lag of
strongest correlation. Thus, for those observations the
outgoing lf waves were dominant compared to the incoming
lf waves. This requires that shoreward of the (offshore)
point of observation, the incident lf waves are enhanced
more strongly than the outgoing waves deshoal. However,
in the present experiments dissipation in the nearshore zone
appears strong enough to prevent the outgoing components
from becoming dominant, but it cannot be excluded that this
would change for locations farther offshore, beyond the
range of Boers’ measurements, such that in those locations
the outgoing lf waves would be dominant.

5.3. Results for lf Wave Heights per Frequency Band

[36] Following the preceding analysis of the total incom-
ing and outgoing lf energy, we now consider this in a
frequency-resolved manner. Figure 5 shows lf wave height
values calculated with equation (8) for a number of separate
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frequency bands with a width of 0.02 Hz. For comparison,
the amplitude variation proportional to h�5/2 is also shown,
i.e., the shallow-water asymptote of the LHS62 equilibrium
solution, initiated with the incoming lf wave height at the
start of the gentle slope (x = 8 m), as well as a variation
proportional to h�1/4 as expected for free long waves
(Green), fitted to optimally match the heights of the outgo-
ing waves in the (de)shoaling zone.
[37] It can be seen in Figure 5 that the growth rate of the

incoming lf waves increases significantly with frequency,
being of the order of Green’s law for the lower frequencies
and comparable to the shallow-water limit of the LHS62
equilibrium solution for the highest of the (subharmonic)
frequencies. The experimentally observed trend of increas-
ing growth rate with increasing frequency is in agreement
with field observations by Elgar et al. [1992] and with
laboratory data presented by Baldock et al. [2000]. It
confirms similar findings based on numerical integration
of the forced long-wave equations [van Dongeren, 1997] or
Boussinesq equations [Madsen et al., 1997]. It implies a
frequency-dependent effectiveness of the transfer of energy
between hf and lf waves, to which we return below.

[38] In the above, we have referred to lf amplitude
variations with depth (at high frequencies) comparable to
the h�5/2 variation of the near-resonant equilibrium solu-
tion for quasi-uniform forced waves over a sloping bed.
Even where such amplitude-depth dependence exists, it
does not necessarily imply that the equilibrium solution
itself applies, because that prescribes an absolute value of
the local lf amplitude in an algebraic dependence on the
local depth and short-wave radiation stress with a given
proportionality constant (equation (1)), in contrast with a
shoaling law (such as Green) which leaves the proportion-
ality constant in the solution undetermined. In the exper-
iment analyzed here, the group-bound waves were
enhanced very weakly over the steep approach slope, about
a factor 4 less than predicted by the equilibrium solution.
Therefore, even if the lf growth rate over the gentle slope
would be proportional to h�5/2, the local amplitudes there
would fall short of their equilibrium values. This again
underlines that the equilibrium solution of LHS62 is not a
shoaling law.
[39] Returning to Figure 5, we see that shoreward of the

offshore bar near x = 21 m the amplitude variation is no

Figure 5. Hm0 values of incoming (triangles) and outgoing (dots) lf waves for different frequency
bands. Lower dashed curve: Green (H � h�1/4), fitted to outgoing wave heights in the zone offshore from
x = 20 m; upper dashed curve: LHS62 asymptote (H � h�5/2), initiated with wave height at x = 8 m.
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longer monotonic, showing maxima due to enhanced depth-
induced response near the crests of the offshore bar and an
inner bar near x = 25 m. These variations are generally more
pronounced for the incident waves and lower frequencies
than for the outgoing waves and higher frequencies. The
high growth rate of the higher-frequency components,
apparent in the shoaling zone, is not continued shoreward
of the outer bar. This is consistent with the release of the lf
waves due to significant dissipation and/or saturation (loss
of groupiness) of the primary waves in this region, although
enhanced dissipation of lf wave energy due to the smaller
depths and short-wave breaking may also play a role.
[40] At the most shoreward measurement location (x =

