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Abstract. This paper builds on the now classical discussions by Bowen [1980] and Bailard
[1981] on the applicability and implications of Bagnold’s [1963] sediment transport model
to nearshore profile modeling. We focus on the morphologic implications of both the
strengths and weaknesses of Bagnold’s model, isolating the transport terms that are well
predicted (i.e., mean flow terms) from those that are not well predicted (i.e., transport due
to correlations between flow and sediment load). We factor Bagnold’s model into a
dimensional transport magnitude and a nondimensional term. The nondimensional term
describes the relative importance of transport due to undertow, gravity, and correlations
between flow and sediment load. The transport magnitude largely determines the response
time of nearshore profiles. For typical nearshore environments this response time was
estimated to vary as a function of incident rms wave height (Hrms) from ;500 years
(Hrms ; 0.5 m) to 2 years (Hrms ; 3 m). The relative importance of competing transport
mechanisms is shown to depend strongly on the relative wave height (defined as the ratio
of the rms wave height to the local depth). Simplified nearshore transport
parameterizations that are a function of this variable were derived and were interrogated
for the existence and form of equilibrium profiles. Several differences from previously
computed equilibrium profiles were noted. First, because the relative wave height
saturates in natural surf zones, equilibrium profiles converge to a relatively flat profile
near the shoreline. Second, under some situations a seaward sloping equilibrium profile
may not exist. Third, the long response times combined with unknown stability of an
equilibrium profile make it difficult to assess the physical connection between theoretical
equilibrium profiles and profiles observed in nature.

1. Introduction

At present, accurate prediction of nearshore bathymetric
change at all relevant scales is impossible. Part of the difficulty
is that the relevant scales span a very broad range, from mil-
limeters (individual sand grains) to kilometers (the cross-shore
width of the surfzone) and tens of kilometers (alongshore
extent of littoral cells). The largest spatial scales are particu-
larly important because they contain the majority of the spatial
and temporal variability of nearshore bathymetric change
[Lippmann and Holman, 1990; Plant et al., 1999]. These are
also the spatial and temporal scales that characterize human
interactions with the coast. Unfortunately, the difficulty in
modeling and prediction is acute at the largest scales, since
evolution at this scale requires the integration over all smaller
scales [Roelvink and Brøker, 1993].

Ideally, the interaction between the large-scale morphology
(e.g., surf zone sandbars or the cross-shore profile as a whole)
and small-scale processes (e.g., wave-driven hydrodynamics
and sediment transport) can be described in terms of param-

eterizations of the small-scale processes. Examples of this sort
of parameterization have been presented previously [Bowen,
1980; Bailard, 1981; Stive, 1986; Roelvink and Stive, 1989]. Ac-
curate parameterizations of the small-scale processes allow
predictions at the large scale to be based solely on calculations
at the large scale. (An alternative approach might be to keep
track of a large, but finite, number of sand and water particles
in a modeling domain [Werner and Fink, 1993].)

The advantage of a purely large-scale model is its transpar-
ency, which allows direct quantification of the effects that var-
ious processes have on morphologic evolution. In particular, it
enables the direct investigation of the mechanisms that allow
existing bathymetry to influence its own evolution (i.e., mor-
phologic feedback). One manifestation of this feedback is the
potential for the bathymetry to be driven toward a steady state,
or equilibrium. One of the goals of this paper is to broaden our
understanding of how equilibrium states may be related to
observed nearshore bathymetry, which is rarely, if ever, in
equilibrium owing to constantly changing wave forcing.

Presently, it is not clear whether small-scale processes are
understood well enough to derive parameterizations that can
be used to accurately predict large-scale morphologic evolu-
tion. A widely accepted parameterization is Bailard’s [1981]
adaptation of Bagnold’s [1963] sediment transport model. Sev-
eral recent studies have compared this model to observed
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bathymetric changes to predicted cross-shore profile evolution
[Thornton et al., 1996; Gallagher et al., 1998]. These studies
drove the sediment transport model with measured near-bed
velocities, thus eliminating many hydrodynamic-related mod-
eling errors. A primary conclusion from these studies was that
onshore sediment transport was not well predicted, unless,
locally, the mean flow was directed onshore [Aagaard et al.,
1998]. Predictions were more accurate during undertow-
dominated conditions, where sediment transport was domi-
nated by strong, seaward directed, near-bed, cross-shore mean
flow. The failure to accurately predict onshore transport is
particularly serious in the long term, since predicted onshore
transport must somehow balance offshore transport in order to
predict the existence of beaches. Because predictions of bathy-
metric change did not rely on a hydrodynamic model, a weak-
ness in the adaptation of Bagnold’s transport model was iden-
tified.

Bagnold’s [1963] arguments may be physically reasonable,
and they seem to capture some of the essential aspects of
nearshore sediment transport, as indicated by its limited suc-
cess in undertow-dominated conditions. There are not any
clearly better alternatives to Bagnold’s original, heuristically
derived formulations [Deigaard, 1998]. (In fact, predictions
made from other formulas, driven by measured velocities, have
not been quantitatively compared to observed bathymetric
changes.) The problem is that Bagnold’s model yields specific,
and thus rigid, parameterizations of some small-scale pro-
cesses. Specifically, Bagnold sought to parameterize interac-
tions associated with gravitational and near-bed turbulent
forces that drive transport under unidirectional flow condi-
tions. These are not the conditions that characterize the near-
shore environment.

Contemporary theoretical and observational results provide
very clear guidance toward those processes that are most rel-
evant to cross-shore transport. These processes include wave-
induced oscillatory flow, wave-driven mean flow (i.e., undertow
and mean alongshore currents, which are tied to wave break-
ing), and wave-driven velocity skewness [Roelvink and Stive,
1989; Black et al., 1995; Thornton et al., 1996; Gallagher et al.,
1998; Ruessink et al., 1998]. In light of these clearly significant
variations from a unidirectional flow environment, it seems
likely that Bagnold’s [1963] approach (i.e., one of parameter-
ization), rather than his results (i.e., specific parameteriza-
tions), could lead us to improved prediction of nearshore
transport and the ensuing bathymetric evolution. This is the
approach that Bailard [1981] suggested would lead to improved
prediction of large-scale patterns of sediment transport.

The intent of this paper is to add to the theoretical discus-
sions of Bowen [1980], Bailard [1981], and others on the mor-
phologic implications of Bagnold’s [1963] sediment transport
model. Our discussion differs from previous process-based
studies that have used Bagnold’s model in that we do not
investigate how the morphologic response is affected by adding
or varying hydrodynamic parameterizations, which are often
simply used to force the Bagnold transport model [e.g.,
Roelvink and Stive, 1989]. Instead, we investigate how varia-
tions in a simplified sediment transport parameterization,
which is based on a fixed, small set of hydrodynamic processes,
affect morphologic response. Another important difference
between this and previous studies is our use of field observa-
tions of sediment transport to guide our empirical search for
transport parameterizations. Because we will compute equilib-
rium profiles and use them to describe the morphologic impli-
cations of each transport formulation, we will not consider

parameterizations that specify morphologic response a priori,
such as requiring an approach to a predetermined equilibrium
profile [e.g., Larson and Kraus, 1995].

