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Wind-induced changes to shoaling surface gravity wave shape
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Unforced shoaling waves experience growth and changes to wave shape. Similarly,
wind-forced waves on a flat-bottom likewise experience growth/decay and changes to
wave shape. However, the combined effect of shoaling and wind-forcing on wave shape,
particularly relevant in the near-shore environment, has not yet been investigated theo-
retically. Here, we consider small-amplitude, shallow-water solitary waves propagating
up a gentle, planar bathymetry forced by a weak, Jeffreys-type wind-induced surface
pressure. We derive a variable-coefficient Korteweg–de Vries–Burgers (vKdV–B) equa-
tion governing the wave profile’s evolution and solve it numerically using a Runge-Kutta
third-order finite difference solver. The simulations run until convective prebreaking—a
Froude number limit appropriate to the order of the vKdV–B equation. Offshore winds
weakly enhance the ratio of prebreaking height to depth as well as prebreaking wave slope.
Onshore winds have a strong impact on narrowing the wave peak, and wind also modulates
the rear shelf formed behind the wave. Furthermore, wind strongly affects the width of
the prebreaking zone, with larger effects for smaller beach slopes. After converting our
pressure magnitudes to physically realistic wind speeds, we observe qualitative agreement
with prior laboratory and numerical experiments on breakpoint location. Additionally,
our numerical results have qualitatively similar temporal wave shape to shoaling and
wind-forced laboratory observations, suggesting that the vKdV–B equation captures the
essential aspects of wind-induced effects on shoaling wave shape. Finally, we isolate
the wind’s effect by comparing the wave profiles to the unforced case. This reveals that the
numerical results are approximately a superposition of a solitary wave, a shoaling-induced
shelf, and a wind-induced, bound, dispersive, and decaying tail.

DOI: 10.1103/PhysRevFluids.7.074802

I. INTRODUCTION

Wind coupled to surface gravity waves leads to wave growth and decay as well as changes
to wave shape. However, many aspects of wind-wave coupling are not yet fully understood.
Since the sheltering theory of wind-wave coupling by Jeffreys [1], a variety of mechanisms for
wind-wave interactions have been put forward, often with a focus on calculating growth rates [2,3].
Furthermore, these theories have been tested by many studies in the laboratory [4–7] and the field
[8,9]. Similarly, numerical studies modeled the airflow above waves using methods such as large
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eddy simulations [10–12] or modeled the combined air and water domain using Reynolds-averaged
Navier-Stokes (RANS) solvers [13] or direct numerical simulations [14,15].

While wave growth rates and airflow structure have received much attention, wind-induced
changes to wave shape have been less studied. Unforced, weakly nonlinear waves on flat bot-
toms (e.g., Stokes, cnoidal, and solitary waves) are horizontally symmetric about the peak (i.e.,
zero asymmetry), but are not vertically symmetric (i.e., nonzero skewness, e.g., [16,17]). Wave
shape (skewness and asymmetry) influences many physical phenomena, such as wave asymmetry
sediment transport [18,19] and extreme waves [20,21]. Laboratory experiments of wind blowing
over periodic waves demonstrated that wave asymmetry increases with onshore wind speed in
intermediate water [22] and deep water [23]. Theoretical studies likewise showed that wind-induced
surface pressure induces wave shape changes in both deep [24] and shallow [25] water. However,
the influence of wind on wave shape has not yet been investigated theoretically for shoaling waves
on a sloping bottom.

Additionally, the shoaling of unforced waves on bathymetry also induces wave growth and shape
change. Field observations revealed the importance of nonlinearity in wave shoaling and its relation
to skewness and asymmetry [26,27]. Additionally, laboratory experiments of waves shoaling on
planar slopes yield how the wave height and wave shape evolve with distance up the beach [28–30].
Furthermore, numerical studies investigated wave shoaling all the way to wave breaking. A variety
of methods were utilized, including pseudospectral models [31], the fully nonlinear potential flow
boundary element method solvers [32,33], the large eddy simulation volume of fluid methods [33],
and two-phase direct numerical simulations of both the air and water [34]. Theoretical [35] and
numerical [33] investigations of wave breaking showed that convective wave breaking depends on
the surface water velocity u and the phase speed c and occurs when the Froude number Fr := u/c
is approximately unity. The type of wave breaking (e.g., spilling, plunging, surging, etc.) is related
to the beach slope β, initial wave height H0, and initial wave width L0 through the Iribarren number
Ir := β/

√
H0/L0 [36,37].

Few studies looked at the combined effects of wind and shoaling of surface gravity waves.
Experimental studies found that onshore wind increases the surf zone width [38] and decreases the
wave height-to-water depth ratio at breaking [39], with offshore wind having the opposite effect.
Additionally, numerical studies using two-phase RANS solvers of wind-forced solitary [40] and
periodic [41] breaking waves demonstrated that increasingly onshore winds enhance the wave height
at all points prior to breaking. Regarding wave shape, only Feddersen and Veron [23] and O’Dea
et al. [42] investigated the combined influence of wind and shoaling. Feddersen and Veron [23]
demonstrated experimentally that onshore winds enhance the shoaling-induced time-asymmetry. In
field observations of random waves, cross-shore wind was weakly correlated to the overturn aspect
ratio of strongly nonlinear, plunging waves with offshore (onshore) wind reducing (increasing)
the aspect ratio [42]. However, the wind variation was relatively weak and covariation with other
parameters was not considered. Despite a growing literature of wave shape measurements and
simulations, a theoretical description of wind-induced changes to wave shoaling (e.g., wave shape,
breaking location, etc.) has not yet been developed.

This study will derive a simplified, theoretical model for wind-forced shoaling waves that
takes the form of a variable-coefficient Korteweg–de Vries (KdV)–Burgers equation, which is a
generalization of the standard KdV equation. When the bottom bathymetry is allowed to vary,
the coefficients of the KdV equation are no longer constant and the system is described by a
variable-coefficient KdV (vKdV) equation [43,44]. The deformation of solitary-wave KdV solutions
propagating without wind on a sloping-bottom vKdV system was studied both analytically [45] and
numerically [31]. Shoaling causes solitary wave initial conditions to deform and gain a rear “shelf”
for small enough slopes [45]. Alternatively, if the flat-bottomed KdV equation is augmented with a
wind-induced surface pressure forcing, the constant-coefficient KdV–Burgers (KdV–B) equation re-
sults [24]. Wind in the KdV–B equation induces a solitary-wave initial condition to continuously
generate a bound, dispersive, and decaying tail with polarity depending on the wind direction [24],
analogous to a KdV non-solitary-wave initial condition [46]. The variable-coefficient KdV–Burgers
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equation combines both shoaling and wind forcing into one equation. Our development of a
simplified, analytic model for the coupling of shoaling and wind-forcing highlights the relative
importance of these phenomena and provides a concise framework for analyzing their competing
effects.

In Sec. II, we apply a wind-induced pressure forcing over a sloping bathymetry to derive a vKdV–
Burgers equation and determine a convective prebreaking condition. We then solve the resulting
vKdV–Burgers equation numerically using a third-order Runge-Kutta solver and investigate the
changes to wave shape and prebreaking location in Sec. III. Finally, we examine the relationship
between pressure and wind speed, isolate the effect of wind from the effect of shoaling, and discuss
how our findings relate to previous laboratory and numerical studies in Sec. IV.

II. vKdV–BURGERS EQUATION DERIVATION AND MODEL SETUP

A. Governing equations

We derive a vKdV–Burgers equation for wind-forced shoaling waves by utilizing the standard
[27,47] simplifying assumptions of planar, two-dimensional waves propagating in the +x-direction
on incompressible, irrotational, inviscid fluid without surface tension. Additionally, we choose the
+z-direction to be vertically upwards with the z = 0 at the still water level and impose a bottom
bathymetry at z = −h(x). The standard incompressibility, bottom boundary, kinematic boundary,
and dynamic boundary conditions are

0 = ∂2φ

∂x2
+ ∂2φ

∂z2
on − h < z < η, (1)

∂φ

∂z
= −∂h

∂x

∂φ

∂x
on z = −h, (2)

∂φ

∂z
= ∂η

∂t
+ ∂φ

∂x

∂η

∂x
on z = η, (3)

0 = p

ρw

+ gη + ∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(

∂φ

∂z

)2]
on z = η. (4)

We introduce the wave profile η(x, t ), the velocity potential φ(x, z, t ) derived from the water
velocity �u = ∇φ, the surface pressure p(x, t ), the gravitational acceleration g, and the water density
ρw, which is much larger than the air density ρa ≈ 1.225 × 10−3ρw. Additionally, we remove the
Bernoulli constant from the dynamic boundary condition by using the φ gauge freedom. Next,
to examine the wind’s effect on shoaling waves, we impose the analytically simple Jeffreys-type
surface pressure p(x, t ) forcing [1]

p(x, t ) = P
∂η(x, t )

∂x
. (5)

The pressure constant P ∝ ρa(U − c)2 depends on the wave phase speed c and wind speed U (cf.
Sec. IV A). For a wave propagating towards the shore, onshore winds yield P > 0 whereas offshore
winds give P < 0.