28 m), the heights of the outgoing and incoming lf waves
are virtually the same for the lower frequencies, indicating
almost full reflection at the shoreline (near x = 30 m).
However, for higher frequencies the outgoing component is
much weaker than the incoming component (about 1/3),
implying a significant dissipation (about 90%) of the
incoming lf energy in that frequency band in the narrow
zone inshore of that location. Thus the lf dissipation
commented on with reference to Figure 4 is not only
localized in physical space but also in spectral space.
[41] An increase of dissipation of lf energy with increasing

frequency is visible in the numerical results by Schäffer and
Jonsson [1990] and Roelvink [1993], based on a model with
quadratic bottom friction, and in the Duck field data as
analyzed by Henderson et al. [2000]. It has been mentioned
explicitly by Madsen et al. [1997], also based on numerical
modeling. They hypothesize that this frequency dependence
may in part be due to the numerical scheme being more
dissipative for higher frequencies, but they also point to the
fact that the higher-frequency subharmonics are less sepa-
rated in frequency from the primary waves than the lower-
frequency components, for which reason they could be more
affected by dissipation due to the breaking of the primary
waves. Observations by Guza and Bowen [1976] of sup-
pression of subharmonic edge waves by breaking of higher-
frequency primary waves have shown that such interaction is
a realistic possibility. Since higher-frequency components
are shorter than the lower-frequency components, their
wavelength spans a smaller portion of the surf zone width
(or may be only a fraction of it), for which reason they would
be expected to suffer more dissipation from this. However,
there is an indication that the dissipation noted in Boers’
experiments may in fact be due to breaking of the subhar-
monic waves themselves, as explained in the Discussion
(Section 7). The physical processes causing this inshore lf
energy dissipation with a significant frequency dependence
require further investigation.
[42] Last, we point out that the trends of the wave height

variation of the outgoing lf components are in good agree-
ment with Green’s law, corresponding to energy-conserving
long waves, independent of frequency, but more locally they
show oscillations around this trend (Figure 5). These
oscillations are due to interaction with the incoming short-
wave groups, as we shall see in detail below.

6. Energy Transfer to lf Waves

[43] In this section we determine the energy transfer from
the primary waves to the lf waves. This is done for the

incoming and outgoing lf waves separately, using the
energy balance equation (3) and the decomposition results
from Section 5. To relate the local fluxes in these long
waves to their local surface elevation, we use the quasi-
uniform wave (WKB) approximation.

6.1. Incoming lf Waves

[44] The incoming forced waves are for the present
purpose assumed to propagate with a phase speed equal to
a representative group velocity cg of the primary waves. For
reasons of continuity, the volume flux, given by Uh, must
equal cgz, from which it follows that U = cgz/h. The value
of the (phase-averaged) energy flux in these forced waves is
calculated on the basis of the long-wave velocity potential f
as

F ¼ �r
D @f
@t

@f
@x

E
h: ð9Þ

In view of the quasi-steady wave assumption, @f/@t =
�cg@f/@x, so that

F ¼ rcg

�
@f
@x

� �2�
h ¼ rcghU2ih; ð10Þ

which for a specific spectral component with velocity
amplitude Û can be written as

F ¼ 1

2
rÛ2hcg: ð11Þ

(This differs from the value for free long waves with a factor
cg
2/gh.) To approximate the phase-averaged rate of transfer
of energy R defined in equation (3), we neglect the
contribution of the gradient of the amplitude of the radiation
stress compared to the contribution of the spatial phase
variation (valid in the shoaling zone, which is the region on
which we focus). The result can be written as

R 
 �
D
U
dSxx

dx

E
ffi 1

2
kÛ Ŝ sin �yð Þ; ð12Þ

in which k = 2pf/cg, the lf wave number, with cg based on
the peak frequency of the primary waves, and Û and Ŝ
denote the (real) amplitude of U and Sxx respectively, at the
frequency considered.
[45] In order to estimate Ŝ, the envelope of the observed

short-wave signal at each gauge location (A(t; xp)) has been
determined using a low-pass-filtered Hilbert transform.
Fourier coefficients of the squared hf envelope function
(which is proportional to the local hf wave energy and
radiation stress) have been determined as