We take the following steps to achieve our goals. In section
2.1 we identify some very simple models of hydrodynamic
processes associated with cross-shore–directed, wave-driven
flow. Then, in section 2.2 we apply the hydrodynamic model to
a generalized form of Bagnold’s [1963] bed load formula. The
exercise yields transport associated with a mean flow and trans-
port due to a sloping bed, consistent with previous work [e.g.,
Bowen, 1980; Bailard, 1981]. An additional term is added to
this result in order to account for processes that drive onshore
transport. This term would be the term associated with, for
example, velocity skewness if Bagnold’s formula were taken
literally. In section 3 the assumptions made in the simple
model are tested by comparing predictions to colocated veloc-
ity, pressure, and concentration measurements, which were
obtained over a 6-week period on the Dutch coast. In section
4 we present a detailed discussion of the morphologic impli-
cations of the transport model. The model is used to predict
equilibrium profiles, corresponding to constant offshore forc-
ing conditions. We demonstrate the effect that several differ-
ent transport parameterizations have on the equilibrium pro-
file. Also in section 4 characteristic morphologic timescales
associated with an approach to equilibrium are estimated. Fi-
nally in section 5 we summarize the conclusions drawn from
the theoretical and observational results.

2. Theory
2.1. Simplified Hydrodynamics

Following the example of other cross-shore profile evolution
models [Bowen, 1980; Bailard, 1981; Stive, 1986; Roelvink and
Stive, 1989], we assume alongshore uniformity and that waves
drive near-bottom, cross-shore flow. For simplicity (although
not a necessity [see Bailard, 1981]), alongshore-directed flows
are neglected. We consider two primary cross-shore flow com-
ponents: the mean flow and fluctuations about the mean

U~ x , t! 5 U# ~ x , tm! 1 U9~ x , t! , (1)

where U# is a time-mean velocity and U9 is the fluctuating
component. The “mean” of the flow is computed over a period
that is long compared to the characteristic hydrodynamic time-
scale (e.g., that of a wave period) yet is short compared with a
morphologic timescale. Therefore the so-called time-averaged
quantities are allowed to vary slowly. The “slow” time variable,
tm, is related to the hydrodynamic time variable, t , via an as yet
unspecified morphologic timescale, Tm, such that tm 5 t/Tm.
A prediction of the morphologic timescale will be a result of
our model. Temporal changes in “time-averaged” quantities
result from either slow morphologic changes or changes in the
external forcing, which, for example, depends on the incident
wave conditions.

Over the region relevant to sediment transport we assume
that the flow is well approximated by vertically uniform flow. A
reasonable model for the fluctuating velocity component is
obtained from the shallow water approximation to linear wave
theory [e.g., Dean and Dalrymple, 1984]

U9~ x , t! 5 a~ x , tm! Îg/h~ x , tm!

z $sin @u ~ x , tm! 2 v~tm!t# 1 fnl~ x , t!% , (2)

where a is the local amplitude of a monochromatic wave train,
g is the acceleration of gravity, v is the wave frequency (radi-
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ans), u is the spatial phase shift associated with wave propaga-
tion, and h is the local still water depth. The function fnl

describes velocity fluctuations due to wave nonlinearity, which
we will not consider in detail. Hereinafter, all variables that are
not explicitly identified as constants or are not explicitly func-
tions of the fast time, t , are implicitly functions of the mor-
phologic time variable, tm, and cross-shore position, x .

We assume that an offshore-directed mean flow (i.e., under-
tow) balances the onshore-directed mass flux of water above
trough level. A simple expression for this mass flux, M (m3 m21

s21), has been derived from linear wave theory [Phillips, 1977]:

M 5 ra2Îg/h . (3)

If we assume depth uniform flow below the still water level,
then

U# 5 2
M

~rh!
5 2

a2

h Îg
h , (4)

where we use a sign convention with the positive direction
pointing onshore (see Figure 1). Equation (4) is a simplified
form of many existing undertow models, which have been
shown to be reasonably accurate [Masselink and Black, 1995].
More complicated forms include, for example, stronger sensi-
tivity to wave breaking and a more detailed description of the
vertical structure of the mean flow [Stive and Wind, 1986;
Haines and Sallenger, 1994; Stive and de Vriend, 1994].

Linear wave theory can be applied to the random wave
heights (or amplitudes) that are observed in nature in order to
derive a statistical description of the flow. Given a narrowband
random wave spectrum, wave amplitudes are Rayleigh distrib-
uted [Cartwright and Longuet-Higgins, 1956] and have a prob-
ability distribution function (pdf) given by p(a) 5 (a/s2) exp
[20.5(a2/s2)], where s2 is the sea surface variance. Corre-
sponding sea surface elevations and wave-driven velocities are
Gaussian distributed. The velocity variance, su

2, is given by

su
2 5 s2

g
h (5a)

or

su
2 5

H rms
2

8
g
h , (5b)

where Hrms is the root-mean-square wave height (Hrms 5
2=2s). We neglect, for now, the contribution of the nonlinear
term in (2).

The expected value of a2 (i.e., integral of a2p(a)da over all
values of a is 2s2. Thus the expected value of the mean flow
due to random waves is (from (4))

U# 5 22
s2

h Îg
h (6a)

or

U# 5 2
y

Î2
su, (6b)

where the second form is in terms of the so-called relative wave
height [Ruessink et al., 1998], which we define as

y 5 H rms/h . (7)

The relative wave height will play an important role in the
following development of a sediment transport formulation.

2.2. Sediment Transport

The local, depth-integrated and time-averaged sediment
transport rate is obtained from the time-averaged product of
the depth-uniform velocity, U , and the sediment load, S:

Q# 5 S# U# 1 S9U9 . (8)

Again, the time average (indicated by overbars) is taken over a
period that is short compared to the morphologic timescale.
The sediment load, S , is the depth-integrated mass of sediment
per horizontal square meter:

S 5 E
z

C~ z! dz , (9)

where C is the sediment-mass concentration (kg sediment)/(m3

water column).
It is natural to decompose the transport into a mean and

fluctuating component. Not only does this help to illustrate the
contribution of various processes to the total transport, but it
makes a clear division between the terms that Bagnold’s [1963]
original flow model considered (i.e., mean flow component)
and those that have been shown to be poorly modeled (i.e.,
onshore transport associated with velocity fluctuations). The
second term in (8) is, by definition, the cross covariance be-
tween the sediment load and the velocity, which can be rede-
fined as

S9U9 ; Rsus ssu. (10)

Figure 1. Cross-shore profile at Terschelling, sampled in October 1995. Elevations are referenced to the
Dutch mean sea level datum Normaal Amsterdams Peil (NEP). Instruments at location “P2” are marked with
dots at 2.2 m above the bed (pressure gage), 0.25 m (EMF), and 0.15 m (OBS).