The Jeffreys-type forcing is likely most relevant for near-breaking waves [48] or strongly forced
steep waves [49,50] (see discussion in Zdyrski and Feddersen [25]). Recent large eddy simulations
[51], two-phase direct numerical simulations [52], and RANS [41] started investigating the coupling
of periodic waves and wind. Some simulations [12,51] suggested a phase shift of approximately
135◦ to 155◦ between waves and the surface pressure, in contrast to the 90 ◦ shift predicted by the
Jeffreys-type forcing. However, these studies used periodic waves and are not directly applicable to
the solitary waves we consider, where an angular phase shift is undefined. Xie [40] considered wind-
wave coupling for shoaling solitary waves, but pressure distributions were not reported. Therefore,
we will prioritize the analytical simplicity of the Jeffreys-type forcing for our analysis.
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FIG. 1. Schematic showing the (periodic) simulation domain and relevant length scales. The blue line
represents the water surface and wave profile η and the solid black line is the bottom bathymetry h(x). The
solitary wave initial condition has a height H0 and effective half-width L0 and begins with its peak on the far
left side, in the middle of flat region of depth h0. The initial wave then propagates to the right with phase speed
c up the beach with slope β until it reaches prebreaking (cf. Sec. II F). The positive/negative wind speed U
corresponds to an onshore/offshore wind forcing.

B. Model domain and model parameters

The model domain (Fig. 1) is similar to that of Knowles and Yeh [31] and consists of an initial
flat section of length L f at a depth of h0 and transitions smoothly at x = 0 into a planar beach region
with constant slope β and characteristic beach width Lb := h0/β. The bathymetry then smoothly
transitions to a flat plateau of length 2L f at a depth of h = 0.1h0 followed by a downward slope
with slope −β. Finally, there is another flat section of length L f at a depth of h0 before the domain
wraps periodically, which simplifies the boundary conditions.

The initial condition will be a KdV solitary wave with height H0 and width L0 following Knowles
and Yeh [31], and L0 will be specified later. The solitary wave begins centered on the left boundary,
in between the two flat, deep sections of length L f . From the defined dimensional quantities, we
specify four nondimensional parameters

ε0 := H0

h0
, μ0 :=

(
h0

L0

)2

, P0 := P

ρwgL0
, γ0 := L0

Lb
. (6a-d)

Here, ε0 is the nondimensional initial wave height, μ0 is the square of the nondimensional initial
inverse wave width, P0 is the nondimensional pressure magnitude (normalized by the initial wave
width), and γ0 is ratio of the initial wave width to the beach width. Note that the wave width-to-beach
width ratio γ0 is related to the beach slope β as γ0 = β/

√
μ0. Together, these four nondimensional

parameters control the system’s dynamics.

C. Nondimensionalization

We nondimensionalize our system’s variables using the characteristic scales described in
Sec. II B: the initial depth h0; the initial wave’s height H0; the initial wave’s horizontal length scale
L0; the gravitational acceleration g; and the pressure magnitude P. Using primes for nondimensional
variables, we normalize as Zdyrski and Feddersen [25] did and define

x = L0x′ = h0
x′

√
μ0

, h = h′h0,

z = h0z′, η = H0η
′ = h0ε0η

′,

t = t ′L0√
gh0

= t ′
√

μ0

√
h0

g
, φ = φ′H0L0

√
g

h0
= φ′ε0√

μ0

√
gh3

0 . (7)
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We later assume the nondimensional parameters ε0, μ0, γ0, and P0 are small to leverage a perturba-
tive analysis. For the constant slope β beach profile, the spatial derivative of the bathymetry is also
small ∂x′h′ = β/

√
μ0 = γ0 � 1 (the factor of

√
μ0 comes from the different nondimensionaliza-

tions of h and x). However, perturbation analyses are simplest when all nondimensional variables
are O(1). Therefore, we leverage the two, horizontal length scales L0 and Lb (cf. Sec. II B) to define
a nondimensional, stretched bathymetry h̃′ that depends on x/Lb = γ0x′ as h̃′(γ0x′) = h′(x′). Then,
denoting derivatives with respect to γ0x′ using an overdot, the derivative of h̃ is ˙̃h′ := ∂γ0x′ h̃′(γ0x′) =
O(1), and the small slope becomes explicit as ∂x′h′ = γ0

˙̃h′.
Now, the nondimensional equations take the form

0 = μ0
∂2φ′

∂x′2 + ∂2φ′

∂z′2 on − 1 < z′ < ε0η
′, (8)

∂φ′

∂z′ = −μ0γ0
˙̃h′ ∂φ′

∂x′ on z′ = −h̃′(γ0x′), (9)

∂φ′

∂z′ = μ0
∂η′

∂t ′ + ε0μ0
∂φ′

∂x′
∂η′

∂x′ on z′ = ε0η
′, (10)

0 = P0
∂η′

∂x′ + η′ + ∂φ′

∂t ′ + 1

2

[
ε0

(
∂φ′

∂x′

)2

+ ε0

μ0

(
∂φ′

∂z′

)2]
on z′ = ε0η

′. (11)

For the remainder of Sec. II, we remove the primes for clarity.

D. Boussinesq equations, multiple-scale expansion, and vKdV–Burgers equation

We follow the conventional Boussinesq equation derivation presented in, e.g., Mei et al. [53]
or Ablowitz [54]. The two modifications we include are the weakly sloping bottom, similar to the
treatment in Johnson [43] and Mei et al. [53], and the inclusion of a pressure forcing like that of
Zdyrski and Feddersen [25]. However, the joint contributions of both pressure and shoaling are new.
For the sake of brevity, we only detail the relevant differences here, but we still treat the derivation
formally to ensure a proper ordering of small terms and obtain the parameters’ validity ranges. First,
we expand the velocity potential in a Taylor series about the bottom z = −h(x) as

φ(x, z, t ) =
∞∑

n=0

[z + h̃(γ0x)]nφn(x, t ) . (12)

Substituting this expansion into the incompressibility Eq. (8) and bottom boundary condition (9) and
assuming μ0 � 1 gives φ as a function of the velocity potential evaluated at the bottom ϕ := φ0. If
we further assume that the bottom is very weakly sloping γ0 ∼ μ0 � 1, this simplifies to

φ = ϕ − μ0
1
2 (z + h̃)2∂2

x ϕ + O
(
μ2

0, γ
2
0 , γ0μ0

)
. (13)

Note that the assumption γ0 ∼ μ0 � 1 implies a moderate slope β = γ0
√

μ0 ∼ μ
3/2
0 and is used

by several other authors [31,43,45]. For reference, if μ0 = γ0 = 0.1, then this implies a physically
realistic β = 0.03.

Substituting this φ expansion (13) into the kinematic boundary condition (10) and dynamic
boundary condition (11) yields Boussinesq-type equations with a pressure-forcing term

∂tη + (h̃ + ε0η)∂2
x ϕ + (γ0

˙̃h + ε0∂xη)∂xϕ − μ0
1
6 h̃3∂4

x ϕ = O
(
μ2

0, γ
2
0 , γ0μ0

)
, (14)

P0∂xη + η + ∂tϕ − 1
2μ0h̃2∂2

x ∂tϕ + 1
2ε0(∂xϕ)2 = O

(
μ2

0, γ
2
0 , γ0μ0

)
. (15)

Note that replacing h̃ with the total depth htotal = h̃ + ε0η shows that these are equivalent to the
flat-bottomed Boussinesq equations with htotal = 1 + ε0η. In other words, any sloping-bottom terms
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˙̃h only appear in the combination ∂xhtotal = γ0
˙̃h + ε0∂xη. This is expected since the only sloping-

bottom term μ0γ0
˙̃h∂xφ in the governing equations (8), (9), (10), and (11) was dropped when we

neglected terms of O(μ2
0, γ

2
0 , γ0μ0).

Since the bathymetry varies on the slow scale x/γ0, we expand our system in multiple spatial
scales xn = γ n

0 x for n = 0, 1, 2, . . ., so the derivatives become

∂

∂x
→ ∂

∂x0
+ γ0

∂

∂x1
+ . . . , (16)

and the bathymetry is a function of the long spatial scale h̃ = h̃(x1). Then, we expand η and ϕ in
asymptotic series of ε0

η(x, t ) →
∞∑

k=0

εk
0ηk (t, x0, x1, . . .) , ϕ(x, t ) →

∞∑
k=0

εk
0ϕk (t, x0, x1, . . .) . (18 a,b)

Similar to Johnson [43], we replace x0 and t with left- and right-moving coordinates translating with
speed c̃(x1) dependent on the stretched coordinate x1:

ξ+ = −t +
∫ x0 dx′

0

c̃(γ0x′
0)

, ξ− = t +
∫ x0 dx′

0

c̃(γ0x′
0)

. (18)

Then, we replace the derivatives ∂t and ∂x0 with

∂

∂t
= ∂

∂ξ−
− ∂

∂tξ+
,

∂

∂x0
= 1

c̃

(
∂

∂ξ−
+ ∂

∂ξ+

)
. (19)

Now, we will assume that ε0 ∼ P0 ∼ μ0 � 1 and follow the standard multiple-scale technique
[53,54]. The order-one terms O(ε0

0 ) from Eqs. (14) and (15) yield wave equations for φ0 and η0

∂2φ0

∂ξ+∂ξ−
= 0 ,

∂2η0

∂ξ+∂ξ−
= 0 , (20 a,b)

with right-moving solutions

ϕ0 = f0(ξ+, x1)andη0 = ∂ξ+ f0(ξ+, x1) , (21)

propagating with the slowly varying, linear shallow-water phase speed c̃(x1) =
√

h̃(x1). Continuing
to O(ε0) of the asymptotic expansion gives

− ∂η1

∂ξ+
+ ∂η1

∂ξ−
+ ∂2ϕ1

∂ξ 2+
+ 2

∂2ϕ1

∂ξ+∂ξ−
+ ∂2ϕ1

∂ξ 2−
= −2

γ0

ε0
c̃

∂2ϕ0

∂ξ+∂x1
+ γ0

ε0

∂ c̃

∂x1

∂ϕ0

∂ξ+

− 1

c̃2
η0

∂2ϕ0

∂ξ 2+
− γ0

ε0

˙̃h

c̃

∂ϕ0

∂ξ+
− 1

c̃2

∂η0

∂ξ+

∂ϕ0

∂ξ+
+ μ0

ε0
h̃

1

6

∂4ϕ0

∂ξ 4+
, (22)

