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Unforced shoaling waves experience growth and changes to wave shape. Similarly, wind-5

forced waves on a flat-bottom likewise experience growth/decay and changes to wave6

shape. However, the combination of shoaling and wind-forcing, particularly relevant in the7

near shore environment, has rarely been investigated. Here, we consider small-amplitude,8

shallow-water solitary waves propagating up a gentle, planar bathymetry forced by a weak,9

Jeffreys-type wind-induced surface pressure. We derive a variable-coefficient Korteweg–de10

Vries–Burgers (vKdV–B) equation governing the surface profile’s evolution and solve it11

numerically using a Runge-Kutta third-order finite difference solver. The simulations run12

until convective pre-breaking—a Froude number limit appropriate to the order of the13

vKdV–B. Offshore winds weakly enhance the ratio of pre-breaking height to depth as14

well as pre-breaking slope. Onshore winds have a strong impact on narrowing the wave15

peak, and wind also modulates the rear shelf formed behind the wave. Furthermore, wind16

strongly affects the width of the pre-breaking zone, with larger effects for smaller beach17

slopes. After converting our pressure magnitudes to physically realistic wind speeds, we18

observe qualitative agreement with prior laboratory and numerical experiments. Finally,19

we isolate the wind’s effect by comparing the wave profiles to the unforced case. This20

reveals that the numerical results are approximately a superposition of a solitary wave, a21

shoaling-induced shelf and a wind-induced, bound, dispersive and decaying tail.22
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1. Introduction24

Wind coupled to surface gravity waves leads to wave growth and decay as well as25

changes to wave shape. However, many aspects of wind-wave coupling are not yet fully26

understood. Since the sheltering theory of wind-wave coupling by Jeffreys (1925), a variety27

of mechanisms for wind-wave interactions have been put forward, often with a focus on28

calculating growth rates (e.g., Miles 1957; Phillips 1957). Furthermore, these theories29

have been tested by many studies in the laboratory (e.g., Wu 1968; Phillips & Banner30

1974; Plant & Wright 1977; Buckley & Veron 2019) and the field (e.g., Hasselmann31

et al. 1973; Donelan et al. 2006). Similarly, numerical studies have modeled the airflow32

above waves using methods such as large eddy simulations (e.g., Hara & Sullivan 2015;33

Yang et al. 2013; Husain et al. 2019) or modeled the combined air and water domain34

using Reynolds-averaged Navier Stokes (RANS) solvers (e.g., Zou & Chen 2017) or direct35

numerical simulations (e.g., Zonta et al. 2015; Yang et al. 2018).36

While wave growth rates and airflow structure have received much attention, wind-37

induced wave shape changes have been less studied. Unforced, weakly nonlinear waves38

on flat bottoms (e.g. Stokes, cnoidal, and solitary waves) are horizontally symmetric39

about the peak (i.e. zero asymmetry) but are not vertically symmetric (i.e. non-zero40

skewness, e.g., Amick & Toland 1981; Toland 1999). Laboratory experiments of wind41

blowing over periodic waves have demonstrated that wave asymmetry increases with42
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onshore wind speed in intermediate-water (e.g., Leykin et al. 1995) and deep-water (e.g.,43

Feddersen & Veron 2005). Theoretical studies have likewise shown that wind-induced44

surface pressure induces wave shape changes in both deep (Zdyrski & Feddersen 2020)45

and shallow (Zdyrski & Feddersen 2021) water. However, the influence of wind on wave46

shape has not yet been investigated theoretically for shoaling waves on a sloping bottom.47

In contrast, the shoaling of unforced waves up a beach is a relatively well-studied48

phenomenon that causes wave growth and shape change. Field observations have revealed49

the importance of nonlinearity in wave shoaling and its relation to skewness and50

asymmetry (e.g., Elgar & Guza 1985; Freilich & Guza 1984). Additionally, laboratory51

experiments of waves shoaling on planar beach slopes yield how the wave height and52

wave shape evolve with distance up the beach (e.g., Zelt 1991; Beji & Battjes 1993; Grilli53

et al. 1994). Furthermore, numerical studies have investigated wave shoaling all the way54

to wave breaking. A variety of methods have been utilized, including pseudo-spectral55

models (e.g., Knowles & Yeh 2018), fully nonlinear potential flow boundary element56

method solvers (e.g., Grilli et al. 1997; Derakhti et al. 2020), large eddy simulation volume57

of fluid methods (e.g., Derakhti et al. 2020) and two-phase direct numerical simulations58

of both the air and water (e.g., Mostert & Deike 2020). Theoretical (e.g., Brun & Kalisch59

