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| Longshore Currents Generated by Obliquely Incident Sea Waves, 1

M. 8. Lonaguer-HIiccins?

Oregon State Untveisity, Corvallis 97831

By using known results on the radiation stress associated with gravity waves, the total
lateral thrust exerted by incoming waves on the beach and in the nearshore zone is rigorously
shown to equal (Fo/4) sin 26, per unit distance parallel to the coastline, where B, denotes the
‘energy density of the waves in deep water and 6, denotes the waves' angle of incidence. The
local stress exerted on the surf zone in steady conditions is shown to be given by (D/e¢) sin @
per unit area, where D is the local rate of energy dissipation and ¢ is the phase velocity.
These relations are independent of the manner of the energy dissipation, but, because breaker

- height is related to- local depth in shallow water, it is argued that ordinarily most of the
dissipation is due to wave breaking, not to bottom friction, Under these conditions the local
mean longshore stress in the surf zone will be given by (5/4)pumas” § sin 8, where p is the
density, Uimax 19 the maximum orbital velocity in the waves, s-is the local beach slope, and 6
1s the angle of incidence, It is further shown that, if the friction coefficient C on the bottom
is assumed constant and if horizontal mixing is neglected, the mean longshore component of
velocity is given by (57/8)(5/C) Umuy sin 8. This vilue is proportional to the longshore com-~
ponent of the orbital velocity, When the horizontal mixing is taken into account, the longshore
currents observed in field observations and laboratory experiments are consistent with a fric-
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tion coefficient of about 0.010.

1. INTRODUCTION

It is well khown [Wiegel, 1963; Inmdn and
Bagnold, 1963] that when sea waves or swell
approach a straight coastline at an oblique angle
(Figure 1) a mean current tends to be set up
parallel to the coastline. Such longshore cur-
rents and the associated longshore transport of
sand or other sedimentary material are of
prime importance for both the coastal engineer
and the submarine geologist.

Many hypotheses, of a very rough kind, have

been advanced to account for this phenomenon,

However, a recent review of the subject by
Gaolvin [1967] arrives at the justifiable con-
clusion that, ‘A proven prediction of longshore
current velocity is not available, and reliable
data on longshore currents are lacking over a

" significant range of possible flows.’

It has often been suggested [e.g., Putnam
et al., [1949] that the magnitude of the long-
shore current is related in some way to the

1 Now at National Institute of Oceanography,
Wormley, Godalming, England, and Department
of Applied Mathematics and Theoretical Physics,
Silver- Street, Cambridge, England.
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energy or the momentim of the incoming waves,
Of these two approaches, that employing mo-
mentum is the more promising since momentum
is conserved, whereas energy can be dissipated
by breaking and other processes not immedi-
ately associated with sediment transport.

It goes without saying that any momentum
theory must be correctly formulated. The esti-
mate of the momentum made by Putnam et al.
[1949] has been already criticized on theoretical
grounds by Galvin [1967], Morcover, Inman
and Quinn [1952] showed that, in order to
mike the theory fit the observations, the frie-
tion coefficient ¢' would have to be assumed to
vary over a wide range of 3% orders of mag-
nitude. A version of the theory of Putnam
et al. modified by Galvin and Eagleson [1965]
also requires a large variation in C.

The aim of this paﬁer is to introduce a more
satisfactory estimate of the momentum of the
incoming waves, which is based on the concept
of the radiation stress as developed by Longuet-
Higgins and Stewart [1960, 1061, 1962, 1963,
1964]. This estimate of the excess transfer of
momentum due to the waves has already proved
remarkably successful in the prediction of
several wave phenomena, particularly the
getup, or change in mean level of the sea sur-

;
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Fig. 1. Definit jon diagram for waves approaching
a straxg‘,nt shoreline at an oblique angle.

4
face in "the breaker zone [Longuet-Higgins and
Stewafit, 1063, 1964; Bowen, 1967].
" the present paper it is pointed out, first,
there exists a simple and precise relation-

;k’.leir direction and amplitude in deep water on

" :he other (see equation 10), This result can he
derived either from the concept of the radia-
tion stress mentioned earlier, or by a direct
evaluation of the momentum flux due to the
waves.

Next it is shown that the loeal longshore stress
due to the waves is very simply related to the
local rate of dissipation of wave energy, regard-
less of whether the dissipation is due to wave
breaking or to bottom friction. Hence, using
the known relation of breaker height to local
depth in the surf zone, one can cstimate aceu-
rately the local longshore stress due to the
waves (section 4}.