η1 − ∂ϕ1

∂ξ+
+ ∂ϕ1

∂ξ−
= −P0

ε0

1

c̃

∂η0

∂ξ+
− 1

2

μ0

ε0
h̃
∂3ϕ0

∂3ξ+
− 1

2c̃2

(
∂ϕ0

∂ξ+

)2

. (23)

Eliminating η1 from these equations gives

4
∂2φ1

∂ξ+∂ξ−
= −2

γ0

ε0
c̃
∂η0

∂x1
− γ0

ε0

∂ c̃

∂x1
η0 − 3

1

c̃2
η0

∂η0

∂ξ+
− 1

3

μ0

ε0
c̃2 ∂3η0

∂ξ 3+
− 1

c̃

P0

ε0

∂2η0

∂ξ 2+
. (24)

The left-hand operator ∂2/∂ξ−∂ξ+ is the same as the O(1) differential operator (20). Therefore, the
right-hand side must vanish to prevent φ1 from developing secular terms. Thus, the right-hand side
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becomes the variable-coefficient Korteweg–de Vries–Burgers (vKdV–Burgers) equation

γ0

ε0
c̃
∂η0

∂x1
+ 1

2

γ0

ε0

∂ c̃

∂x1
η0 + 3

2

1

c̃2
η0

∂η0

∂ξ+
+ 1

6

μ0

ε0
c̃2 ∂2η0

∂ξ 3+
+ 1

2c̃

P0

ε0

∂2η0

∂ξ 2+
= 0 . (25)

Finally, multiplying Eq. (25) by ε0, adding the O(1) differential equation ∂ξ−η0 = 0 derived from
Eq. (20), and transforming back to the original, nondimensional variables x and t yields

∂η0

∂t
+ c

∂η0

∂x
+ 1

2

∂c

∂x
η0 + 3

2
ε0

1

c
η0

∂η0

∂x
+ 1

6
μ0c5 ∂3η0

∂x3
+ 1

2
P0c

∂2η0

∂x2
= 0 . (26)

This vKdV–Burgers equation represents an analytically simple system for studying the ef-
fects of wind-forcing and shoaling. In the absence of wind-forcing (P0 = 0), it reduces to the
variable-coefficient KdV equation [46], while it simplifies to the constant-coefficient KdV–Burgers
equation in the case of flat bathymetry (c = 1) [25]. The formal derivation revealed the depth-
dependent c factor in the wind-forced P0 term which was absent in the flat-bottomed case. The
pressure term P0∂

2
x η0 functions as a damping, positive viscosity for offshore P0 < 0 wind, making

Eq. (26) a (forward) vKdV–Burgers equation. Conversely, onshore P0 > 0 wind causes a growth-
inducing, negative viscosity giving the backward vKdV–Burgers equation. Though the backward,
constant-coefficient KdV–Burgers equation is ill posed in the sense of Hadamard [55], this is
irrelevant here owing to the finite time the wave takes to reach the beach.

E. Initial conditions

Our initial condition will be the solitary-wave solutions of the unforced (P0 = 0), flat-bottom
KdV equation. These waves balance the KdV equation’s nonlinearity η0∂xη0 and dispersion ∂3

x η0

terms, propagate without changing shape, and require that the height H0 and width L0 satisfy the
constraint H0L2

0 = constant. Therefore, we now fix the previously unspecified L0 by choosing μ0 =
(3/4)ε0 so L0 acts like an effective half-width for the solitary wave initial condition [53]

η0 = sech2(x) . (27)

While the unforced KdV equation also possesses periodic solutions called cnoidal waves, we only
consider solitary waves here.

F. Convective breaking criterion

The asymptotic assumptions used to derive the vKdV–Burgers equation (26) fail when the wave
gets too large. Therefore, we require a condition to determine when the simulations should stop.
Brun and Kalisch [35] defined a convective breaking condition for solitary waves on a flat-bottom
depending on the surface water velocity us(x, t ) and the phase speed c using the local Froude number
Fr := ε0us(x, t )/c(t ), with the ε0 coming from nondimensionalization. Convective breaking occurs
wherever maxx(Fr) = 1, where maxx represents the maximum over x. However, when the Froude
number approaches the breaking value of unity, our weakly nonlinear asymptotic assumption used to
derive the vKdV–Burgers equation is violated. Thus, we instead stop our simulations at the smaller
prebreaking Froude number Frpb := 1/3 and define the “prebreaking” time tpb as the first time such
that maxx(Fr) = Frpb := 1/3. Likewise, we define xpb as the location where Fr = Frpb, which will
be very near the wave peak.

As the solitary wave propagates on a slope, the wave evolves over time and the phase speed c
can be ambiguous. One option is to use the adiabatic approximation derived by the authors of [45]
for unforced solitary waves on very gentle slopes

cadi(t ) = √
h(xpeak(t ))

(
1 + ε0

2

η(xpeak(t ))
h(xpeak(t ))

)
, (28)
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with xpeak the location of the wave peak. Alternatively, Derakhti et al. [33] used large eddy
simulations to numerically investigate unforced solitary wave breaking on slopes ranging from
β = 0.2–0.005 for two different forms of c. They found wave breaking at maxx(Fr) = 0.85 when
using the speed of the numerically tracked wave peak cpeak. However, they also found that the
shallow-water approximation cshallow = √

h(xpeak) + ε0η(xpeak) [equivalent to cadi to O(ε2
0 )] was

within 15% of cpeak near breaking. Therefore, we will use Eq. (28) for c(t ) owing to its simplicity
and theoretical foundation. Finally, though these studies all considered unforced solitary waves,
our results will show that cadi varies approximately 3% across pressure magnitudes P0 for our
simulations, so this approximation is valid.

We still need an expression for the wave velocity at the surface us(x, t ), which we now derive by
modifying the example of Brun and Kalisch [35] to include sloping bathymetry and pressure forcing.
Combining the vKdV–Burgers equation (26) and kinematic boundary condition (14) eliminates ∂tη

yielding

c̃2 ∂2ϕ

∂x2
− c̃

∂η

∂x
+ ε0

(
η
∂2ϕ

∂x2
+ ∂η

∂x

∂ϕ

∂x
− 3

2

1

c̃
η
∂η

∂x

)
− P0

1

2
c̃
∂2η

∂x2

− μ0

(
1

6
c̃6 ∂4ϕ

∂x4
+ 1

6
c̃5 ∂3η

∂x3

)
+ γ0

(
2c̃ ˙̃c

∂ϕ

∂x
− 1

2
η ˙̃c

)

= 0 . (29)

Here, ˙̃c := ∂x1 c̃(x1) = O(1) in analogy to the previously defined ˙̃h. Assuming an ansatz

∂ϕ

∂x
= 1

c̃
η + ε0A(x, t ) + γ0B(x, t ) + μ0C(x, t ) + P0D(x, t ) (30)

⇒ ∂2ϕ

∂x2
= 1

c̃

∂η

∂x
+ ε0

∂A

∂x
+ γ0

(
∂B

∂x
− 1

c̃2
η ˙̃c

)
+ μ0

∂C

∂x
+ P0

∂D

∂x
, (31)

we insert Eqs. (30) and (31) into Eq. (29), drop terms of O(ε2
0 ) and solve for A, B, C, and D by using

the independence of ε0, γ0, μ0, and P0:

A = − 1

4c̃3
η2 , B = − 1

2c̃2

∫ x

−∞
η(x′) ˙̃c(γ0x′)dx′ , C = c̃3

3

∂2η

∂x2
, D = 1

2c̃

∂η

∂x
. (32 a–d)

Note that A represents the nonlinear contribution, B the effect of shoaling, C the dispersive effect,
and D the pressure forcing. Finally, the Taylor expansion of φ(x, z) Eq. (13) gives the fluid velocity
at the surface us(x, t ) using u = ∂xφ evaluated at z = ε0η:

us(x, t ) = ∂xϕ − μ0
1

2
c̃4∂3

x ϕ

= 1

c̃
η − ε0

1

4c̃3
η2 + P0

1

2c̃

∂η

∂x
− μ0

c̃3

6

∂2η

∂x2
− γ0

1

2c̃2

∫ x

−∞
η(x′) ˙̃c(γ0x′)dx′ . (33)

Therefore, the Froude number is calculated as

Fr := ε0us(xpeak, tpeak)√
h(xpeak)

(
1 + ε0

2

η(xpeak)

h(xpeak)

)−1

, (34)

with us(x, t ) given by Eq. (33). Equation (34) demonstrates that the choice of Frpb = 1/3 keeps the
problem in the correct asymptotic regime. Our simulated waves will reach prebreaking in depths
of h(xpb) = 0.59–0.72, so Eqs. (33) and (34) show that Frpb = 1/3 corresponds to a dimensional
H (xpb)/h(xpb) ≈ Frpb/

√
h(xpb) = 0.39−0.43. Considering an asymptotic regime around ε0 of ε

3/2
0

to ε
1/2
0 , or 0.089 to 0.45, we see that H (x)/h(x) remains in the asymptotic regime.
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TABLE I. Range of nondimensional parameters simulated.