947PLANT ET AL.: MORPHOLOGIC PROPERTIES OF A SEDIMENT TRANSPORT MODEL



Here Rsu is the cross correlation (which is nondimensional)
between U and S , and ss is the standard deviation of the
sediment load.

Because the sediment load is a positive quantity, its mean
and standard deviation are likely related to each other. This
relationship depends on the pdf of sediment load values. For
example, if a Rayleigh distribution is a good model for the
sediment load pdf, then ss ' 0.5S# . We will assume that ss 5
c1S# , where c1 is a constant of O(1). (The parameter c1 may be
a function of sediment properties.) By substituting this “trick”
into (10), the result, along with the mean flow prediction of (6)
into (8), yields

Q# 5 suS# H2
y

Î2
1 c1RsuJ . (11)

The term outside of the braces in (11) scales the potential
magnitude of transport, and it may be thought of as a sediment
“stirring” term. The nondimensional terms inside the braces
control, primarily, the direction of transport, describing the
balance between several competing transport mechanisms.

Given an arbitrary depth profile and offshore wave statistics,
a simple wave transformation model [e.g., Thornton and Guza,
1983] can be used to predict the rms wave height over the
entire profile. Thus it is possible to predict the values of su (via
(5)) and y (via (7)). Closure of the present transport model
requires a description of the time-averaged sediment load, S# ,
and correlation term, Rsu, in terms of the local depth and wave
height alone.

2.2.1. Bed load formula. We use Bagnold’s [1963] heuris-
tic arguments to derive an expression for the mean sediment
load. We require, at this point, only a dimensionally correct
form and do not formally distinguish bed load from suspended
load transport. For simplicity, we consider Bagnold’s bed load
formulation alone.

Bagnold [1963] assumed that the mean normal stress exerted
by the weight of the bed load is supported, on average, by the
mean tangential stress. The tangential stress is the applied bed
shear stress from the fluid flow, t, plus the downslope contri-
bution of gravity. Bagnold hypothesized that the ratio of the
tangential to normal forces was equal to the tangent of the
angle of repose, f:

U Sg sin b 1 t
~r s 2 r!

r s
U 5 Sg cos b tan f , (12)

where S is the sediment load defined in (9), rs is the sediment
density, and b is the beach slope, which is negative for a
seaward slope. This slope definition describes the depth gra-
dient, such that tan b 5 h/ x .

An explicit expression for the sediment load is obtained if
the magnitude of the fluid shear stress term always exceeds the
magnitude of the downslope gravitational term. For simplicity,
we assume that the bed slope is much smaller than the angle of
repose. These assumptions are the same as those of Bowen
[1980] and Bailard and Inman [1981]. The result is

S 5
~r s 2 r!

r sg
ut u

tan f H 1 1
ut u tan b

t tan f J . (13)

Equation (13) describes a relationship between statistically
averaged values of shear stress and sediment load. Bagnold’s
[1963] original formulation intended to characterize a unidi-
rectional flow situation in which only turbulent fluctuations

were considered. We wish to apply this formula to the near-
shore environment, where the wave-driven shear stress fluctu-
ations are large. For the moment, we adopt the approach
employed by Bowen [1980] and Bailard and Inman [1981] and
assume that the sediment load is in equilibrium with the shear
stress over all wave phases.

2.2.2. Time-averaged sediment load. We assume that the
shear stress is the only quantity in (13) that varies over the
averaging time needed to compute the mean sediment load.
Bagnold [1963] and others assumed that the appropriate stress
could be related to the velocity using a drag relationship:

t 5 C9frU uU u . (14a)

Here C9f is a modified friction coefficient that acknowledges
Bagnold’s transport efficiency factor, «, such that C9f 5 «Cf

(i.e., Cf is O(1023) and « is O(1022 2 1021) [Gallagher et
al., 1998]). The time-averaged sediment load can be computed
from (13) and (14a) by integrating over the Gaussian velocity
pdf. The integral must be split into positive and negative shear
stress contributions, since utu 5 t if t $ 0 and utu 5 2t other-
wise. These integrated quantities are

ut# u1 5
rC9fsu

2

2 $~1 1 x2!@1 1 erf ~x Î2!#

1 ~ Î2/p!x exp ~2x2/ 2!% (14b)

ut# u2 5
rC9fsu

2

2 $~1 1 x2!@1 2 erf ~x Î2!#

2 ~ Î2/p!x exp ~2x2/ 2!% , (14c)

where ut#u1, ut#u2 correspond to the contributions from the pos-
itive (onshore) and negative (offshore) shear stresses, respec-
tively; x is the ratio of the mean to standard deviation of the
velocity,

x 5 U# /su (15a)

or

x 5 2 y/ Î2, (15b)

where the second form uses the result of (6). The error func-
tion, erf (x), and the exponential term weight the relative
contribution of the positive and negative shear stress contri-
butions to the mean shear stress.

Inserting (14b) and (14c) (in terms of the relative wave
height) into (13) yields

S# 5 c2

r

g
su

2

tan f H S 1 1
y2

2 D
2

tan b

tan f F S 1 1
y2

2 D erf S y
2D 1

y

Îp
exp S2

y2

4 D G J ,

(16a)

where c2 [ C9f(rs 2 r)/rs. Equation (16a) shows that the
wave velocity variance contributes to a sediment stirring term.
The stirring may be enhanced by the addition of a mean flow,
as is represented by the first occurrence of the term [1 1
( y2/ 2)]. Additionally, a mean current in the downslope direc-
tion enhances the sediment load. The dependence on the rel-
ative wave height is similar to the results of Bailard [1981], Stive

PLANT ET AL.: MORPHOLOGIC PROPERTIES OF A SEDIMENT TRANSPORT MODEL948



[1986], and Wright et al. [1991], which also isolated the normal-
ized mean flow term, x.

Equation (16a) can be simplified further for the case where
both the relative wave height and slope are small. Field mea-
surements have shown that the relative wave height, y , satu-
rates because of wave breaking at values ranging from 0.25 to
;0.4 [Thornton and Guza, 1982; Sallenger and Holman, 1985;
Raubenheimer et al., 1996]. Beach slopes are often in the range
of O(0.01) to O(0.1). As a result, for many physically rea-
sonable situations we can neglect the terms of O( y2) and O( y
tan b/tan f) in (16a) to get

S# 5 c2

r

g
su

2

tan f
. (16b)

We evaluated (16a) and (16b) and found that (16b) underes-
timates (16a) by 10% for extreme conditions of y 5 0.5 and
tan b/tan f 5 0.2.