When  the local longshore wave stress is
known, it is possible to write an equation of
motion for the longshore current that involves
in general both the hottom friction and the
horizontal mixing by turbulent eddies, If the
horizontal mixing is negligible, the momentum
balance gives an exceedingly simple expression
for the longshore current (v). The addition of

horizontal mixing generally reduces the current,
although not drastically. ‘ :

A comparison with the available data (secs;.
tion 7) shows that even without the assump-
tion of mixing there is already an order- of-
magnitude agreement between the observed and .
the theoretical current if one takes an a priori
estimate of the friction coefficient (about 0.010)
based on experiments with flow in rough pipes
[Prandtl, 1952]. The comparison indicates also
that horizontal mixing is significant, though not
dominant, in most eircumstances.

Note added in processing. Since this paper
was prepared, a somewhat similar approach to
the theory of longshore currents has been pub-
lished by Bowen [1969]. Besides containing new
results, the present treatment differs both in
the derivation of equation 34 (since Bowen
takes 6 to be constant during differentiation)
and in the assumed form of the bottom fric-
tion. For further comparisons see the companion
paper. :

9. Waves APPROACHING COASTLINE

. Imagine a straight coastline, as in Figure 1,

in which the local still water depth h is some
function of the coordinate z normal to the 1
ghoreline and is independent of the distance %
along the shore. The shoreline itself is at @ = 0.
A train of two-dimensional waves of amplitude
o is advancing from deep water toward the
coast, the local direction of propagation being
inclined at an angle of incidence € to the nor-
mal, as shown.

Both @ and a will vary with the distance
|z| from the shoreline. If o denotes the fre-
quency of the waves and k denotes the local
wave number, Snell’s law, which expresses the
constancy of the wave number in the direction ;
parallel to the shoreline, can be written as

ksin 8 = constant (1)

or equivalently

(sin 8)/c = constant (2) !

where ¢ = o/k denotes the locdl phase velocity.
If the bottom slope is gradual, so that the
proportional change in depth over one wave-
length is small, it is reasonable to assume that
o and & are related to the local depth A(x} by
the Stokes relation for waves of small ampli-
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ude:
o = gk tanh kh (3)
“he phase velocity ¢ is then given by '
¢ = o/k = [(g/k) tanh kh]"? (4)

and the group velocity, or velocity of energy
propagation, is given by

do o 2kh
“ =TT % (1 e 2kh> (5)

With the local energy density per unit horizontal
area being given by

E = }pgd’ (6)

correct to second order, the flux of energy
toward the coast, per unit distance parallel to
the shoreling, is given by

F, = B¢, cos § (7)

If the waves are losing no energy by breaking,
bottom friction, or otherwise, we have

[’TJ; (8)
independently of 2, from which one can deduce
the law of variation of the wave amplitude a
with distance offshore [Burnside, 1915 ; Lon-
guet-Higging, 1956]. Inside the breaker zone,
however, some energy will be lost, and hence o
will diminish toward the shoreline and become
zero at or near x = 0, If D denotes the rate
of dissipation of wave energy, either by hreak-
ing or friction, we have identieally

constant

oF,/dx = —D (9)

3. Rapration StrEssms

So ruch is well aceepted. We propose now
to calculate the force exerted on the nearshore
region by the incoming waves, by using the
notion of the radiation stress, as introduced hy
Longuet-Higgins and Stewart (1960, 1961, 1962,
1963, 1964].

It can be shown [Longuet-Higgins and
Stewart, 1960] that the presence of a wave train
of amplitiide a in water of depth & increases the
flux of momentum parallel to the direction of
propagation across any plane normal to that
direction by an amount

. ﬂfﬁ-) (10)

Su=1E (5 sinh 2k7

S A
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Similarly the flux of momentum normal to the
direction of wave propagation across a plane
parallel to the direction of propagation is in-
ereased by an amount

830 = B(kh/sinh 2kh) ay
where B = %pga®.\In general the momentum ' The angl
flux tensor, referred tip coordinates (£, &) paral- respect

lel and perpendicular\to the direction of wave angle 0 t
Y

propagation, is given b

) W :
E(l + __g_]“i_) 0 where
8i = 2 sinh 2k} the _orbit
11 kh propagat
0 i B sinh 2kh tegration
! 0, sing
' b (12 third ord
the off-diagonal elements being'ﬂzero. mean vq
Now let us calculate the flux jof ¥ momentum have the
parallel to the shoreline acrossh.a plane ¢ =
constant, parallel to the shoreling®..Since the |
axes (2, y) are inclined at an anglg ¢ to the
principal axes (&, &) of the waves, we'§ have Now 1
dx o wave pu
Szy = E S,‘,‘ 5? 5‘;1‘ %
. N t Fo= <
= 811 8in 8 cos 6 + Suy cos (—sin &
So to th
1 kh .
= ] - —_—
(2 sinh 2kh> cos @ sin @
= Fc,/c) cos @ sin @ ’
("/) i ; . From t}
By (7) this relation can he written as entum