Parameter Range

ε0 0.2
μ0 0.15
|P/(ρwgL0ε0)| 0, 0.00625, 0.0125, 0.025, 0.05
β 0.01, 0.015, 0.02, 0.025

G. Numerics

The vKdV–Burgers equation (26) lacks analytic, solitary-wave-type solutions, so we solve it
numerically using a third-order explicit Runge-Kutta adaptive time stepper with the error controlled
by a second-order Runge-Kutta method as implemented in SCIPY [56]. The domain’s deep, flat
regions have length L f = 20L0. Therefore, the spatial domain’s entire, periodic width Lx varies
between 108 and 150, depending on the slope β. We discretize the spatial domain using a fourth-
order finite difference method with Nx = 22Lx/0.025/22� points which yields a grid spacing of
dx = Lx/Nx ≈ 0.025 and ensures that the grid can be refined by two steps. We employ adaptive
time stepping to keep the relative error below 10−3 and the absolute error below 10−6 at each step.
For all cases, the average time step is �t ≈ 2 × 10−4. The pressure is initially turned off until the
solitary wave is one unit (i.e., a half-width L0) away from the start of the beach slope. The pressure
is linearly ramped up to its full value over the time the wave takes to cross a full-width 2L0. We
included a hyperviscosity ν4∂

4
x η0 with ν4 = 1 × 10−5 for numerical stability [57]. Finally, we only

considered solitary waves, as mentioned previously, because cnoidal wave trains require spin-up
and damping since we only consider prebreaking waves.

We validated the solver against the unforced, flat-bottom analytical solution and had
a normalized root-mean-square error of 1.6 × 10−4 after nondimensional time t = 50
(the longest simulation time) as well as a normalized wave height change of 1 −
[max(η0) − min(η0)]/[max(η(0)

0 ) − min(η(0)
0 )] = 1.4 × 10−4. To verify the numerical convergence

on our nominal (fine) grid size, we also ran the simulation on a medium grid and a fine grid, each
with a refinement ratio of 2. We then calculated the Romberg interpolation [58] and compared
each grid’s normalized root-mean-square error with respect to this interpolation to yield a grid
refinement index (GCI) [59] for the unforced case with the steepest β = 0.025 and shallowest
β = 0.01 slopes. Both slopes had a convergence order p > 2.1 which yielded grid convergence
indices indices GCInominal,medium < 3 × 10−4 and GCImedium,coarse < 8 × 10−4 much less than unity
and implying that the results are grid-converged. Furthermore, the profiles for all times until
prebreaking were nearly identical to the simulations of Knowles and Yeh [31] for an unforced
solitary wave shoaling on a slope. Finally, the simulation reproduced the finding of Knowles and
Yeh [31] that small waves (ε0 � 1) on weak slopes (γ0 � 1) yield Green’s Law for the wave height
H (x) := maxt (η) ∝ h(x)1/4 (with maxt the maximum over time t), while moderate waves (ε0 < 1)
on very weak slopes (γ0 �< 1) give Miles’ adiabatic law H (x) ∝ h(x)−1 [60].

The vKdV–Burgers equation (25) is determined by two nondimensional parameter combinations:
the pressure term P0/ε0 and the shoaling term γ0/ε0. Recall that the dispersive term μ0/ε0 is a
redundancy which we fixed by specifying L0 (cf. Sec. II E). We investigate this two-dimensional
parameter space by choosing ε0 = 0.2 and μ0 = 0.15 and varying the beach slope β = 0.01–0.025
and pressure |P| = 0 to 0.05 (cf. Sec. IV A for a discussion of the size of P). This yields a total of
36 simulations (Table I). Note that Eq. (25) demonstrates changing ε0 → λε0 is equivalent to γ0 →
γ0/λ in the wave’s comoving reference frame. Therefore, solutions for waves with different initial
heights ε0 can be generated from our solutions to the vKdV–Burgers equation in the laboratory frame
Eq. (26) by scaling the height, boosting, and adjusting γ0. Note the asymptotic expansion assumed
P0 ∼ ε0, or P/(ρwgL0ε0) ∼ 1, but the pressure values we are using (Table I) are smaller than unity.
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FIG. 2. Schematic showing the definition of the prebreaking zone and shore locations. The blue line
represents the water surface and wave profile η at prebreaking and the solid black line is the bottom bathymetry
h(x). The bathymetry consists of a flat region of depth h0, a sloping region, and a shallow plateau. The shoreline
xshore (black dot) is the location where the bathymetry would intersect the still water level if it had a constant
slope (dashed line). The beach width Lb is the distance from the toe of the beach slope to xshore and the
prebreaking point xpb is the location on the wave where Fr = Frpb, which will be very near the wave peak.
The prebreaking zone width Lpz is the distance from xpb to xshore.

Nevertheless, multiple-scale expansions are often accurate outside their parameters’ validity ranges
and this constraint would be satisfied asymptotically for smaller values of ε0.

H. Shape statistics

While previous studies investigated shoaling’s effect on wave-breaking location, we will the-
oretically examine the combined influences of both wind and shoaling on wave location xpb at
prebreaking tpb (Sec. II F). To estimate how xpb changes, we first calculate the shoreline xshore as the
location where the bathymetry would intersect z = 0 if it had a constant slope β without our shallow
plateau (Fig. 2). Then, we calculate the prebreaking zone width as Lpz := xpb − xshore. For a given
beach slope β, we will analyze the change in the prebreaking zone width relative to the unforced
case �Lpz := Lpz − Lpz|P=0 normalized by the unforced prebreaking zone width Lpz|P=0. This bulk
statistic �Lpz/(Lpz|P=0) determines the variance in prebreaking locations as a fractional change of
the prebreaking zone width.

Additionally, since we wish to analyze the effect of wind and shoaling on wave shape, we
will investigate four shape statistics that vary as the wave propagates. The first three are local
shape parameters defined at each location x. First, we directly examine the maximum Froude
number maxt (Fr) expressed in Eq. (34). Second, we investigate the maximum height relative to
the local water depth maxt (η)/h(x) at each location x. Third, we consider the maximum slope
maxt (|∂η/∂x|). Both the relative height and maximum slope contribute to the convective breaking
criterion maxx(Fr) = Frpb. Finally, we introduce a bulk shape parameter, the full width of the wave
at half of the wave’s maximum (FWHM) LW (t ) normalized by the local water depth h(x). For
our unforced KdV solitary wave initial condition (27), the FWHM divided by the initial depth
is LW /h0 = 2 cosh−1(

√
2)/

√
μ0. We seek to compare this bulk shape parameter defined at each

point in time t with the local parameters defined at each point in space. Therefore, we define
LW (x) = LW [tpeak(x)] at the time tpeak(x) when the wave peak passes location x.

III. RESULTS

Now, we use the results of the numerical simulations to investigate the effect of wind on solitary
wave shoaling and shape. We will present shape statistics (Sec. II H) for the 20 different runs
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(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

FIG. 3. Shoaling solitary-wave η evolution under [(a),(b)] onshore P > 0, [(c),(d)] unforced P = 0, and
[(e),(f)] offshore P < 0 wind-induced surface pressure versus nondimensional distance x/h0 as the wave
propagates up the [(g),(h)] planar bathymetry. The profile times shown depend on the Froude number (34)
and therefore vary between the panels. The first profile (purple) occurs when the peak is located at x = −L0

where the pressure begins turning on and the time is defined so t = 0 here. The last profile (green) occurs
when the convective prebreaking condition maxx (Fr) = Frpb = 1/3 is met (cf. Sec. II F), and the middle
profile (blue) occurs at a time halfway between the first and last profiles. Both columns have ε0 = 0.2 and
μ0 = 0.15, and [(a),(e)] the left-column forced cases have |P/(ρwgL0ε0 )| = 0.05 and β = 0.015 while [(b),(f)]
the right-column forced cases use |P/(ρwgL0ε0 )| = 0.025 and β = 0.025. The ×’s denote the locations with
the highest Froude number (34), and the ×’s on the last profiles (green) are the prebreaking locations xpb. We
only display a subset of the full spatial domain. Note that the aspect ratio is chosen to highlight the wind’s
effect on the shoaling solitons.

(Table I) to detail the wave-shape changes and prebreaking behavior across the parameter space.
For the remainder of the paper we will return to dimensional variables.