The underlying sediment load model (equation (13)), shear
stress model (equation (14a)), and Gaussian velocity distribu-
tion can be used to get higher-order statistics as well, such as
the variance of the sediment load:

s s
2 < 2H c2

r

g
su

2

tan fJ
2H 1 2 6

y

Îp

tan b

tan f
1 y2

1 OS tan b

tan f
y3,

tan2 b

tan2 f
y2D J . (17)

This result predicts that the ratio of the standard deviation to
the mean of the sediment load (i.e., c1) is O(1). Likewise, the
predicted correlation between the sediment load and velocity
fluctuations is (to first order in slope and relative wave height)

Rsu
Gaussian < S 2

Îp

tan b

tan f
2 yD . (18a)

The “Gaussian” superscript indicates that this result is for
purely Gaussian velocity distributions (and total faith in equa-
tion (13)), which drive downslope and downcurrent transport.

Presumably, there is at least one more term that accounts for
the effect of other wave and sediment transport processes
(such as wave nonlinearity, threshold of grain motion, effect of
ripples). In particular, we are missing any term that will ac-
count for onshore transport in the presence of an offshore
sloping bed. This heuristic argument suggests that we substi-
tute into (11) a correlation term with the form

Rsu < Rsu
Gaussian 1 Rsu

other. (18b)

For example, if the “other” contribution results from the
velocity skewness, then it is straightforward (through (13)) to
show that, to first order in skewness,

Rsu
other < c/ Î2, (18c)

where c 5 (U 2 U# )3/su
3 is the normalized velocity skewness

[Elgar and Guza, 1985; Doering and Bowen, 1995]. We suspect
that the skewness dependence in (18c) is a weak point in the
adaptation of Bagnold’s [1963] model to the nearshore, since
this is the term that drives onshore transport, which was shown
to be poorly predicted [Thornton et al., 1996; Gallagher et al.,
1998]. At this point, it is not necessary to interpret the skew-
ness term (or any of the transport terms) too literally. The
general form of the transport equation is of primary interest.

2.2.3. Time-averaged sediment transport model. Insert-
ing the approximate, mean sediment load (equation (16b)) and
the partially specified form of the correlation term (equations
(18a) and (18b)) into the mean transport equation (equation
(11)) yields

Q# 5 c2

1

16 Î2

r Îg
tan f

H rms
3 h23/ 2H2S 1 1 c1Î2

Î2 D y

1 c1S 2

Îp

tan b

tan f
1 Rsu

otherD J , (19)

where we have inserted the velocity variance prediction of (5)
in terms of the rms wave height. Equation (19) exposes some
properties that are shared by most transport formulae and are
directly relevant to nearshore morphologic evolution. First, the
potential magnitude of transport (those terms outside of the
braces, which are always positive in sign) scales with the cube
of the rms wave height. An increase in the local wave height
leads to a nonlinear increase in the transport and, potentially,
the rate of morphologic response. Second, the magnitude of
transport decreases nonlinearly with increasing water depth.
This is consistent with the longer response time of outer sand-
bars (Tm of several years), compared to inner sandbars (Tm

less than a year), which were quantified from bathymetric sur-
veys at Duck, North Carolina [Plant et al., 1999].

Finally, the relative importance of slope, undertow, and sed-
iment-flow correlation determines the direction (onshore or
offshore) of transport. Before we can investigate the role that
this balance plays in morphologic evolution, we must specify
the form of the correlation term, Rsu

other. As an alternative to
continued theoretical development, we choose to extract a
suitable empirical formulation for this term from an analysis of
field data. We will use the theory developed so far to guide our
use of empiricism.

3. Comparison to Field Observations
of Small-Scale Processes

Some very specific (though not necessarily restrictive) as-
sumptions were made in order to derive the present sediment
transport model. Using sample statistics estimated from field
observations, we can evaluate the accuracy of some of our
assumptions. Colocated velocity, pressure, and concentration
measurements were collected as part of the Nourtec experi-
ment (October–November 1995) on the coast of the Dutch
island of Terschelling. We utilized observations from a single
location in ;6 m depth, near the crest of a shore-parallel
sandbar (Figure 1), corresponding to campaign T4 and loca-
tion P2 in the analysis by Ruessink et al. [1998] (hereinafter
referred to as R1998). Velocity measurements were obtained
from an electromagnetic flow meter (EMF), which was situ-
ated ;25 cm from the bed. Concentrations were measured
with an optical backscatter sensor (OBS) situated ;15 cm from
the bed. The pressure sensor, used to estimate the sea surface
elevation, was situated ;2.2 m from the bed. The observations
spanned a 6-week period and consisted of a total of 707 indi-
vidual 34-min bursts, each sampled at 2 Hz. One burst was
sampled each hour. These data have been extensively analyzed
by R1998, and we refer to their paper for more detailed ex-
planations.

From each burst we estimated the means and variances of
sea surface elevation, cross-shore velocity, and sediment con-
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centration. Additionally, we estimated the correlation between
velocity and sediment concentration fluctuations, and we esti-
mated the velocity skewness. All of the variance-based statis-
tics were calculated from the wind wave and infragravity fre-
quency range as defined by R1998 ( f . 0.004 Hz). The
pressure signal was not corrected for short wave attenuation,
and no attempt was made to account for oblique angles of wave
approach or for the effect of alongshore currents.

3.1. Velocity Terms

Figure 2 shows that the predicted velocity variance (estimat-
ed via equation (5)) agreed well with the observed cross-shore
velocity variance (R2 5 0.99), clearly indicating the applica-
bility of the shallow water approximation to linear wave theory.
Next, Figure 3 shows the relationship between predicted and
observed mean velocities. A significant linear correlation was
found (R2 5 0.68), but the observed velocities were, on

average, nearly twice as large as the prediction of (6). It ap-
pears that the observed mean velocities increased nonlinearly
as the predicted value increased, since the deviations from the
model were largest (but negative) at high mean flow speeds.
Finally, the velocity skewness, which is a relevant variable in
both Bowen’s [1980] and Bailard’s [1981] transport equations,
is shown in Figure 4. Skewness increased nonlinearly, but
monotonically, as both the Ursell number (Ur 5 g(a /
h)(v2h)21) and the relative wave height increased. The
Ursell number provides a characterization of wave nonlinearity
and is potentially useful for predicting wave velocity skewness
[Doering and Bowen, 1995].

3.2. Sediment Load Terms

The assumption that the mean and standard deviation of the
sediment load are proportional to each other is addressed
qualitatively by examining the relationship between mean and
standard deviation of the concentration time series. Figure 5a
shows a significant linear correlation (R2 5 0.80), with a
slope of nearly 1. The obvious presence of two populations of
the data displayed in Figure 5a deserves some explanation.
One population exhibits a steep increase in concentration stan-
dard deviation with increasing mean concentration (slope of
;1). The other population is associated with a gentler slope of
;0.5. Figure 5b shows that these populations were separated
into two relative wave height regimes. The transition region
between slopes of ;0.5 and slopes of ;1 occurred within the
range y 5 0.1 to 0.15.