8., = F.(sin §)/c

(19)
or, if we make use of Snell’s law in the form of
(2), we then have

since in
8/08. T

we have

S;HI = Fz(Sin 00)/60 (15)

where 6, and ¢, refer to the (constant) values
of @ and ¢ in deep water.

This very simple and exact relation states
that the flux of y momentum across the plane
x = constant is proportional, by a fixed, known
constant, to the energy flux across the same
plane,

Beeause of the simplicity and fundamental
importance of relation 15 we give here an alter-
native proof.

The flux of y momentum across any vertical
plane z constant is simply equal to puw,

The eng
obtain |
From
longsho
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where » and » are the components of velocity
in the = and y directions. On integrating this
with respect to the vertical coordinate #z we find

' 8, = < [ i ous clz> (16)

The angle brackets denote the mean value with
respect to time, Now for waves traveling at an
angle @ to the z axis we have

@e=1u,cosfd v=u8nf an

where u, denotes the horizontal component of
the _orbital velocity in the direction of wave
propagation; Also in (16) the upper limit of in-
tegration can be replaced by the mean value 2
= 0, since the difference fo‘puv dz is only of the
third order at most in the wave amplitude. (The
mean value is actually of fourth order)) We
have then, correct to second order,

0
S, = f p(1it) dz cos §sin §  (18)
h

Now the flux of energy in the direction of
wave propagation is given by

¢
p= [ o+ 1e0d + )@ a9
Sc to the same order of approximation
0
r = (pu,) dz (20)
~h

From the linearized equation of horizontal mo-
mentum, however, we have

= e = b (21)
gince in progressive wave motion 8/9t ~ ¢

3/9&,. Then on integration with respect to time
we have

u, = (p/pc) + constant (22)
On substituting in (18) and noting that for
irrotational waves (u,) = 0 correct to second

order we obtain from (18) and (20)

8,, = (1/¢)F cos 6 sin 6 (23)
The energy flux F, being equal to # cos 6, we
obtain (14) and hence (15) as before.
From (15) we can at once calculate the total
longshaore thrust of the waves, as follows.
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Outside the breaker line (or the line at which
energy losses become significant) we have

F, = constant = H,(}c) cos 0, (24)

¢, being the phase velocity in deep water, where
the group velocity ¢, = Yac,, and B, being the
energy density in deep water. Therefore from
(15)

(Sxy)m = %Eo cos 0{] Sin 00 (25)

On the other hand, at the shoreline x = 8§ >
0 (just beyond the reach of the waves) we have

F, =0 Sey = 0 x =145 (26)
Therefore, by considering the balance of momen-
tum of the water between the breaker line and
the shoreline, we see that the total external
force G, parallel to the shoreline acting on the
water and sediment inside the breaker zone is
given by

(8a)e + G = 0 (27)

In the absence of wind or other surface stresses
the only external force must come from bottom
friction. Hence the total lateral littoral force
exerted by the waves on the hottom is given by
H, = — @, that is to say

H, = $E, sin 26, (28)

Tt is interesting that the force is a maximum,
for a given wave amplitude at infinity, when
sin 20, = 1 or 4, = 45°.

4, Localn WAVE STRESS

Inside the breaker zone F, gradually dimin-
ishes toward the shoreline. A consideration of
the momentum halance between two planes ¢ =
z and 2, + dr parallel to the shoreline and
separated by a distance dx shows at once that
the net stress =, per unit area exerted by the
waves on the water in the surf zone is given by

1, = —088.,/0% (29)

and by (15) this equation becomes

= _QE.{ (sm 60> - D(sxrcx 00) (30)
1]

dz €o

where D denotes the local rate of energy dissipa-
tion. In other words, the local stress exerted by
the waves is directly proportional to the local
rate of dissipation of wave energy. Outside the
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breaker zone the mean bottom stress vanishes.
In some situations the loss of wave energy
can be attributed to bottom friction (due mainly
to the orbital velocity of the waves). However,
the. observation by Munk [1949] that in the
surf zone the breaker height is proportional to
the mean depth suggests that under normal cir-
cumstances most of the loss of wave energy is
due to wave breaking, not to bottom friction.
It is found that the rule