2018) and numerical (e.g., Derakhti et al. 2020) investigations of wave breaking have60

shown that convective wave breaking depends on the surface water velocity u and the61

phase speed c and occurs when the Froude number Fr := u/c is approximately unity.62

The type of wave breaking (e.g. spilling, plunging, surging, etc.) is related to the beach63

slope β, initial wave height H0 and initial wave width L0 through the Iribarren number64

Ir := β/
√
H0/L0 (e.g., Iribarren 1949; Lara et al. 2011).65

There have been extremely few studies looking at the combined effects of wind and66

shoaling of surface gravity waves. Experimental studies have found that onshore wind67

increases the surf zone width (e.g., Douglass 1990) and decreases the wave height-to-68

water depth ratio at breaking (e.g., King & Baker 1996), with offshore wind having69

the opposite effect. Additionally, numerical studies using two-phase RANS solvers of70

wind-forced solitary (e.g., Xie 2014) and periodic (e.g., Xie 2017) breaking waves have71

demonstrated that increasingly onshore winds enhance the wave height at all points72

prior to breaking. Furthermore, only Feddersen & Veron (2005) and O’Dea et al. (2021)73

have investigated the combined influence of wind and shoaling on wave shape. Feddersen74

& Veron (2005) demonstrated that onshore winds enhance the shoaling-induced time-75

asymmetry. Cross-shore wind was weakly correlated to the void aspect ratio of strongly-76

nonlinear, plunging waves with offshore (onshore) wind reducing (increasing) the aspect77

ratio (O’Dea et al. 2021), although the wind-variation was relatively weak. Nevertheless,78

a theoretical description of wind-induced changes to wave shoaling (e.g. wave shape,79

breaking location, etc.) has not yet been developed.80

Therefore, this study will derive a simplified, theoretical model for wind-forced shoaling81

waves that takes the form of a variable-coefficient Korteweg–de Vries (KdV)–Burgers82

equation. The standard KdV equation describes unidirectional wave propagation with83

weak nonlinearity and dispersion in shallow, flat-bottomed domains (e.g., Hammack84

& Segur 1974). It has localized solutions, known as solitary waves, which propagate85

without changing shape by balancing nonlinearity and dispersion (e.g., Mei et al. 2005).86

Furthermore, arbitrary initial conditions will decay into a number of discrete solitary87

waves as well as an oscillatory, dispersive tail (e.g., Hammack & Segur 1974). When the88

bottom bathymetry is allowed to vary, the coefficients of the KdV equation are no longer89

constant and the system is described by a variable-coefficient KdV (vKdV) equation (e.g.,90

Johnson 1973; Svendsen & Hansen 1978). The deformation of solitary waves propagating91

on a sloping-bottom vKdV system has been studied both analytically (e.g., Miles 1979)92
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and numerically (e.g., Knowles & Yeh 2018) with solitary wave initial conditions becoming93

deformed and gaining a rear “shelf” for small enough slopes (e.g., Miles 1979). Alternatively,94

if the flat-bottomed KdV equation is augmented with a wind-induced surface pressure95

forcing, the KdV–Burgers (KdV–B) equation results (Zdyrski & Feddersen 2020). Wind in96

the KdV–B equation induces a solitary-wave initial condition to continuously generate a97

bound, dispersive and decaying tail with polarity depending on the wind direction (Zdyrski98

& Feddersen 2020), analogous to a KdV non-solitary-wave initial condition (e.g., Newell99

1985).100

Here, we apply a wind-induced pressure forcing over a sloping bathymetry to derive101

a vKdV–Burgers equation and determine a convective pre-breaking condition in § 2.102

We then solve the resulting vKdV–Burgers equation numerically using a third-order103