The existence of these populations may be a result of actual
sediment transport mechanics or it may be an artifact of the
sampling method. A change in transport mechanics may result
from a transition in the bed state. R1998 cited a prediction for
a transition from a rippled bed to a plane bed when the char-
acteristic near-bed velocity (i.e., =2su) exceeded 0.8 m s21,
which corresponded to a relative wave height of ;0.2 (this
value results from an empirical relationship, su 5 2.8y m s21,
R2 5 0.98, that was fit to the present data). Alternatively, a
transition from bed load to suspended load dominance is ex-
pected when the ratio of the near-bed velocity to the fall
velocity exceeds, roughly, 10 [Bowen, 1980]. The fall velocity at
the field site was ;0.02 m s21, suggesting well-developed sus-
pension for y . 0.05. The onset of suspension seems to be the
most likely physical explanation for the variation in sediment
statistics.

A potentially important sampling bias can be seen in a com-
parison of the estimated concentration variance to the esti-
mated (from EMF observations) velocity variance. Figure 6

Figure 2. Cross-shore velocity standard deviation (su) cal-
culated from velocity observations 25 cm above bed. Velocity
standard deviation estimates (dots) are plotted against linear
wave theory prediction based on sea surface variance estimate.
Solid line is line of perfect agreement with theory.

Figure 3. Cross-shore mean velocity (U# ) calculated from velocities observed 25 cm above bed. Mean
velocity estimates (dots) are plotted against linear theory prediction. Solid line is line of perfect agreement
with theory. Dashed line is best linear relationship (slope was 21.6, R2 5 0.68).
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shows that the concentration standard deviation was approxi-
mately constant at velocity standard deviations lower than
;0.2 m s21. This indicates a noise floor (perhaps correspond-
ing to little or no observable suspension) and hinders our
ability to interpret data in this region (i.e., y , 0.1).

3.3. Correlation Terms

Equations (18a)–(18b) suggest that the sediment-flow cor-
relation may be solely a function of the relative wave height
and the local slope, having a general form of

Figure 4. Cross-shore velocity skewness calculated from velocity observations 25 cm above bed. Skewness
estimates are plotted against (a) Ursell number (in shallow water Ur 5 g[Hrms/=8h)(v2h)21] and (b)
relative wave height ( y 5 Hrms/h).

Figure 5. (a) Concentration standard deviations (dots) plotted against corresponding mean concentrations.
Sample means and variances were estimated from OBS observations 15 cm above bed. Solid line shows the
best fit linear relationship passing through the origin. (b) The two populations of the ratio of the standard
deviation to the mean concentration appeared at different relative wave heights, y . The transition between
regions begins at about y 5 0.1, where typical velocity standard deviations were 0.3 m s21.
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Rsu 5 $r0 tan b 1 r1 y% 1 F~ y! , (20)

where r0, and r1 are constants (potentially functions of sedi-
ment characteristics). The terms in braces in (20) describe the
contribution from the Gaussian model (equation (18a)). The
function F( y) accounts for the contribution by Rsu

other (equa-
tion (18b)). The key argument here, which is suggested by both
the theoretical results and observational data, is that Rsu is a
function of the local beach slope and a single forcing variable,
y . This point can be argued equally well via the presumed
skewness relevance [Bowen, 1980; Bailard, 1981] and the rela-
tionship between skewness and y that is shown in Figure 4a.

Estimates of the correlation between the fluctuating compo-

nents of concentration and velocity are shown in Figure 7a,
plotted against the relative wave height. For values of the
relative wave height below ;0.1 the correlations were clearly
negative (i.e., significantly nonzero after averaging over subre-
gions of y , each having width of 0.02), indicating offshore
transport. We do not expect a transport contribution from the
symmetric velocity fluctuations occurring in a hydrodynamic
regime characterized by Gaussian velocity distributions (Fig-
ures 4b and 8). Equation (18a) (which describes the contribu-
tion due to symmetric oscillatory currents superimposed on a
small mean flow over a gently sloping bed) clearly points out
that because the transport is a nonlinear function of velocity, a

Figure 6. Concentration standard deviation calculated from OBS observations 15 cm above bed. Estimates
(dots) are plotted against the velocity standard deviation. Solid line shows the best fit (R2 5 0.44) linear
relationship to the square of the velocity standard deviation (i.e., the relationship predicted by the linearized
version of equation (17)). The dashed portion of the line corresponds to y , 0.1, and these data were not
used in the regression.

Figure 7. (a) Estimates of normalized transport contributions due to correlations between concentration
and velocity fluctuations and (b) contributions due to mean concentrations and velocities (Msu 5
{U# /su}{[mean C]/[standard deviation C]}). Estimates are from velocity observations 25 cm above bed and
concentration observations 15 cm above bed. Dots indicate mean values estimated over equally spaced ranges
of the relative wave height, y . Error bars represent 95% confidence intervals about the means. Solid lines
illustrate the parameterizations Rsu 5 r1 y 1 r2 y2 and Msu 5 m1 y 1 m2 y2, which were fit to the data via
linear regression (r1 5 20.5, r2 5 5.0, R2 5 0.76, and m1 5 0.9, m2 5 29.9, R2 5 0.96). Dashed
lines show region where data were omitted from the regression analysis.
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small mean flow or small slope will “leak” an offshore trans-
port component into the correlation term. A slope contribu-
tion is unlikely because the sensors were located near the bar
crest (which moved very little over the study period). The mean
velocity measurements are unreliable in the low relative wave
height regime, so, in spite of its statistical robustness and po-
tential consistency with theory, the offshore transport due to
flow-concentration correlation is difficult to interpret.

At high values of y the correlation estimates were generally
positive (driving onshore transport). The general model (equa-
tion (20)) with F( y) 5 r1 y 1 r2 y2 was fit to the data in the
range y . 0.1. We arbitrarily chose r0 5 0, since the low-y
region of the model was not constrained by data. The skill of
this model was significant (R2 5 0.76). This suggests that a
polynomial function of relative wave height may be a generally
appropriate parameterization to use in the transport formula-
tion.

3.4. Mean Flow and Sediment Load Term

The contribution from the mean flow to the term in braces
in (19) is a linear function of the relative wave height. Figure
7b shows estimates of this term, plotted against the relative
wave height. This estimate increases nonlinearly with increas-
ing relative wave height, consistent with the observed nonlin-
ear increase in the undertow and, presumably, the nonlinear
increase in the sediment load. A more reasonable parameter-
ization for the mean flow contribution is a polynomial as be-
fore (equation (20), but with F( y) 5 m1 y 1 m2 y2, con-
strained to pass through zero at y 5 0). This model was fit to
the observed mean flow contribution (applied to the region
y . 0.1), and it represented the data well (R2 5 0.96).