(31)

a = ah

where « is 2 constant between 0.3 and 0.6 is in
agreement both with direct observations (see
Table 1 below) and with laboratory measure-
ments of wave setup [Longuet-Higgins and
Stewart, 1963, 1964; Bowen, 1967] the approxi-
mate linear shallow-water theory is used., On
the basis of this theory we have from section 2,
when kh < 1,

o= @ =,

If it is assumed that in the breaker zone 4
is small enough that cos # can be approximated

(32)

-"TABLE 1. Observed and Theoretical Values of «

Investigator s a (a)

Observed Values

Putnam el al.[1949] 0.066 0.37
0.098 0.36
0.100 0.33
0.139 0.32
0.143 0.37 0.35
0.144 0.32
0.241 0.35
0.260 0.36
JTwverson [1952] 0.020 0.411
0.033 0.38
0.050 0.42J 0.44
0.100 0.52
Larras [1952) 0.010 0.34
0.020 0.37} 0.39
0.091 0.43
T ppen and Kulin [1955] 0.023 0.60 0.60
Fagleson [1956] 0.067 0.56 0.56

Glalvin and Eagleson

[1963] 0.104 (.59 0.59
FBowen [1968] 0.082 0.45-0.62 0.56
Values Determined from Solitary Wave Theory
DM eCowan [1804] 0.000 0.39
Davies [1952] 0.000 0.41
Long [1956] 0.000 0.406
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by unity, we have from (7), (31), and (82)

F. = }pga’c, = 3a’pg"’n"* . (33)
and so from (30)
Ty, =— 2’ p(gh)** % sin @
= $a’pgh(s sin 6) (34)
where s = —dh/dx denotes the local bottom

slope.

Some values of a as determined by various
authors are shown in Table 1. Though the later
determinations of a tend to be higher than the
earlier ones, no determination departs by more
than 509, from the theoretical value of 0.41
caleulated by Davies and Long for the solitary
wave.

Using (31) and the linear shallow-water

- theory, we can also express (34) in terms of

the maximum horizontal orbital velocity given
by

Umie = (a0)/(kh) = a(o/k) = a(gh)'”*  (35)
Then we have simply
Ty = EPUnax (5 sin 6) (36)

where s denotes the bottom slope and § denotes
the local angle of incidence.

We note that in this simple relation there are
no adjustable parameters.

Beyond the breaker line, i.e, where the energy
dissipation is negligibly small, D vanishes, and
so by (31)

(37

Ty = 0

5. Borrom Friction

The tangential stress B excited by the water
on the bottom will be assumed to be given
adequately by a relation of the form

B = Cplulu (38)

where u is the instantaneous velocity wvector
near the bottom and C is a constant coefficient.

If there were no longshore velocity, and if
the amplitude of the motion were small and the
bottom impermeable, the horizontal orbital
velocity would be expected to be to-and-fro in
the same straight line, making an angle @ with
the normal to the shoreline (see Figure 2a).
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Fig. 2. Schematic representation of particle
orhits (@) with zero mean littoral velocity and
(b} with positive littoral velocity (v).

The frictional stress B given by
B = Cp Iuorbl Uory (39>

would then vanish in the mean (according to
linear theory).

Now suppose that a small component of
velocity (¢) in the longshore direction is added
to the orbital velocity (Figure 2b). When 8 is
small, this component of velocity is almost
perpendicular to the orbital velocity. Therefore
the magnitude of the velocity u = u,.,, -+ (0, (¥))
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the bottom stress is changed by a small angle
)/ [toe| approximately. Hence there is- an
additional stress in the y direction given by

B, = Cp [ton|® (0)/[0en]) = Cp |ugm| &)
(40)

Physically, when the orbital velocity is onshore,
the direction of the bottom stress is inclined
more toward the positive y direction (if (v) is
positive) ; when the orbital velocity is offshore,
the bottom stress, now almost in the opposite
direction, is again more toward the positive ¥
direction. Taking mean values in (40), we have
the relation