A. Profiles of shoaling solitary waves with wind

First, we qualitatively investigate the effect of varying pressures P and bathymetric slopes β on
solitary-wave shoaling by examining the wave profile η/h0, normalized by the initial depth h0, at
three different times t (Fig. 3) corresponding to when the solitary wave first feels the slope (t = 0),
the time of prebreaking (t = tpb), and half-way between (t = tpb/2). Note that these t = 0 wave
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profiles (purple in Fig. 3) are nearly identical to the sech2(x/L0) initial condition (27) since the
waves have only propagated over a flat bottom [Figs. 3(g) and 3(h)] and the pressure has not yet
been turned on. Halfway to prebreaking (t = tpb/2, blue), the solitary wave has grown through
shoaling with a steeper front face (+x side) and increased asymmetry for all P and β. At the time
of prebreaking (t = tpb, green) the solitary wave has increased in height, steepened, and gained a
substantial rear shelf for all P and β. These changes are likely even larger for waves propagating
to full wave breaking (Fr ≈ 1). The generation of rear shelves by shoaling solitary waves as in
Fig. 3 was first calculated by Miles [45] and resulted from the mass shed by the sech2 wave as it
narrowed. Onshore wind (P > 0) reinforces the shoaling-based wave growth and yields relatively
narrow peak widths for both β [Figs. 3(a) and 3(b)]. In contrast, offshore wind (P < 0) reduces
the wave shoaling but results in wider peak widths [Figs. 3(e) and 3(f)]. For instance, the width at
prebreaking on the milder slope β = 0.015 is LW /h(x) = 3.75 under onshore winds and LW /h(x) =
4.26 under offshore winds. These differences in wave-shoaling result in the offshore-forced (P < 0)
solitary wave reaching prebreaking (xpb, ×’s in Fig. 3) farther onshore (shallower water) than the
onshore-forced (P > 0) solitary wave. For the β = 0.015 case, the onshore-forced wave reaches
prebreaking at xpb/h0 = 20.8 while the offshore-forced wave reaches prebreaking farther offshore
at xpb/h0 = 26.1. Similarly, the larger beach slope [β = 0.025, Figs. 3(b), 3(d), and 3(f)] causes
waves to reach xpb in less horizontal distance, though they prebreak in shallower water than the
milder beach slope (β = 0.015) waves. For the unforced case, the β = 0.015 wave prebreaks at
xpb/h0 = 23.3 while the steeper beach β = 0.025 causes prebreaking at xpb/h0 = 15.2. At t = tpb,
the rear shelf is wider and extends higher up the rear face for offshore winds [≈0.1h0 in Fig. 3(e)]
than for onshore winds [≈0.07h0 in Fig. 3(a)]. Again, we expect these differences to be even larger
for fully breaking waves (Fr ≈ 1). As the control case, the unforced (P = 0) solitary wave has
xpb located between the onshore and offshore wind cases with an intermediate rear shelf. Finally,
the milder slope (β = 0.015) has a sharper, more pronounced rear shelf while the steeper slope
(β = 0.025) has a more gently sloping rear shelf.

We next investigate the impact of onshore [Figs. 4(a), 4(c), and 4(e)] and offshore [Figs. 4(b),
4(d), and 4(f)] wind on shoaling waves’ slopes ∂xη and wave velocity profiles u/

√
gh0. Figure 4

highlights the influence of wind directionality on wave shape by keeping the bathymetry and
pressure magnitude fixed while changing the pressure forcing’s sign. The wave slope [Figs. 4(c)
and 4(d)] highlights the shoaling- and wind-induced shape changes by accentuating the front-rear
asymmetry. At t = 0 [purple in Figs. 4(a) and 4(b)], the wave slope has odd-parity about the peak.
However, as the wave propagates onshore, both the front and rear faces steepen, though the front
face steepens more dramatically. The influence of the wind is most noticeable in three aspects:
the offshore-forced wave [P = −0.05, Fig. 4(b)] is 10% smaller than the onshore forced wave
[P = 0.05, Fig. 4(a)]; the offshore-forced rear-face wave slope [Fig. 4(d)] is 16% smaller than the
onshore-forced wave slope [Fig. 4(c)], though the front-face slope is only 2% smaller; and the
trailing shelf’s slope extends further behind the offshore-forced wave [≈8h0, Fig. 4(d)] than the
onshore-forced wave [≈5h0, Fig. 4(c)]. The wave velocity profile u/

√
gh0 [Eq. (33), Figs. 4(e) and

4(f)] nearly mirrors the wave profile [Figs. 4(a) and 4(b)], as is expected given that u ∝ η to leading
order (33). Finally, the phase speed cadi [red, Eq. (28)] decreases as the wave shoals which enhances
convective prebreaking, though cadi only varies 3% between the onshore and offshore winds. Note,
in Figs. 4(e) and 4(f), cadi is multiplied by Frpb = 1/3 so that the intersection of the red curve with
the wave velocity profile occurs at xpb, the location of prebreaking. We highlight that the prebreaking
quantity u/c ≈ Fr = 1/3 is smaller than the unified breaking onset criteria u/c = 0.85 described by
Derakhti et al. [33].

B. Shape statistics with shoaling and variations of prebreaking zone width with wind

Building on the previous qualitative descriptions of the wave shape, slope, and velocity, we now
quantify the change in the shoaling wave’s shape parameters for onshore and offshore P (Fig. 5).
First, we consider the maximum Froude number maxt (Fr) as a function of nondimensional position
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(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

FIG. 4. Shoaling solitary-wave [(a),(b)] nondimensional profile η/h0, [(c),(d)] slope ∂η/∂x, and [(e),(f)]
nondimensional wave velocity profile u/

√
gh0 under [(a),(c),(e)] onshore and [(b),(d),(f)] offshore wind-

induced surface pressure as the wave propagates up the [(g),(h)] planar bathymetry. All panels use the same
[(g),(h)] bathymetry and differ only in the sign of the pressure forcing. Values are shown versus nondimensional
distance x/h0 for ε0 = 0.2, μ0 = 0.15, |P/(ρwgL0ε0 )| = 0.05, β = 0.015, and nondimensional times t

√
gh/L0

indicated in the legends. The red lines in [(e),(f)] represent the phase speed cadi (28) at each location multiplied
by the prebreaking Froude number Frpb = 1/3. The ×’s denote the locations with the highest Froude number
and the ×’s on the last (green) profiles are the prebreaking locations xpb. The squares are the locations of the
maximum slope magnitude |∂η/∂x| and the upside-down triangles represent the locations of the maximum
wave velocity profile. We only display a subset of the full spatial domain. Note that the aspect ratio is chosen
to highlight the wind’s effect on the shoaling solitons.

x/h0 [Fig. 5(a)]. In the flat region (x < 0), the maximum Froude number is maxt (Fr) = 0.1986, and
it increases as the waves shoal to the prebreaking value maxt (Fr) = Frpb = 1/3 (light gray line). The
wind has a significant impact on the location of prebreaking xpb, with onshore wind (red) causing the
Froude number to increase faster and xpb to occur farther offshore than offshore wind (blue) does.
This can also be seen in Figs. 4(e) and 4(f), where the maximum velocities u/

√
gh0 (upside-down

triangles), which are proportional to maxt (Fr), are growing faster for the onshore wind [Fig. 4(e)]
than the offshore wind [Fig. 4(f)]. Notably, at a fixed location x/h0, the maxx(Fr) varies substantially
(e.g., 0.28 to 0.32 at x/h0 = 20). In addition, we consider the maximum height maxt (η) at a fixed
location and normalized by the local water depth h(x) [Fig. 5(b)]. For all pressures P, the solitary
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(a)

(b)

(c)

(d)

(e)

FIG. 5. Shoaling solitary-wave shape statistics under onshore and offshore pressure forcing versus nondi-
mensional distance x/h0. The (a) Froude number maxt (Fr) (34), (b) maximum height normalized by the local
water depth maxt (η)/h(x), (c) maximum slope maxt (|∂η/∂x|), and (d) full width at half maximum normalized
by the local water depth LW /h(x) (cf. Sec. II H) are displayed at each location along the (g) planar bathymetry.
Results are shown for ε0 = 0.2, μ0 = 0.15, β = 0.015, and pressure magnitude |P/(ρwgL0ε0 )| up to 0.05, as
indicated in the legend. The solid black line is the unforced case, P = 0. The light gray line in (a) represents
the convective prebreaking Froude number Frpb = 1/3 at which the simulations were stopped.

wave increases in height, but the onshore wind enhances this growth while the offshore wind
partially suppresses the growth. Again, this is apparent in the evolution of the maximums η(xpeak)/h0

in Fig. 3, with the peak locations xpeak closely approximated by the ×’s marking the location of
maximum Fr. Since Fr ∝ η to leading order, the relative height at prebreaking is approximately 0.41
for all P [Fig. 5(b)] with offshore-forced waves slightly larger (1%) than onshore-forced waves.

Figure 5(c) shows the evolution of the maximum wave slope magnitude maxt |∂xη|, correspond-
ing to the front face’s slope [Figs. 4(c) and 4(d)]. Like the relative height [Fig. 5(b)], the steepness
is enhanced by onshore wind (P > 0), suppressed for offshore wind (P < 0), and approaches nearly
the same prebreaking value of 0.15 for all wind speeds, being only 1% larger for onshore winds
than offshore winds. The maximum slope at prebreaking is nearly constant because solitary waves
have a fixed relationship between the wave height and wave width (and hence slope) as discussed in
Sec. II E. And the height at prebreaking is approximately constant since Fr ∝ η to leading order and
Fr = Frpb is constant. However, this relationship is only approximate on a slope, with deviations
due to nonlinearity, dispersion, shoaling, and wind forcing (32). Finally, we examine the FWHM
LW , normalized by the local water depth h(x) [Fig. 5(d)]. While LW /h(x) ultimately decreases from
its initial value of 4.56 for all pressure magnitudes, there is significant variation in the prebreaking
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FIG. 6. The fractional change in prebreaking zone width �Lpz compared to the unforced case Lpz|P=0 (cf.
Sec. II H) versus the nondimensional pressure magnitude P/(ρwgL0ε0 ). The results are shown for beach slopes
β = 0.01–0.025 as indicated in the legend.

value. For our parameters, LW /h(x) changes 215% more for onshore wind (P = 0.05) than offshore
wind (P = −0.05) from start to prebreaking. Figures 4(a) and 4(b) show that the rear shelf does
not rise to half the wave height, so the FWHM does not incorporate the shelf’s width. Instead, the
onshore-forced narrowing is occurring in the top region above the shelf. Hence, while the relative
height and slope at prebreaking are largely similar for all the wind speeds, the FWHM at prebreaking
is strongly affected by the wind speed indicating wind effects on shoaling shape. We expect the
wind-induced changes to maximum wave slope and FWHM to be even more stronger approaching
wave breaking (Fr ≈ 1).