4. Discussion: Morphologic Implications
4.1. Generalized Transport Equation

The theoretical development presented so far suggests that,
in general, a reasonable parameterization of cross-shore sedi-
ment transport consists of a magnitude term multiplied by a
term that describes the relative importance of sediment trans-
port due to mean flow, slope, and flow-sediment correlation:

Q# ~ x , tm! 5 q~ x , tm!r~ x , tm! , (21a)

where q( x , tm) represents the magnitude (e.g., term outside
braces in (19)) and r( x , tm) represents the relative importance
of competing transport mechanisms (e.g., term inside braces in
(19)). This form of transport model has been suggested by
others [Horikawa, 1981]. The magnitude term describes, essen-
tially, the stirring of sediment, which, for simplicity, we have
assumed to be dominated by the wave-driven velocity variance,
leading to

q 5 c2

1

16 Î2

r Îg
tan f

H rms
3 h23/ 2. (21b)

The relative importance term, r( x , tm), accounts for trans-
port due to the mean flow and the flow-sediment correlations.
Both the simplified transport theory and the transport obser-
vations (i.e., Figure 7) indicated that the relative importance of
several competing transport mechanisms depends, in part, on
the relative wave height and the local slope, and this depen-
dence may be captured in the form of a polynomial expression,
such as

r~tan b , y! 5 r0 tan b 1 r1~ y/yc!
p@1 2 y/yc# , (21c)

Figure 8. Normalized cross-shore velocity pdf’s (i.e., zero mean, unit variance). The two cases represent (a)
nearly Gaussian velocity pdf under low relative wave height conditions (hour 247, y 5 0.14, U# 5 20.04 m
s21, su 5 0.41 m s21, skewness 5 0.13) and (b) significantly skewed pdf under high relative wave height
conditions (hour 579, y 5 0.24, U# 5 20.34 m s21, su 5 0.63 m s21, skewness 5 0.67). Curves show
Gaussian pdf, and bars show estimated pdf’s.
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where r0, r1, yc, and p are constant parameters, while tan b
and y are variables. Setting p 5 0 yields

r~tan b , y! 5 r0 tan b~ x! 1 r1 2 r1 y/yc, (21d)

which can be used to recover the term in braces in (19) if
r0 5 2c1/(tan f=p), r1 5 c1Rsu

other 5 const, and r1/yc 5
(1 1 c1=2)/=2. Setting p 5 1 would give a quadratic
formulation that is consistent with the results from the field
data analyses shown in Figure 7.

The form of r for several choices of p . 0 is shown in Figure
9. Figure 9 shows only the relative wave height dependence, as
the linear slope dependence has been removed. We use values
of r0 5 2.25, r1 5 0.5, and yc 5 0.3. At low values of y the
mean flow and correlation mechanisms vanish (as does the
potential to transport sand grains). The initial dominance of
onshore transporting mechanisms, which is an essential feature
of this parameterization, reaches a maximum at y/yc 5 p/(p 1 1).
The value of r1 scales the magnitude of this maximum. Ne-
glecting the slope contribution, the onshore and offshore trans-
porting mechanisms balance at y 5 yc. Finally, at large y/yc,
offshore transport dominates. Presumably, yc scales with the
maximum “saturated” value of Hrms/h , since this provides a
parameterization of breaking intensity, as already mentioned.
If the model given by (21c) is to be quantitatively accurate, yc

may not be a constant, since the saturation value of y varies
with slope, depth, and wave period [Sallenger and Holman,
1985; Raubenheimer et al., 1996]. We will not pursue this com-
plication.

4.2. Equilibrium

Because beach slope is included in the transport formulae
(equations (19) and (21a)–(21c)), there is the potential for the
slope term to balance the other transport terms, resulting in
zero net transport at a point. If the transport vanishes every-
where, then an alongshore-uniform profile is at a state of
morphologic equilibrium, since the gradients in transport,
which drive profile change, also vanish. We can interrogate the
originally derived transport formulation (equation (19)) and
the generalized form (equations (21a)–(21c)) to determine
conditions that allow morphologic equilibrium, and we can
determine the equilibrium profile shapes that are consistent
with these equations.

In (19) a condition of equilibrium requires the term in
braces to vanish, and

0 5 tan b~ x! 1
Îp

2 tan fH2S 1 1
1

c1 Î2D y~ x! 1 Rsu
other~ x!J .

(22a)

Several conditions may lead to equilibrium, including the fol-
lowing: (1) correlation term balances seaward sloping bed, (2)
correlation term balances undertow, and (3) undertow bal-
ances landward slope. In deep water the relative wave height
can be neglected. If we assume for illustrative purposes that
the sediment-flow correlation term is constant (i.e., Rsu

other 5
Rsu

const), then the slope is also constant:

tan b~ x! 5 2
Îp

2 tan fRsu
const. (22b)

From Figure 7a, a reasonable estimate of the correlation term
is 0.1 and tan f is ;0.5, leading to a predicted beach slope of
O(1:20).

Alternatively, in shallow water the relative wave height ap-
proaches a constant (e.g., for the present data set y 3 0.25)
and

tan b~ x! 5
Îp

2 tan fH S 1 1
1

c1 Î2D 0.25 2 Rsu
constJ . (22c)

An equilibrium profile with a seaward (negative) slope exists
under saturated breaking conditions only if the magnitude of
Rsu

const exceeds, roughly, 0.5 (with c1 ; 1). It is quite possible
that under some conditions, only a horizontal slope (or even
landward facing slope) would be in equilibrium. This predic-
tion is at odds with existing equilibrium profile models, which
have monotonically increasing shapes.

An equilibrium beach profile can be computed for any ar-
bitrary choice of sediment transport formulation so long as it
has a linear slope dependence. For the present situation this is
simply the solution to a system of ordinary differential equa-
tions:



 x h 5 f1$h , H rms% , h~ x 5 0! 5 ho

(23)


 x H rms 5 f2$h , H rms% , H rms~ x 5 0! 5 Ho,

where f1 describes the equilibrium slope (h/ x 5 tan b) and
f2 describes wave height at equilibrium. The subscript “o”

Figure 9. Nondimensional transport parameterization, r (equation (21c)) as a function of the relative wave
height, y . The function is plotted for several polynomial orders, p (values of other parameters were r0 5 2.25,
r1 5 0.5, yc 5 0.3). Since r 5 0 for equilibrium, the equilibrium slope can be inferred from the abscissa
values. Assuming that r0 is positive, a clear prediction is an onshore-facing equilibrium slope at large relative
wave heights.
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denotes an initial condition at the seaward boundary. The
function f2 is a wave transformation model. For example, the
shallow water approximations to linear wave theory were ap-
plied to a model proposed by Thornton and Guza [1983], yield-
ing



 x H rms 5 2
y
4



 x h 1
3
4

ÎpB3

gm
2

fpÎh

Îg

z $@1 1 ~ y2/gm
2 !#25/ 2 2 1% y4, (24)

where B is an O(1) coefficient that depends on the type of
breaking, fp is the peak frequency of the assumed narrowband
sea surface elevation (i.e., wave) spectrum, and gm is an O(1)
model coefficient describing a “saturation” value of y . The first
term in (24) accounts for wave shoaling and the second term
accounts for dissipation via breaking.