Vm;p ¼
1

N

XN
j¼1

A2 xp; tjÞe�i2pfmtj :
�

ð13Þ

These have been converted into radiation stress amplitudes
using Sxx = (2cg/c� 1/2)E.
[46] The phase lag y of the surface elevation of the

incoming long waves behind the short-wave envelope at
frequency fm is determined from the observations through

ym;p ¼ arg Vm;p=Z
þ
m;p

� �
: ð14Þ
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The cross-shore variation of the additional lag �y 
 y � p
is given in Figure 6 (top), for four frequencies spanning the
lf range. This shows that �y increases inshoreward
direction, indicating that the incoming lf waves have a
smaller propagation velocity than the hf envelope, as
mentioned above (see Janssen et al. [2003] for a detailed
analysis of the Boers data set in this respect). In the shoaling
zone (offshore of the outer bar near x = 21 m), the phase lag
�y varies more uniformly and more strongly for the higher
frequencies than for the lower frequencies, for which the lag
remains initially quite low. Interestingly, for all frequencies
the lag reaches a value of approximately p/2 in the vicinity
of the crest of the outer bar, i.e., in the region of initial
breaking. This is reminiscent of similar behavior of bound
superharmonics [Elgar and Guza, 1985]. The phase lag
continues to increase inside the breaker region, reaching and
exceeding values of p, in agreement with the positive zero
lag correlation between hf envelope and lf surface elevation
that has been reported numerous times for the surf zone.
[47] With the energy flux F given by equation (11) and the

source term R given by equation (12), in which we substitute
the values of Ŝ and �y obtained from the observations,
the time-averaged lf energy balance (equation (3)) has
for a sequence of distinct frequencies been integrated
with respect to the cross-shore distance, taking the most
offshore observed value as boundary value. (A similar
analysis was carried out by van Dongeren [1997], using a
numerical model exclusively, and by van Dongeren et al.
[2002], with predicted values for Ŝ and �y, the latter based
on the theory by Janssen et al. [2003].) The resulting values

of Û have subsequently been converted into values of
the surface elevation amplitude according to ẑ = Ûh/cg.
Figure 6 (middle) shows the values of the source function so
obtained, and Figure 6 (bottom) shows the calculated and
observed surface elevation amplitudes of the incoming lf
waves.
[48] The agreement between calculated and observed

values is fairly good to quite good in the shoaling zone.
This confirms the validity of the applied model schemati-
zation, in particular the expression (12) for the work done
on the lf waves by the grouped hf waves through the
radiation stress and the neglect of dissipation (both restricted
to the shoaling zone).
[49] The results show that the cross-shore variation of the

energy transfer to the subharmonic waves (R) more or less
mirrors the variation of sin �y. This explains why, as
mentioned above, the enhancement of the components with
the lowest frequency is rather low, even near zero in the
region x < 15 m, say, whereas those at higher frequencies
are enhanced more strongly as a result of their larger phase
lag over a greater distance in the shoaling zone. This
difference can only be due to the different variations of
the additional phase lag �y, because the other factors in the
right-hand side of equation (12) have comparable values in
the entire shoaling zone for all frequencies.
[50] Calculated lf amplitudes inside the surf zone are also

shown in Figure 6, but they are not expected to be reliable
for various reasons. First, the radiation stress gradient dSxx/dx
was approximated in equation (12) by neglecting the
contribution from the amplitude variation compared to that

Figure 6. (top) Additional phase lag �y of incoming lf waves behind hf amplitude envelope. (middle)
Corresponding source term R from equation (12). (bottom) Observed (dots) and computed (solid line)
amplitudes of incoming lf waves.
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from the phase variation. This should be a good approxima-
tion in the shoaling zone, but it cannot be expected to hold in
regions of short-wave breaking; note that this also implies
that the breakpoint generation mechanism is not modelled.
Moreover, enhanced lf energy dissipation in the surf/swash
zone will play a role, invalidating a priori the validity of
equation (3). Finally, the use of small-amplitude theory for
the translation of short-wave energy into radiation stress may
not be accurate in the surf zone (although the results in the
shoaling zone gave no indication for this, not even in the
region just offshore of the outer bar where the short-wave
breaking begins, and where such effects are usually maxi-
mal). For these reasons, the model for the energy transfer
given above does not apply inside the breaker zone.