We also investigate the change in the prebreaking zone width �Lpz (Sec. II H) as a function
of pressure P/(ρwgL0ε0) for four different values of the beach slope β (Fig. 6). First, �Lpz is
linearly related to the pressure magnitude, and the wind has a larger effect on �Lpz for smaller
beach slopes, with P/(ρwgL0ε0) = −0.05 changing the prebreaking zone width by approximately
5% for the smallest slope β = 0.01. This is because the wind has more time to affect the wave before
it reaches prebreaking. This wind-induced change in prebreaking location is visible in Fig. 3, where
the prebreaking location xpb (×’s on green profiles) occurs closer to the shoreline (+x direction)
for offshore winds P < 0 [Figs. 3(e) and 3(f)] than for onshore winds P > 0 [Figs. 3(a) and 3(b)].
Additionally, we note that for the smallest slope β = 0.01, the fractional change in prebreaking zone
width �Lpz/(Lpz|P=0) is asymmetric with respect to pressure, with offshore P/(ρwgL0ε0) = −0.05
yielding a 22% larger change than onshore P/(ρwgL0ε0) = 0.05 (Fig. 6). For fully breaking waves,
the wind-induced changes to the breaking-zone width �Lbz would likely be larger and the unforced
surf zone width Lbz|P=0 would be smaller (as waves propagate closer to shore before fully breaking),
making the fractional change �Lbz/(Lbz|P=0) much larger.

C. Normalized prebreaking wave shape changes induced by wind and shoaling

As Fig. 5 quantified the shape statistics at prebreaking for all x, we now directly investigate the
effect of pressure P and shoaling β on prebreaking wave shape by normalizing each prebreaking
wave profile η by its maximum height maxx(η) and aligning the prebreaking locations xpb/h0

(Fig. 7). Each solution is dominated by the sech2 wave centered near x − xpb = 0, which becomes
taller and narrower as the wave shoals as required by energy conservation [45]. Furthermore, while
the sech2 component is symmetric in time at a fixed location, it becomes slightly deformed when
viewed at a fixed time as the front face moves slower than the rear face [46,61]. We also observe
a shelf behind the wave, which Miles [45] calculated by requiring that the right-moving mass-flux
be conserved as the sech2 narrows and sheds mass. While long-duration calculations of the Miles
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(a)

(b)

(c)

FIG. 7. Prebreaking wave profile η/ maxx (η) normalized by the maximum height versus nondimensional
position (x − xpb)/h0 relative to the prebreaking location xpb. All profiles occur at prebreaking tpb when
maxx (Fr) = Frpb = 1/3 (cf. Sec. II F) and display different values of the (a) pressure magnitude P/(ρwgL0ε0 )
and the (b,c) bottom slope β, as indicated in the legend. Results are shown for ε0 = 0.2, μ0 = 0.15, and
(a) slope β = 0.015, (b) onshore P/(ρwgL0ε0) = 0.05, or (c) offshore P/(ρwgL0ε0) = −0.05 pressure magni-
tude. The light gray line shows where the FWHM is measured.

shelf reveal a nearly horizontal shelf extending far behind the wave [61,62], our shelf instead slopes
gently downward, likely due to insufficient development time and distance.

In Fig. 7, we plot the prebreaking wave shape for fixed bottom slope β [Fig. 7(a)] and fixed
pressure magnitude P [Figs. 7(b) and 7(c)]. For a fixed slope [Fig. 7(a)], the front wave faces at
prebreaking are qualitatively very similar and match an unforced solitary wave of the same height.
However, wind strongly affects the rear shelves as observed in Fig. 3. The offshore winds (blue)
cause the shelf to be thicker and extend higher up the rear wave face than the offshore wind (reds)
do, although the shelf intersects z = 0 at (x − xpb)/h0 ≈ −10 for all wind speeds. Nevertheless, all
of the changes in Fig. 7 would likely be enhanced for fully breaking waves as wind and shoaling
effects have longer to act on the wave.

We also consider the wave shape at breaking for different values of the beach slope β with a fixed
onshore [Fig. 7(b)] or offshore [Fig. 7(c)] wind. The rear half of the wave shows that bottom slope
β affects the rear shelf differently than pressure P/(ρwgL0ε0) does. While the shelf intersected
z = 0 at the same location for all wind speeds [Fig. 7(a)], increasing β causes the intersection
point (i.e., the base of the shelf) to move forward and closer to the peak. Finally, the offshore wind
[Fig. 7(c)] causes a noticeably larger shelf than the onshore wind [Fig. 7(b)] for the weakest slope
β = 0.01 (purple), with a similar pattern observed in Fig. 4(a) (β = 0.015) compared to Fig. 4(b)
(β = 0.025). However, this difference is much smaller for the steeper (green) slopes, implying that
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TABLE II. Wind speeds as functions of pressure P/(ρwgLε) and local depth h for solitary waves (35) with
ε = 0.2. Uonshore corresponds to P > 0 and Uoffshore to P < 0. The conversion from P/(ρwgLε) to U is given in
Eq. (36).

|P/(ρwgLε)| h[m] Uonshore[m s−1] Uoffshore[m s−1] h[m] Uonshore[m s−1] Uoffshore[m s−1]

0 2.5 4.9 4.9 1 3.1 3.1
0.0063 2.5 10 −0.41 1 6.5 −0.26
0.013 2.5 13 −2.6 1 7.9 −1.7
0.025 2.5 16 −5.8 1 9.9 −3.6
0.050 2.5 20 −10 1 13 −6.5

stronger shoaling partially suppresses the wind-induced shape change because there is less time for
pressure to act prior to prebreaking.

IV. DISCUSSION

A. Wind speed

Our derivation in Sec. II coupled wind to the wave’s motion through the use of a surface pressure
Eq. (5). The resulting vKdV–Burgers equation (26) has a wind-induced term dependent on the
pressure magnitude constant P/(ρwgL0ε0). We analyze the evolution and prebreaking of solitary
waves for variable P (Sec. III). While the usage of P was the most natural since it is the physical
coupling between wind and waves (in the absence of viscous tangential stress), measuring the
surface pressure is challenging in field observations or laboratory experiments [7,9]. Therefore,
we also consider the evolution and prebreaking of the shoaling solitary waves as a function of the
wind speed U . Zdyrski and Feddersen [25] considered a surface pressure acting on a flat-bottom
KdV solitary wave initial condition [equivalent to our Eq. (27)] with dimensional form

η = εhsech2

(√
3ε

4

x

h

)2

, (35)

with nondimensional height ε = H/h and width L = 2h/
√

3ε in water of depth h. Zdyrski and
Feddersen [25] then related wind speed U to the surface pressure magnitude using

U√
gh

= 1 ±
√

1

5

∣∣∣∣ P

ρwghε

∣∣∣∣ρw

ρa

2

4.91
= 1 ±

√
1

5

∣∣∣∣ P

ρwgLε

∣∣∣∣ρw

ρa

4

4.91
√

3ε
, (36)

where U is measured at a height of half the solitary wave’s width. This parametrization originated
from observations by Donelan et al. [9] of nonseparated wind forcing for periodic, shallow-water
waves and was adapted to solitary waves in shallow water by Zdyrski and Feddersen [25]. The
relationship is accurate for the wind and wave conditions of Donelan et al. [9], but should be
interpreted qualitatively here. Note that the radicand differs by a factor of 2 from Zdyrski and
Feddersen [25] owing to the different definitions of ε. Even though Eq. (36) was originally applied
to flat-bottomed KdV solitary waves (27), our assumption that γ = L/Lb � 1 implies that the
bathymetry is approximately flat over the wave’s width 2L. Therefore, we use Eq. (36) to translate
between the pressure P/(ρwgL0ε0) and the wind speed U at any point on the sloping bathymetry
by using the local ε and h and relating the initial pressure to the local pressure P/(ρwgLε) =
(ε0L0/εL)P/(ρwgL0ε0).

Table II shows the onshore (P > 0) and offshore (P < 0) wind speeds corresponding to the
pressures used in our simulations for two representative depths h. It shows that the pressure
magnitudes in our simulations correspond to physically reasonable wind speeds, with onshore U
from 3.1 ms−1 to 13 ms−1 for water 1 m deep or 4.9 ms−1 to 20 ms−1 for water 2.5 m deep. Notice
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FIG. 8. The fractional change in prebreaking zone width �Lpz compared to the unforced case Lpz|U=0 (cf.
Sec. II H) versus the nondimensional wind speed U/

√
gh(xpb) normalized by the local, shallow-water phase

speed
√

gh(xpb) and evaluated at a height of half the solitary wave width L. The results are shown for beach
slopes β = 0.01–0.025.

that unforced waves with P = 0 correspond to a wind speed matching the wave phase speed U = c,
with c approximately the linear shallow-water phase speed c ≈ √

gh. In particular, this means that
onshore P > 0 and offshore P < 0 winds with the same pressure magnitude |P| will have different
wind-speed magnitudes |U |. Additionally, note that keeping P fixed implies that the wind speed
U changes as the wave shoals. This is mostly due to the decrease in the phase speed c ∝ √

gh,
with higher-order effects coming from the ε and L dependence of the radicand in Eq. (36). Finally,
note that as the wave shoals and ε increases, the height at which the wind speed is measured
z = L/2 = h/

√
3ε decreases.