Figure 10a shows equilibrium profiles that were estimated
for several different incident (at the seaward boundary) wave
heights, ranging from 0.25 to 2 m. The equilibrium slope was
solved via fifth-order Runge-Kutta integration of the system
described in (23), where f1 was given by (22a) and f2 was given
by (24). (Note that the slope is required to compute the wave
height gradient in (24). This is supplied by computing f1 before
computing f2.) The model was initialized at a depth of 8 m.
Values for the wave model’s coefficients were B 5 1, gm 5
0.4, and fp 5 0.1 Hz. The transport model’s coefficients were
c1 5 1, Rsu

other 5 0.5 (large value used to ensure a seaward
slope at the shoreline), and tan f 5 0.5.

The predicted steep slope (equation (22b)) is prominent in
the seaward part of profiles when the incident wave height is

not saturated. In all cases, the slope approaches a nearly con-
stant value, as y (not shown) reaches a saturation value (;0.3).
An interesting feature of these profiles is the wave height
dependence of the intersection point between the steep off-
shore profile and the flat saturation profile. As the wave height
increases, the saturation point moves offshore, as does the kink
in the profile. Although not necessarily realistic, this feature is
suggestive of a “breakpoint” bar (or, perhaps a breakpoint
low-tide terrace). The different equilibrium profiles contain
different sand volumes. If a natural system is to change from
one equilibrium shape to another, deposition or erosion of the
subaerial beach or offshore shelf is required. Thus, in cases
with limited sand availability (such as a wave tank) it may not
be possible for the beach system to attain all equilibrium con-
figurations.

Figure 10b shows examples of the equilibrium profiles cal-
culated using the equilibrium slope specification obtained from
(21c), in which r( y , tan b) 5 0 indicates equilibrium. Values of
the coefficients were p 5 2, r0 5 2.25, r1 5 0.5, and yc 5
0.3. These values are consistent with the example in Figure
10a, and they ensure a negative slope (offshore-facing bathym-
etry) when the relative wave height reaches saturation. The
primary difference between the profiles in Figure 10b and
those shown in Figure 10a is the concave up shape in the
offshore part of the profile, which is more consistent with
earlier work [e.g., Dean, 1977; Bowen, 1980] and more typical
of natural beach profiles. In the onshore direction the concave
profile intersects a nearly planar profile as a result of wave
height saturation. As in Figure 10a, the intersection with the

Figure 10. Computed equilibrium profiles for incident, rms wave heights of 0.25 m (thinnest line), 0.5 m,
1 m, and 2 m (thickest line). The two cases considered are (a) equilibrium defined by equation (22a), with tan
f 5 0.5, c1 5 1, and Rsu

other 5 20.5 and (b) equilibrium specified by the generalized formula (21c), with p 5
2, r0 5 2.25, r1 5 0.5, and yc 5 0.3. In all cases the wave transformation model (equation (24)) was used
with model coefficients B 5 1, fp 5 0.1, and gm 5 0.4. The maximum (i.e., saturated) relative wave height
in both cases (not shown) was ;0.3. All profiles have been translated so that x 5 0 corresponds to the
shoreline (defined by h 5 0.1 m).
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saturation profile occurs at more seaward locations for larger
incident wave heights.

The convex profiles (or portions of profiles) are at odds with
the classical “h 5 x2/3” form [Bowen, 1980]. However, it is not
clear that the profiles shown in Figures 10a and 10b are sig-
nificantly less realistic than the classical prediction, which in-
cludes an infinite slope at the shoreline. Even Dean’s [1977]
analysis discovered convex profiles (probably ;10% of all cas-
es). Interestingly, the profiles shown in Figures 10a and 10b
show a high degree of self-similarity (as do profiles fitting the
“h 5 axm” family), corresponding to a stretching of the hor-
izontal and vertical axes. Dean’s profile analysis would classify
the profiles in Figure 10b as either concave or convex, depend-
ing on the offshore extent of the measurements.

4.3. Profile Response Time

It is often assumed that beaches asymptotically approach an
equilibrium shape, which depends, in part, on the incident
wave conditions. This will occur only if the equilibrium profile
is, in fact, stable. The stability of the equilibrium profile has not
been demonstrated here or in any other nearshore profile
model. On the other hand, the presence in nature of apparent
instabilities, such as rhythmic sandbars, suggests that not all
equilibrium states are stable. Recent stability analyses show
that the nearshore profile may be unstable [Trowbridge, 1995;
Falques et al., 1998]. These stability studies have been re-
stricted to forcing by alongshore currents. A stability analysis
of the equilibrium profiles derived here is clearly a logical next
step, but this is beyond the scope of this paper.

If, however, we assume that equilibrium profiles are stable,
then the relevance of a particular equilibrium state also de-
pends on the response time associated with the approach to
that state. A characteristic, morphologic response time that is
short relative to the timescale of variations in the forcing in-
dicates that it may be possible to find a profile near equilib-
rium. If the response time is relatively long, then it may be
unlikely to find a profile in equilibrium, although the profile
may still strive toward equilibrium.

A response time can be estimated from the sediment con-
servation equation for cross-shore transport:

h
t 5

m

r s

Q
 x , (25a)

where m accounts for the porosity of the bed (m 5 [1 2 n]21,
where n is the bed porosity). A characteristic response time
that can be derived from the conservation equation (25a) is

Dt 5 Tm 5
r s

m

DhDx
DQ , (25b)

where Dh is a typical change in the bed elevation over the time
interval Dt (and Dt 5 Tm, the morphologic timescale) and Dx
is a typical cross-shore length scale. If we assume that the
transport vanishes at the shoreline, then DQ is a typical trans-
port rate. (This result can be derived more formally by nondi-
mensionalizing equation (25a).)