<By> = CP(luorbD(U) (4-1)
Assuming ug,y to be sinusoidal, we have
<Iunrb|> = (2/71’)?,(.,“,( (42)

and hence

<B1/> = (2/7") C pimax <1)> (4‘3)
As a guide to the appropriate value of the
friction coefficient we consider first the values
for a rough horizontal plate in uniform flow, as
given for example by Prandtl [1952] and based
on Nikuradse’s experiments with roughened
pipes. For convenience we reproduce Prandtl's
[1952, p. 195] diagram as Figure 3 below, The
friction coefficient appears to depend on just
two parameters. The first is the Reynolds num-
ber

is unchanged, to first order, but the direction of Re = Ulfv {44)
vksy = 10° 10* 10° 10° Y=
00’0 N \ l ’03
S b‘%
0‘007 \‘\ ~ /2J§ ~
\\ N SN Yy =const 2, .
0005 ~ _—— 10
0004—¢, = RN - ]
o'ooah——T < 10°
~~
S ~<
oo~ [l
0002 ] -
\\
00015
_._.,.l vy,
6001
10° 10° 10’ 10° 10°

Fig. 3. Values of the friction coefficient ' for flow over rough plates, as deduced from
the experiments of Nikuradse [from Prandtl, 1952]. (Figure reprinted by permission of Haff-

ner Co.)
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where U denotes the horizontal velocity, ! de-
notes the length of the plate, and v is the kine-
matic viscosity. The second parameter is the
ratio (I/K), where K denotes a typical scale for
a roughness element. Here we can take as an
appropriate value of U the horizontal compon-
ent of the orbital velocity, %mw, and for [ the
horizontal excursion of a water particle from
its mean position, that is I = wu./e. Thus we
have

 Re = U fvo = dgh/vo (45)
As typical values for field data we can take

o= 0.4 g= 10m/sec’

(46)

h = 1meter o = 1rad/sec

corresponding to 6-sec waves 0.8 meter high.
With the approximate value v = 13 x 107
m®/see and with a sand grain diameter of 1 mm
we obtain

Re = 13X 10° I/K =13 X 10° (47)

and so from Figure 3 €, = 0.007, On the other
hand, for laboratory data more typical values
are

h = 0.lmeter ¢ = b5rad/sec (48)

"With the same values of @, g, and v, this leads to

1

Re = 2.5 X 10*

if the roughness scale K is the same. In that
case Figure 3 suggests that (', is somewhat
larger, about 0.010.

Bretschneider [1954] has found that the ob-
served damping of swell which is propagated
over a smooth, level, impermeable sea bed is
consistent with a friction coefficient lying be-
t-ween 0.034 and 0.097. These values appear to
agree well with Prandtl's values. On the other
hand, Bretschneider also found that the spectral
Iimitation of wave growth under the action of
wind suggested higher values of C, between 0.01
and 0.02. These coefficients may include other
significant effects such as hottom percolation.
R. E. Mayer (personal communication) has
found, however, that the theory of run-up of
surf on beaches [Shen and Meyer, 1963; Free~
ynan and Le Méhauté, 1964] can be made to
agree fairly well with the model experiments of
Adiller [1968] over a hard sloping concrete hot-

K =20 (49)

M. 8. LONGUET-HIGGINS °

tom by assuming that C lies between 0.01 and
0.02. These values cannot be the result of
bottom pereolation, but might be attributable in
part to turbulence arising from the breaking of
the waves as they run up the slope.

* Taken together, the above data suggest that
it.is not unreasonable to expect a friction co-
efficient €' of the order of 0.01.

6. EquarroNs FOR LONGSHORE CURRENT

To estimate the longshore current (v), let us
assume first that the mean current is steady
and two-dimensional, being independent of the
time ¢ and of the longshore coordinate y, Then
the equation of motion in the longshore diree-
tion can be written as

4l &) _
0=+ Z (v _5)
where in the surf zone r, and (B,) are given by
{37) and (43), respectively, The second term
represents the exchange of momentum due to
horizontal turbulent eddies, with eddy coeffi-
cient V.

In this equation the magnitude of N is un-
Inown. Suppose first that the exchange of mo-
mentum by turbulence is negligible in compari-
son with that due to the waves; then in general
the second term on the right of (50) can be
neglected in comparison with the first, There
remains a balance between the first and third
terms:;

<Bu> =Ty (51)

Substituting from equations (36) and (43}, we
have in the breaker zone

2 5 .
= Cpmas () = FPUnax” (ssin 0)  (52)
and hence

W) = (51/8C) 1 (s sin 6) (53)

This very simple relation implies that for con-
stant values of ¢ and s the longshore current is
simply proportional 10 MUm. sin 4, or to the
longshore component of the orbital velocity.

The proportionality of () and m.. has been
inferred on quite different grounds by P. Komar
(personal communication, 1969).

Using (36) the relation between .. and the
local phase velocity ¢, we can also write (52) in