6.2. Outgoing lf Waves

[51] Numerical results by van Dongeren [1997] showed
an oscillatory variation of the amplitude of outgoing peri-
odic lf waves as a result of the repeated variation of the
phase shift between these waves and the incident hf wave
groups through cycles of 2p. These numerical results will
now be subjected to empirical verification.
[52] The same calculation as for the incoming lf waves

has been performed for the outgoing waves, except that the
forced wave speed cg has been replaced by the free wave
speed

ffiffiffiffiffi
gh

p
. The results are shown in Figure 7. Because the

model for the energy transfer does not apply to the surf
zone, the boundary condition for the integration of the
energy balance of the outgoing lf waves has been located
in the most offshore observation point.

[53] As noted above, an important difference with the
incoming waves is that the phase difference between the
incoming short-wave groups and the outgoing lf waves
(�y) varies rapidly through entire cycles from �p to +p
because of the opposing directions of propagation (see
Figure 7 (top)). This implies that energy is continually
transferred back and forth between incident short-wave
groups and outgoing long waves (Figure 7 (middle)),
resulting in cross-shore oscillations in the lf amplitude
(Figure 7 (bottom)) around a mean trend of amplitude
decreasing in the propagation direction (offshore) because
of deshoaling. Note that the transfer rate varies with x in
phase with sin �y. In the shoaling zone, the computed
amplitudes agree quite well with the observed values. The
overall trend and the location and intensity of the oscilla-
tions are well reproduced. For the surf zone, the same
comments apply as were made in the context of the
incoming lf waves.
[54] The results shown in Figure 7 are for discrete

frequencies. Across the spectrum, the oscillations in ampli-
tude of the outgoing lf waves cancel out, resulting in a
monotonic variation of total outgoing wave energy with
depth due to energy-conserving deshoaling (Green’s law,
see Figure 4), although they are still clearly visible in the
results for the 0.02 Hz frequency bands shown in Figure 5.

7. Discussion

[55] In this discussion we make an attempt at generaliza-
tion of the results obtained, using a normalized bed slope as

Figure 7. (top) Phase lag of outgoing lf waves behind hf amplitude envelope. (middle) Corresponding
source term R from equation (12). (bottom) Observed (dots) and computed (solid line) amplitudes of
outgoing lf waves.
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an independent parameter. Following the definition of this
parameter, we discuss its relevance to the dynamics of
shoaling bound waves. This leads to a distinction between
a so-called mild-slope regime and a so-called steep-slope
regime. Next, we make some preliminary quantitative
estimates of the characteristic values of the normalized
bed slope bounding these regimes. We then consider its
relevance for the relative importance of shoaled incident
bound waves and breakpoint-generated waves. Finally, we
consider the dependence of the nearshore dissipation of the
incident subharmonic wave energy on the local normalized
bed slope.

7.1. Normalized Bed Slope

[56] In the present experiment, the growth rate of shoaling
forced lf waves has been found to increase with frequency,
varying from weak enhancement for the lower frequencies
(approximately �h�1/4, Green’s law) to the shallow-water
limit of the equilibrium solution given by LHS62 (�h�5/2)
for the higher frequencies. This frequency dependence is for
a specific set of values of other independent parameters that
were not varied in the experiment, in particular the bed slope.
Now it is well known that a given bed slope appears steeper,
in a manner of speaking, to longer (lower-frequency) waves
than it does to shorter (higher-frequency) waves, because the
former experience a greater change in depth within a
wavelength than the latter. This leads to a well-known
dimensionless parameter, the normalized bed slope, express-
ing the relative depth change per wavelength. It can be
written as hx/kh, in which h and hx are characteristic values
of depth and bed slope in the (sub)region considered and k =
w/cg is the wave number, where w = 2pf. Approximating cg
as

ffiffiffiffiffi
gh

p
, we obtain the following dimensionless parameter (b)