Runge-Kutta solver and investigate the changes to wave shape and pre-breaking location104

in § 3. Finally, we examine the relationship between pressure and wind speed, isolate the105

effect of wind from the effect of shoaling, and discuss how our findings relate to previous106

laboratory and numerical studies in § 4.107

2. vKdV–Burgers equation derivation and model setup108

2.1. Governing equations109

We derive a vKdV–Burgers equation for wind-forced shoaling waves by considering110

incompressible, irrotational, inviscid flows and neglecting surface tension. We restrict our111

attention to planar, two-dimensional waves propagating in the +x-direction. Additionally,112

we choose the +z-direction to be vertically upwards with the z = 0 datum at the mean113

water level and impose a bottom bathymetry at z = −h(x). The standard incompressibility,114

bottom boundary, kinematic boundary and dynamic boundary conditions are115

0 =
∂2φ

∂x2
+
∂2φ

∂z2
on − h < z < η , (2.1)

∂φ

∂z
= −∂h

∂x

∂φ

∂x
on z = −h, (2.2)

∂φ

∂z
=
∂η

∂t
+
∂φ

∂x

∂η

∂x
on z = η , (2.3)

0 =
p

ρw
+ gη +

∂φ

∂t
+

1

2

[(
∂φ

∂x

)2

+

(
∂φ

∂z

)2
]

on z = η . (2.4)

We have introduced the wave profile η(x, t), the velocity potential φ(x, z, t) derived from116

the water velocity u = ∇φ, the surface pressure p(x, t), the gravitational acceleration g117

and the water density ρw which is much larger than the air density ρa ≈ 1.225× 10−3ρw.118

Additionally, we removed the Bernoulli constant from the dynamic boundary condition119

by using the φ gauge freedom. Next, to examine the wind’s effect on shoaling waves,120

we impose the analytically-simple Jeffreys-type surface pressure p(x, t) forcing (Jeffreys121

1925):122

p(x, t) = P
∂η(x, t)

∂x
. (2.5)

The pressure constant P ∝ ρa(U − c)2 depends on the wave phase speed c and wind speed123

U (cf. § 4.1). For a wave propagating towards the shore, onshore winds yield P > 0 while124

offshore winds give P < 0. The application of a Jeffreys-type forcing to the flat-bottom125

KdV equation was discussed in Zdyrski & Feddersen (2021).126
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Figure 1. Schematic showing the (periodic) simulation domain and relevant length
scales. The blue line represents the water surface and wave profile η, and the solid
black line is the bottom bathymetry h(x). The solitary wave initial condition has
an effective half-width L0 and height H0 and begins with its peak on the far left
side, in the middle of flat region of depth h0. The initial wave then propagates to
the right with phase speed c up the beach with slope β until it reaches pre-breaking
(cf. § 2.6). The positive/negative wind speed U corresponds to an onshore/offshore
wind forcing.

2.2. Model domain and model parameters127

The model domain (figure 1) consists of an initial flat section 20 units long at a depth128

of h0 = 1 and transitions smoothly at x = 0 into a planar beach region with constant129

slope β and characteristic beach width Lb := h0/β, as defined by Knowles & Yeh (2018).130

The bathymetry then smoothly transitions to a flat plateau 40 units long at a depth of131

h = 0.1 followed by a downward slope with slope −β. Finally, there is another flat section132

at a depth of h0 = 1 before the domain wraps periodically.133

The initial condition will be a KdV solitary wave with height H0 and width L0 following134

Knowles & Yeh (2018), and L0 will be specified later. The solitary wave begins centered135

on the left boundary, in between the two flat, deep, 20 unit-long sections. From the defined136

dimensional quantities, we specify four non-dimensional parameters,137

ε0 :=
H0

h0
, µ0 :=

(
h0
L0

)2

, P0 :=
P

ρwgL0
, γ0 :=

L0

Lb
. (2.5a–d)

Here, ε0 is the non-dimensional initial wave height, µ0 is the square reciprocal of the non-138

dimensional initial wave width, P0 is the non-dimensional pressure magnitude (normalized139

by the initial wave width), and γ0 is ratio of the initial wave width to the beach width.140