In order to estimate the morphologic timescale we are free
to choose characteristic depth and cross-shore length scales
that are appropriate to the nearshore profile. For the depth
scale we choose Dh 5 0.05gT2(2p)21, which is the maxi-
mum depth where shallow water linear wave theory is appro-
priate. For a wave period of 10 s, this depth is ;8 m. For the
cross-shore length scale we choose Dx 5 10Dh/tan f, which

ensures that slopes satisfy tan b/tan f ,, 1. Equation (21b) can
be used to estimate the characteristic transport magnitude at a
depth of Dh , given a corresponding wave height, Hrms 5 Ho.
Inserting these choices of scales into (25b), the morphologic
timescale is

Tm <
160 Î2

mC9f

r s

r s 2 r

r s

r

~Dh!7/ 2

Îg~Ho!
3 ~s! . (26)

We chose typical values for coefficients in (26) (e.g., m 5 2,
C9f 5 1024, rs 5 2500 kg m23, r 5 1000 kg m23) and set
Dh 5 8 m. Estimated timescales as a function of incident wave
height were ;550 years for Ho 5 0.5 m, 70 years for Ho 5 1
m, 9 years for Ho 5 2 m, and 2.5 years for Ho 5 3 m. These
response times are exceedingly long with respect to nearshore
hydrodynamic processes. These timescales are upper limits for
nearshore evolution, since features with short cross-shore
length scales (relative to the profile width that we consider),
such as sandbars, will evolve at a faster rate. Interestingly,
maximum response times of O(1 year) are consistent with the
estimated timescales of outer bar response observed at Duck,
North Carolina (U.S. east coast) [Plant et al., 1999] and along
the Dutch coast (H. Hanson et al., Modeling of coastal evolu-
tion on yearly decadal timescales, submitted to Journal of
Coastal Research, 2000).

Even if an order of magnitude uncertainty is introduced into
the scaling, the morphologic response times are clearly long
compared with the hourly or daily timescale associated with
wave height changes. Thus, if nearshore profiles asymptotically
approach equilibrium, beach profiles observed in nature must
be some sort of a weighted-average of the time-varying equi-
libria, integrated over time-varying wave conditions. The
weights are likely largest for the largest incident wave heights.
Bowen [1980] made this same point in the first sentence of his
paper, but he did not pursue its consequences. Clearly, this
situation deserves further attention beyond the scope of this
paper.

4.4. Neglected Processes: Relevance of Suspended Load

Our exclusive use of Bagnold’s [1963] bed load theory
avoided the complication of including and distinguishing be-
tween the contributions from bed load and suspended load
transport. We note that the form of the transport parameter-
ization for suspended load derived by Bagnold [1963] is similar
to the bed load form. The suspended load parameterization is,
ultimately, more complicated, since the term tan b/tan f is
replaced by the varying (on the fast timescale) term U/ws,
where ws is the sediment fall velocity. We expect, however, that
the structure of the generalized transport formulation (equa-
tions (21a)–(21c)) is still relevant, since its development was
based, in part, on measured suspended load transport. The
most significant change induced by an explicit consideration of
suspended load transport is most likely seen in the transport
magnitude and response time. One of the primary conclusions
from previous work [i.e., Thornton et al., 1996; Gallagher et al.,
1998] was that predicted magnitudes of suspended load trans-
port exceeded the bed load transport by an order of magnitude
under energetic conditions. Thus our response time estimates
may be in the range of 2 to 50 months, which are still very long.

4.5. Neglected Processes: Relevance of Grain Size Variation

The effect of grain size, handled explicitly only in suspended
load formulations via the fall velocity, is conspicuously missing
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from the parameterizations that we have presented (although
grain density is included). Grain size effects ought to appear in
two places. The first is in the assumed constant parameter c1

(equation (11)), which is the ratio of concentration standard
deviation to mean concentration. A reasonable trend is prob-
ably that of c1 increasing with grain size. Large grains, which
have larger fall velocities, will drop out of the water column
quickly and give rise to large temporal variability in the sedi-
ment load (large c1). In the limit of very fine grains the grain
response time becomes infinitely long, and the sediment load is
eventually characterized only by the mean load (c1 3 0).

Likewise, the correlation term (i.e., Rsu
other in equation (18b))

is affected by the grain size. Grains with long response times
will be advected back and forth many times by the near-bed
velocities [Hay and Bowen, 1993], and, potentially, the sedi-
ment load fluctuations will become uncorrelated to the velocity
fluctuations. On the other hand, the movement of coarse
grains should be more strongly correlated to the near-bed
velocities. Variations of the parameters c1 and Rsu

other in the
manner just described yield predicted equilibrium slopes that
are steeper for coarse grains (see (22b) or (22c)) and flatter for
fine grain sizes.

5. Conclusions
The approach taken in this paper differed from similar anal-

yses by Bowen [1980] and Bailard [1981]. We have added to
their discussion by considering the morphologic implications
associated with strengths and weaknesses of the popular Bag-
nold [1963] model for sediment transport. We isolated the
nearshore transport terms that Bagnold’s model predicts well
(i.e., mean flow) from those that are, apparently, not well
predicted (i.e., transport due to correlations between fluctua-
tions in flow and sediment load). In addition, we factored the
model into a dimensional transport magnitude and a nondi-
mensional term. The nondimensional term described the rel-
ative importance of transport due to undertow, gravity, and
correlations between flow and sediment load. Using a bed load
formulation for simplicity, the dimensional magnitude term
was predicted to increase with wave height cubed, and this
term increased inversely with water depth (raised to the 3/2
power). An important conclusion is that the magnitude of
transport determines, in part, the response time of nearshore
profiles. For typical nearshore environments this response time
was estimated to range from 500 years (Hrms 5 0.5 m) to 2
years (Hrms 5 3 m). These response times are exceedingly long
when compared to the timescale associated with changes in
nearshore forcing, which is O(1 day).

Both the theory and observational data presented here sug-
gested that the relative wave height, y 5 Hrms/h , is the primary
variable to include in a parameterization of the relative impor-
tance of several cross-shore sediment transport mechanisms. A
general form for this parameterization was derived through
heuristic arguments based on Bagnold’s [1963] theory and on
observational data. We conclude that the combined influences
of mean flow, flow-sediment correlation, and slope can be well
modeled with a polynomial dependence on the relative wave
height and linear beach slope dependence.

Simplified parameterizations of nearshore transport were
interrogated for the existence and form of equilibrium profiles.
Several differences from previously computed equilibrium pro-
files were noted. First, because the relative wave height satu-
rates in natural surf zones, all equilibrium profiles converged

on a relatively flat profile near the shoreline. This differs from
the predicted slope steepening encountered in “x2/3”-type
models. Second, under some situations a seaward sloping equi-
librium profile was not found. Interestingly, the nearshore sys-
tem does not explicitly exclude these conditions. Third, the
long profile response times combined with unknown stability of
an equilibrium profile make it difficult to assess the practical
relevance of equilibrium profiles. If profiles actually evolve
toward equilibrium (a stable situation), then the profiles ob-
served in nature must be some sort of weighted average of all
possible equilibria. The weighting function probably favors
conditions with large wave heights, since these conditions have
the shortest response times.
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