representing the normalized bed slope:

b 
 hx

w

ffiffiffi
g

h

r
ð15Þ

The characteristic value of h to be used here depends on the
region and the process considered; it will be specified in
each particular case.
[57] A parameter that is closely related to b is the

normalized surf zone width as defined for a plane slope
by Symonds et al. [1982] in the context of their breakpoint
generation model:

c 
 w2hb

gh2x
ð16Þ

Here hb is the depth at the mean breakpoint position. It
follows that c = bb

�2 , in which the subscript b on b
designates that we have substituted hb for h. If in the
expression for b we replace the depth by the incident wave
height (indicated by the subscript H) the surf similarity
parameter x [Battjes, 1974] or Iribarren number [Iribarren
and Nogales, 1949] is obtained, except for a numerical
constant: x =

ffiffiffiffiffiffi
2p

p
bH. We utilize this correspondence below.

[58] The relevance of the parameter b (or any of its
equivalents) to the shoaling of forced group-induced long
waves is supported by numerical calculations by van
Dongeren [1997] and Madsen et al. [1997] using bichro-

matic primary waves. Madsen et al. [1997] found that the
variations of calculated incoming lf amplitudes (at the most
offshore breakpoint of the short waves) with the subhar-
monic frequency and the bed slope collapsed into a single-
valued function of the ratio of frequency to bed slope, for
fixed values of incident wave amplitude (this corresponds to
a variation of b through variation of w and hx only). Applied
to the present data set, this would imply that the observed
increase of growth rate with frequency for a given slope can
be translated into an expected decrease of growth rate with
increasing slope for a given frequency. This is qualitatively
in agreement with our observation that the lf shoaling over
the much steeper approach slope was quite weak, in fact
nearly like that of free waves, compared to the higher
growth rate observed over the more gentle slope covering
most of the shoaling zone. In other words, the data suggest a
distinct difference between a steep-slope regime and a mild-
slope regime, primarily controlled by the normalized bed
slope. In the following we elaborate on this assumption and
we make some tentative quantitative estimates of character-
istic values differentiating between these regimes.

7.2. Quantitative Estimates

[59] Taking hx ffi 1:70 and h ffi 0.35 m as representative
values in the shoaling region in Boers’ experiments (see
Figure 1), and using f = 0.04 Hz and f = 0.20 Hz as
transition frequencies for the transitions to weak enhance-
ment and strong enhancement, respectively (see Figure 5),
we find bs ffi 0.30 and 0.06, respectively, where the
subscript s refers to the shoaling zone. A value of bs less
than this lower limit is sufficiently small to allow an
amplitude growth rate as in the equilibrium solution, as
observed for the higher frequencies. (However, the
corresponding phase lag deviates significantly from its
equilibrium value. Indeed, as noted previously, that is a
necessary condition for a growth proportional to h�5/2 in
view of the energy gain required for this.) On the contrary, a
value of bs exceeding the upper limit of about 0.3 appears to
be sufficiently large for the free-wave solution to apply in
reasonable approximation, as observed for the lower fre-
quencies. These estimated transition values are tentative,
because we have used only one data set in this estimation.
Moreover, it is not clear in general which depth would be
characteristic for the shoaling zone, thus making the appro-
priate value of bs somewhat subjective. Future work may
shed more light on this.
[60] Over the steep approach slope, frequency-resolved

results are not available. Using a central frequency for the
LF motions of about 0.1 Hz as representative for the overall
LF motion, in combination with h ffi 0.6 m and hx ffi 1:20,
we find a bs value of about 0.3, implying a steep-slope
regime, in agreement with the observed weak enhancement
of the total incoming lf wave height, which more or less
follows Green’s law (Figure 4).
[61] What can be said about the behavior to be expected