We now reexamine our results regarding the prebreaking zone width (Fig. 6) in terms of the
wind speed U/

√
gh(x) using Eq. (36). In addition to changing the abscissa of the plot (Fig. 8), we

also modify the definition of the change in the prebreaking zone width �Lpz := Lpz − Lpz|U=0 by
comparing and normalizing each prebreaking zone width to the U = 0 case rather than the P = 0
case. This transformation changes the initially straight lines of Fig. 6 into approximate pairs of
upward- and downward-facing

√
�Lpz curves shifted to the right by one unit (Fig. 8). Furthermore,

we see that �Lpz is now much flatter for onshore winds (U > 0) than for equal magnitude offshore
winds (U < 0). This is due to the inflection point of the unforced case (P = 0) being shifted to the
right at U/

√
gh = 1.

B. Isolating the effect of wind

For no wind (P = 0), solitary wave shoaling is well understood to generate a rear shelf [45].
The variation in the rear shelf’s thickness with P (Fig. 7) is reminiscent of the variability in the
wind-generated bound, dispersive, and decaying tails of flat-bottom solitary waves [25]. Addi-
tionally, Zdyrski and Feddersen [25] showed that flat-bottom, wind-generated tails are analogous
to the dispersive tails of KdV solutions with non-solitary-wave initial conditions [53]. Both the
rear shelf and wind-generated tail can be viewed as weak perturbations to the KdV equation by
transforming the nondimensional vKdV–Burgers equation (25) into a constant-coefficient, perturbed
KdV equation by defining ν := (3/2)(ε0/μ0)η0/h̃2 and τ := ∫

c̃dx1μ0/(6γ0):

∂ν

∂τ
+ 6ν

∂ν

∂ξ+
+ ∂3ν

∂ξ 3+
= −9

4

1

h̃

∂ h̃

∂τ
ν − 3

P0

μ0

1

c̃3

∂2ν

∂ξ 2+
. (37)

The first term on the right-hand-side (RHS) is the shoaling term which leads to the rear shelf [45],
and the second term is the wind-induced Burgers term [25]. Our derivation assumed all terms
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in Eq. (37) were the same order, and indeed ∂τ h̃/h̃ ∼ 6γ0/μ0 = 1.0–2.6 is order one. However,
the forcing term |P0|/μ0 = (4/3)|P0|/ε0 = 0–0.07 is much smaller than unity and is a weak
perturbation to the sloping-bottom KdV equation with its sech2 solitary-wave and shelf solution.

Perturbed KdV equations similar to Eq. (37) received some attention in past literature. In
particular, the unforced, shoaling case can be recast in a number of asymptotically equivalent
forms including Eqs. (25) or (37) with P = 0. Previous authors applied different mathematical
techniques to these various asymptotic forms to derive closed-form approximate solutions. For
instance, Knickerbocker and Newell [61] solved the unforced analog of Eq. (25) using conservation
laws. Alternatively, Grimshaw [63] used a multiple-scale analysis to solve a windless, modified
form of Eq. (25). Similarly, Ablowitz and Segur [64] solved the P = 0 version of Eq. (37) using
a direct perturbation solution while Newell [46] solved it using the inverse scattering transform.
Since Eq. (37) shows that shoaling and wind forcing can be treated on an equal footing, it should
be possible to extend these analyses to wind-forced solitary waves. However, such an analysis is
outside the scope of the current work, but is suitable for future work.

Reverting back to dimensional variables, we isolate the effect of wind by separating out the sech2

solitary wave and the Miles rear shelf using the unforced P = 0 normalized profiles to represent
shoaling and rear-shelf generation. We define a normalized tail ζ as the difference between the
forced and unforced P = 0 normalized profiles of Fig. 7:

ζ := η

maxx(η)
−

(
η

maxx(η)

)∣∣∣∣
P=0

. (38)

For constant depth, the height H and width L of unforced, sech2 solitary waves always satisfy
HL2 = const. Since our numerical results (e.g., Fig. 7) are dominated by the sech2 solitary wave
profile, scaling the wave profile by H requires that we scale the spatial coordinate by L ∝ 1/

√
H

to respect this symmetry and enable comparison of waves with different heights. We replace h →
h(xpeak) in the expression for the flat-bottom solitary wave width L Eq. (35) to yield the wave width
for a slowly varying depth as

L = h(xpeak)

√
4h(xpeak)

3H
. (39)

We normalize the spatial coordinate as x/L to compare the normalized tails ζ in Fig. 9.
We show the normalized tail ζ versus (x − xpb)/L for different pressures P and bottom slopes β

in Fig. 9. First, increasing the pressure magnitude |P| increases the tail’s amplitude and wavelength.
For example, the wavelength with β = 0.01 is approximately 5L for P/(ρwgL0ε0) = −0.025 and
7.5L for P/(ρwgL0ε0) = −0.05. This amplitude increase is expected, as higher pressures put more
energy into the tail, causing growth. Additionally, increasing the bottom slope β decreases the
shelf’s width and the tail’s amplitude without noticeably changing its wavelength. We can explain
the narrower shelf and smaller amplitude by recognizing that larger β’s cause the wave to reach
prebreaking (when these profiles are compared) earlier, decreasing the time over which the wind
(tail) and shoaling (shelf) act. The wavelength’s independence of the beach slope β also implies
that the width L of the solitary wave sets the tail’s wavelength. Additionally, we note that onshore
(P > 0) and offshore (P < 0) winds change the polarity of the tail, consistent with Zdyrski and
Feddersen [25]. Lastly, wind induces a small, bound wave in front of the prebreaking solitary wave
with minimum near (x − xpb) = 0 and extremum near (x − xpb)/L ≈ 2 of the same polarity as the
rear shelf (Fig. 9), similar to the flat-bottom results of Zdyrski and Feddersen [25].

Hence, the numerically calculated wave profiles (Fig. 7) are a superposition of the sech2 solitary
wave, Miles’ shelf [45], and a wind-induced bound, dispersive, and decaying tail [25]. Furthermore,
this decomposition of the full wave enables us to understand the effects of wind and shoaling from
previous studies. The sech2 solitary wave grows and narrows due to wave shoaling [45] and wind
forcing [25]. Miles’ shelf is generated by the mass flux of the growing wave. The shelf’s absence
from the normalized tails in Fig. 9 implies its shape is largely unchanged by the wind, and its
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(a)

(b)

(c)

(d)

FIG. 9. Normalized tail ζ Eq. (38) versus nondimensional position (x − xpb)/L relative to the prebreaking
location xpb. The wave profile is normalized by the maximum height maxx (η), and the spatial coordinate (x −
xpb) is normalized by the wave width L [Eq. (39)]. All profiles occur at prebreaking maxx (Fr) = Frpb = 1/3
(cf. Sec. II F) and are displayed for bottom slopes β of (a) 0.01, (b) 0.015, (c) 0.02, and (d) 0.025. Results are
shown for ε0 = 0.2, μ0 = 0.15, and pressure magnitude |P/(ρwgL0ε0)| up to 0.05, as indicated in the legend.
The solid black line is the unforced case P = 0 and is zero by definition.

amplitude for a given bottom slope β is approximately proportional to the sech2 solitary wave.
Finally, the amplitude and wavelength of the bound, dispersive, and decaying tail grow with the
sech2 solitary wave [25].

This decomposition relies on the assumption that the tail and shelf are both small compared to
the solitary wave and do not influence each other or the solitary wave. This is only possible when the
wind-forcing P0 is weak and the wave width-to-beach width ratio γ0 is small. Miles [45] analyzed
a vKdV equation requiring the same weak-slope assumption γ0 ∼ ε0, though his adiabatic results
required an even smaller γ0 = O(10−2) [31]. The realistic beach widths we utilized yield a γ0 =
3 × 10−2–6 × 10−2 somewhat larger than this adiabatic regime, and the γ0/ε0 term in Eq. (37) is not
as small as the pressure-forcing term, implying some nonlinear interactions between the shoaling-
induced shelf and the sech2 solitary are possible. For this reason, we subtracted off the unforced
solitary wave and shelf rather than approximate them analytically. Nevertheless, the pressure forcing
|P0|/μ0 = 0–0.07 we used was sufficiently small that the weak wind forcing can be considered
to interact linearly, as seen in the clean separation between pressure-induced tail and sech2 plus
shelf in Fig. 9. Thus, we show that there are physically reasonable parameter regimes wherein wave
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shape and evolution are the superpositions of the previously understood shoaling- and wind-induced
effects.

C. Breakpoint location comparison to prior laboratory experiments and models

Numerical studies investigated the effect of wind on the breaking of shoaling solitary [40] and
periodic [41] waves using a RANS k–ε model to simulate both the air and water. Xie [40] considered
solitary waves with initial height H0/h0 = 0.28 on a beach slope of 0.05 with onshore winds of
up to U/

√
gh0 = 3, while Xie [41] investigated periodic waves with initial height H0/h0 = 0.3

and initial inverse wavelength h0/λ0 = 0.1 on a beach slope of 0.03 forced by onshore winds up
to U/

√
gh0 = 2. These studies determined that the (absolute) maximum wave heights maxt (η)/h0

increased with increasing onshore wind at each location x < xb prior to breaking at xb, consistent
with our findings in Fig. 5(b). Furthermore, Xie [40] found the effect of wind on breaker depth
is significant while the effect on breaker height is minor, again consistent with our prebreaking
findings. Finally, comparing wave profiles in Xie [40] shows that onshore winds increase the wave
slope at a fixed location, which is consistent with our Fig. 5(c).