in general? A given slope will always appear to be ‘‘steep’’,
in the present meaning, to waves of sufficiently low
frequency. Therefore the lower-frequency components of
the subharmonic waves are expected to shoal in the steep-
slope regime, approximately like free waves. In contrast, if
the bandwidth of the incident hf waves is sufficient,
energetic lf components may reach sufficiently high fre-
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quencies for the mild-slope regime, implying an effective
energy transfer from the grouped short waves and signifi-
cant excess growth compared to shoaling of free waves. It
would follow from this analysis that the rate of enhance-
ment of the total lf energy in general is between that for free
waves and the local equilibrium solution (this is what in fact
has invariably been observed), depending on the spectrum
(characteristic frequency and bandwidth) and the cross-
shore bottom profile, so that no general relationships are
expected to hold. Moreover, more parameters play a role, in
particular the short-wave steepness. Higher steepness
implies earlier breaking, which is expected to lead to
smaller total enhancement of the forced waves. A more
detailed analysis is required to draw firm conclusions in this
direction.

7.3. Relative Importance of Shoaled Bound Waves and
Breakpoint-Generated Waves

[62] Next, we consider the relative intensity of the
shoaled bound lf waves and the lf waves generated by the
moving breakpoint [Symonds et al., 1982]. In the latter
theory, the amplitudes of outgoing lf waves, for weakly
modulated bichromatic incident hf waves on a plane slope,
vary in an oscillatory manner with the parameter c defined
in equation (16), reaching a first maximum for c ffi 1,
implying bb ffi 1 since c = bb

�2. Even when taking into
account that hb is smaller than the depth used for the
shoaling zone, this is well in the ‘‘steep-slope’’ regime as
defined above for the subharmonic waves, in which hardly
any enhancement of the lf waves is expected other than free-
wave shoaling, because of ineffective energy transfer to the
long waves by the grouped short waves. So, in the steep-
slope regime the breakpoint-generated waves are expected
to dominate over the (weakly) enhanced incident forced
waves. In contrast, the breakpoint generation is ineffective
for c ^ 10 because of phase cancellation, as argued by
Baldock and Huntley [2002]. (The criterion which they give
can be cast in the form given here.) This corresponds to
bb ] 0.3, and to a smaller upper limit for bs (because the
depth in the shoaling zone is greater than at breaking),
bringing us outside the steep-slope regime. Thus, in the
mild-slope regime the breakpoint generation is ineffective
whereas for those conditions the incident bound waves are
enhanced strongly and may therefore be expected to domi-
nate. These results lend support to and generalize the sugges-
tion by List [1992] and the conclusion by van Dongeren et al.
[2002] that the fraction of the total nearshore lf energy due to
incident bound waves, relative to contributions from break-
point-generated waves, increases with decreasing bed slope.

7.4. Nearshore Dissipation of Subharmonic Waves

[63] Finally, we consider the dissipation of lf energy near
the waterline. The reflection/absorption of the lf waves in
this region has been seen to be frequency dependent. It is
well known that wind waves and swell incident on a slope
may be almost fully reflected if they do not break on the
slope, and be almost fully absorbed if they do. Here too we
can refer to a (local) steep-slope regime and a mild-slope
regime, in this case in the context of surf similarity [Battjes,
1974]. Both regimes are separated by a transition value x ffi
2.5, implying bH ffi 1. We tentatively apply this transition
criterion to the incoming lf waves shoreward of the limit of

the data points shown in Figures 4 and 5, in the region near
the waterline. The bottom there is virtually plane at a slope
of about 1:25 (Figure 1). Combined with a value of 0.025 m
for the incident lf wave height, as read from Figure 4, and a
critical value [bHlf

]cr ffi 1, we obtain an estimated transition
frequency of about 0.12 Hz. Inspection of Figure 5 shows
that indeed this frequency is in the transition range between
almost full reflection at lower frequencies and strong
dissipation (ffi90%) at higher frequencies. Even though
the application of a periodic wave criterion to random
waves has some numerical uncertainty, this result does
suggest that the significant dissipation of the higher-fre-
quency subharmonics in the narrow strip near the waterline,
that was already commented on in Section 5.3, may be due
to breaking of these waves. However, we have no direct
other evidence to support this suggestion. For complete-
ness’ sake, we note that a breaking criterion as used here has
previously been shown to be applicable to a very wide range
of wave steepness and bottom slope, even including
tsunamis and tides [Munk and Wimbush, 1969], so that
applicability to these low-steepness, subharmonic waves
cannot be ruled out a priori.

8. Conclusions

[64] A high-resolution laboratory data set of one-dimen-
sional random wave propagation over a barred beach has
been subjected to a detailed analysis. The results confirm
and extend previous work.
[65] The previously reported phase lag of the shoaling

incident forced waves behind the forcing short-wave groups
is confirmed. Its key role in the growth of the shoaling
forced waves due to energy transfer from the grouped short
waves is highlighted and used to calculate the cross-shore
variation of the rate of this transfer.
[66] The observed growth rate of the amplitudes of the

incoming lf waves in the shoaling zone varies from nearly
that of free long waves (�h�1/4, Green’s law) for the lower
subharmonic frequencies to nearly the shallow-water limit
of the equilibrium solution given by Longuet-Higgins and
Stewart [1962] (�h�5/2) for the higher lf frequencies. The
enhancement of the forced incoming long waves in the
shoaling zone is predicted quite accurately on the basis
of the estimated rates of energy transfer from the hf
waves to the lf waves. The normalized bed slope hx/kh, or
(hx/w)

ffiffiffiffiffiffiffiffi
g=h

p
, appears to be an important or even controlling

parameter in this respect. It is seen to differentiate between
relatively mild slopes (relative to w

ffiffiffiffiffiffiffiffi
h=g

p
), for which the

enhanced incident bound waves are expected to dominate
over contributions from breakpoint generation, and steep
slopes in which the opposite is expected, but further inquiry
is necessary for firm conclusions in this respect, in which
also the characteristics of the primary waves should be
considered.
[67] The accuracy of the lf amplitude prediction based on

a dissipationless model in the shoaling zone is an indication
of negligible lf energy dissipation there. The incident lower-
frequency subharmonics are nearly fully reflected at the
shoreline, but the higher-frequency lf components appear to
be subject to a significant dissipation in a narrow inshore
zone including the swash zone, totalling (in this experiment)
about 90% of the local incident lf energy in that frequency
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band and about 60% of the total local incident lf energy.
There is an indication that this dissipation may be due to
breaking of the higher-frequency subharmonic waves.
[68] The outgoing lf wave components exchange energy

with the incoming short-wave groups in an oscillatory
fashion, because of the rapidly varying phase difference
between these wave systems that travel in opposite direc-
tions. Averaged across the spectrum and/or over larger
distances, these effects cancel out and the amplitude varies
as for free waves (Green’s law).

Notation

A envelope of high-frequency incident waves, m.
c phase velocity of high-frequency incident waves, m/s.
cg group velocity of high-frequency incident waves, m/s.
f frequency, Hz.
fp peak frequency of high-frequency incident waves, Hz.
F time-averaged energy flux per unit span in low-

frequency waves, W/m.
g gravitational acceleration, m/s2.
h mean water depth, m.
hb mean depth at mean breakpoint position, m.

Hm0
significant wave height (four times the standard
deviation of the surface elevation in the frequency
range considered), m.

k wavenumberofhigh-frequency incidentwaves, rad/m.
R rate of energy transfer per unit area from grouped

short waves to forced long waves, W/m2.
Sxx component of radiation stress of high-frequency

incident waves, N/m.
Ŝ (real) amplitude of Fourier component of Sxx, N/m
t time, s.
U depth-averaged particle velocity in progressive long

wave, m/s.
Û (real) amplitude of Fourier component of U, m/s.
V (complex) Fourier component of A2, m2.
x cross-shore coordinate, positive onshore, m.
Z (complex) Fourier component of low-frequency sur-

face elevation, m.
b normalized bed slope
z surface elevation of low-frequency motion, m.
k wave number of low-frequency motion, rad/m.
x surf similarity parameter
r mass density, kg/m3.
s frequency of high-frequency incident waves, rad/s.
c normalized surf zone width
y phase difference between short-wave envelope and

bound wave, rad.
�y phase lag of bound wave behind equilibrium value,

rad.
w frequency of low-frequency motion, rad/s.
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