For periodic waves, previous laboratory experiments also investigated wind’s effect on the
breaking characteristics of shoaling waves [38,39]. Douglass [38] considered waves with ini-
tial height H0/h0 = 0.3 and initial inverse wavelength h0/λ0 = 0.1 under wind speeds of up to
U/

√
gh0 = ±2.3 on a beach with slope 0.04 while King and Baker [39] considered waves with

initial height H0/h0 = 0.2 and initial inverse wavelength h0/λ0 = 0.3 with wind speeds of up to
U/

√
gh0 = ±1.1 on a beach with slope 0.05. Douglass [38] measured how wind speed affects wave

parameters and changes the surf zone width for periodic waves. Directly comparing our Fig. 8
to Fig. 2 of Douglass [38], we see many qualitative similarities, including the prebreaking zone
width’s flatter response near U = 0 and a stronger response for offshore winds (U < 0) than the
corresponding onshore winds (U > 0), with our change roughly four times smaller than theirs.
Furthermore, the laboratory studies also found that the relative breaking height Hb/hb, normalized
by the breaking depth, decreased by as much as 40% for offshore wind speeds of U/

√
ghb = 4 and

increased by up to 10% for onshore wind speeds of U/
√

ghb = −2 compared to the unforced case
[38,39]. By comparison, over those same wind speed ranges of U/

√
gxpb = 1 ± 3, our simulations

found that the relative prebreaking height hpb/xpb varied by approximately 1% between onshore and
offshore winds [Fig. 5(b)], with the same polarity as the laboratory experiments. Finally, Douglass
[38] observed only a slight dependence of the breaking wave height on wind speed, which is
consistent with our finding that offshore-forced waves are only 1% larger than onshore-forced waves
at prebreaking. On the contrary, King and Baker [39] measured no statistically significant change
with wind speed in the ratio between the change in the fractional change (Hb − Hb|U=0)/Hb|U=0
of (absolute) breaking height Hb compared to the unforced case Hb|U=0. This is surprising, as both
our results and those of Douglass [38] had near-constant relative (pre)breaking height �(Hb/hb).
Indeed, constant �(Hb/hb) implies �Hb/Hb|U=0 must vary with wind (we find approximately ±5%
at prebreaking) to counteract the varying of �hb/hb|U=0 = �Lb/Lb|U=0 with wind that Douglass
[38], King and Baker [39], and we all find.

Our results qualitatively agree with prior numerical results on solitary waves [40] as well as
experimental and numerical results on periodic waves [38,39,41], and the quantitative mismatch
can be partly explained by the different nondimensional parameters. All three studies mentioned
used larger initial waves (ε0 ≈ 0.3), so nonlinear effects were likely more important. They also
used steeper beach slopes, enhancing the shoaling effect. Additionally, while the surf zone width
change is roughly four times larger for Douglass [38] than for our simulations over the same
wind-speed range, Douglass [38] investigated waves that were actually breaking. In contrast, we
stopped our simulations at prebreaking maxx(Fr) = Frpb = 1/3, significantly before actual breaking
maxx(Fr) ≈ 1 [33], thus we expect smaller changes to the fractional surf prebreaking zone width
(cf. Sec. III B).
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(a) (b)

FIG. 10. Nondimensional wave profile η/H∗
u at a fixed location versus nondimensional time �t/τ ∗ with η

normalized by the no-wind wave height H∗
u . The time difference �t := t − t0.25 is relative to the time when the

profile reaches η/H∗
u = 0.25 and is normalized by the unforced solitary wave temporal width τ ∗ = L∗

u/
√

gh∗ at
a depth h∗, with L∗

u the unforced spatial width [Eq. (39)]. (a) Periodic wave laboratory results from Feddersen
and Veron [23] with ε0 ≈ 0.28, μ0 = 0.035, and β = 0.125. The solid line represents the no-wind case U/c =
0 and the dashed line corresponds to an onshore wind U/c = 6, as indicated in the legend. The waves began
shoaling at a depth of h0 = 0.37 m and were measured at a nondimensional depth h∗/h0 = 0.62. The wave
height η is plotted relative to the wave trough mint (η). (b) Numerical results for ε0 = 0.2, μ0 = 0.15, and
β = 0.015 at a nondimensional water depth h∗/h0 = 0.69 and for nondimensional wind speeds U/

√
gh∗ [cf.

Eq. (36)] as indicated in the legend.

D. Wave shape comparison to prior laboratory experiments

Feddersen and Veron [23] experimentally examined the effect of wind on the temporal shape of
shoaling, periodic waves at a fixed location for no-wind (U/c = 0) and onshore-wind (U/c = 6)
cases [cf. Fig. 10(a)]. The waves began shoaling at a depth of h0 = 0.37 m and were observed at
a depth h∗/h0 = 0.62. To enable direct comparison with our results, we normalized the profile by
the height of the no-wind profile H∗

u at depth h∗. We also normalized the time coordinate with an
unforced solitary wave’s temporal width τ ∗ = L∗

u/
√

gh∗ at depth h∗, where the unforced spatial
width L∗

u is related to the wave height via an equation similar to Eq. (39). We observe that the
onshore wind increases the wave height and causes earlier peak arrival, relative to the arrival time
of η/H∗

u = 0.25 (Fig. 10). For comparison, our numerical results [Fig. 10(b)] over different wind
speeds, calculated using Eq. (36), are shown at x/h = 20.1 corresponding to h∗/h0 = 0.68. This
corresponds to xpb for the strongest onshore wind U/

√
gh∗ = 4 (i.e., P = 0.05) case. We truncated

the time series at Fr = 1/2, instead of Frpb = 1/3, to enable qualitative comparison of the strong-
wind numerical case (U/

√
gh∗ = 4) with the laboratory onshore-wind case (U/c = 6). However,

we note that this result is strictly out of the asymptotic range.
Our numerical results [Fig. 10(b)] are qualitatively similar to the experimental results of Fedder-

sen and Veron [23] [Fig. 10(a)], despite different experimental and model conditions. Specifically,
Feddersen and Veron [23] presented shallower (h∗/h0 = 0.62) measurements of shoaling periodic
waves (h0/λ0 = 0.27) forced by stronger laboratory winds (U/c = 6) in contrast to our deeper
(h∗/h0 = 0.68) simulations of solitary waves (h0/λ0 → 0) for weaker winds (U/

√
gh∗ = 4). There-

fore, we display the results side by side as opposed to overlaid to emphasize the qualitative
comparison. Onshore wind causes wave growth and narrowing for both laboratory observations
and numerical results. The peaks of the onshore-forced waves occur earlier (relative to the time
of η/H∗

u = 0.25) due to wave narrowing, as seen in Fig. 5(d). Finally, the rear faces of the
onshore-forced waves (�t/τ ∗ from 1 to 2.5) dip below the no-wind cases. Numerical results with
offshore wind continue the pattern. The qualitative similarities between our results and that of
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Feddersen and Veron [23] suggests that the our vKdV–Burgers equation captures the essential
aspects of wind-induced effects on shoaling wave shape. No other theoretical model has yet shown
such qualitative similarity with wind-forced wave shape experiments, despite the differences (e.g.,
periodic versus solitary) between the laboratory and numerical studies.

V. CONCLUSION

While shoaling-induced changes to wave shape are well understood, the interaction of wind-
induced and shoaling-induced shape changes has been less studied and lacked a theoretical
framework. Utilizing a Jeffreys-type wind-induced surface pressure, we defined four nondimen-
sional parameters that controlled our system: the initial wave height ε0, the inverse wavelength
squared μ0, the pressure strength P0, and the wave width-to-beach width ratio γ0. We lever-
aged these small parameters to reduce the forced, variable-bathymetry Boussinesq equations to a
variable-coefficient Korteweg–de Vries–Burgers equation for the wave profile η. We also extended
the convective breaking criterion of Brun and Kalisch [35] to include pressure and shoaling. A
third-order Runge-Kutta solver determined the time evolution of a solitary wave initial condition
up a planar beach under the influence of onshore and offshore winds. Stopping the simulations
at a prebreaking Froude number of 1/3 revealed that the prebreaking relative height and maximum
slope are largely independent of wind speed, but onshore winds cause a narrowing of the waves. The
width of the prebreaking zone is strongly modulated by wind speed, with offshore wind decreasing
the prebreaking zone width by approximately 5% for the mildest beach slopes. Investigating the
wave shape at prebreaking revealed that the front of the wave is relatively unchanged and matches
an unforced solitary wave, while the rear shelf is strongly affected by wind speed and bottom slope.
We isolated the effect of wind from the effect of shoaling and revealed a bound, dispersive, and
decaying tail similar to wind-induced tails on flat bottoms. By leveraging the relationship between
surface pressure P and wind speed U , we directly compared our results to existing experimental and
numerical results. We found qualitative agreement in surf width changes and wave height changes
and expect better quantitative agreement as the waves propagate closer to breaking. These results
suggest that wind significantly impacts wave breaking, and our simplified model highlights the
relevant physics and changes to wave shape. Future avenues of research could include calculating
asymptotic, closed form solutions to Eq. (37) or deriving coupled equations for both the water and
air motions to more accurately predict the surface pressure distribution.
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