Note that the wave width-to-beach width ratio γ0 is related to the beach slope β as141

γ0 = β/
√
µ0. Together, these four non-dimensional parameters control the system’s142

dynamics.143

2.3. Non-dimensionalization144

We non-dimensionalize our system’s variables using the characteristic scales described145

in § 2.2: the initial depth h0; the initial wave’s height H0; the initial wave’s horizontal146

length scale L0; the gravitational acceleration g; and the pressure magnitude P . Using147

primes for non-dimensional variables, we normalize as Zdyrski & Feddersen (2021) did148
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and define149

x = L0x
′ = h0

x′
√
µ0

,

z = h0z
′ ,

t =
t′L0√
gh0

=
t′
√
µ0

√
h0
g
,

h = h′h0 ,

η = H0η
′ = h0ε0η

′ ,

φ = φ′H0L0

√
g

h0
=
φ′ε0√
µ0

√
gh30 .

(2.6)

We later assume the non-dimensional parameters ε0, µ0, γ0 and P0 are small to leverage150

a perturbative analysis. For the constant slope β beach profile, the spatial derivative of151

the bathymetry is also small ∂x′h′ = β/
√
µ0 = γ0 � 1 (the factor of √µ0 comes from the152

different non-dimensionalizations of h and x). However, perturbation analyses is simplest153

when all non-dimensional variables are O(1). Therefore, we leverage the two, horizontal154

length scales L0 and Lb (cf. § 2.2) to define a non-dimensional, stretched bathymetry155

h̃′ that depends on x/Lb = γ0x
′ as h̃′(γ0x′) = h′(x′). Then, denoting derivatives with156

respect to γ0x′ using an overdot, the derivative of h̃ is ˙̃
h′ := ∂γ0x′ h̃

′(γ0x
′) = O(1), and157

the small slope becomes explicit as ∂x′h′ = γ0
˙̃
h′.158

Now, the non-dimensional equations take the form159

0 = µ0
∂2φ′

∂x′2
+
∂2φ′

∂z′2
on − 1 < z′ < ε0η

′ , (2.7)

∂φ′

∂z′
= −µ0γ0

˙̃
h′
∂φ′

∂x′
on z′ = −h̃′(γ0x′) , (2.8)

∂φ′

∂z′
= µ0

∂η′

∂t′
+ ε0µ0

∂φ′

∂x′
∂η′

∂x′
on z′ = ε0η

′ , (2.9)

0 = P0
∂η′

∂x′
+ η′ +

∂φ′

∂t′
+

1

2

[
ε0

(
∂φ′

∂x′

)2

+
ε0
µ0

(
∂φ′

∂z′

)2
]

on z′ = ε0η
′ . (2.10)

For the remainder of § 2, we remove the primes for clarity.160

2.4. Boussinesq equations, multiple-scale expansion and vKdV–Burgers equation161

We follow the conventional Boussinesq equation derivation presented in, e.g., Mei et al.162

(2005) or Ablowitz (2011). The two modifications we include are the weakly sloping bottom,163

similar to the treatment in Johnson (1973) and Mei et al. (2005), and the inclusion of a164

pressure forcing like that of Zdyrski & Feddersen (2021). For the sake of brevity, we only165

detail the relevant differences here. First, we expand the velocity potential in a Taylor166

series about the bottom z = −h(x) as167

φ(x, z, t) =

∞∑
n=0

[
z + h̃(γ0x)

]n
φn(x, t) . (2.11)

Substituting this expansion into the incompressibility equation (2.7) and bottom boundary168

condition (2.8) and assuming µ0 � 1 gives φ as a function of the velocity potential169

evaluated at the bottom ϕ := φ0. If we further assume that the bottom is very weakly170

sloping γ0 ∼ µ0 � 1, this simplifies to171

φ = ϕ− µ0
1

2
(z + h̃)2∂2xϕ+O

(
µ2
0, γ

2
0 , γ0µ0

)
. (2.12)

Note that the assumption γ0 ∼ µ0 � 1 implies a moderate slope β = γ0
√
µ0 ∼ µ3/2

0 and172

is used by several other authors (e.g., Johnson 1973; Miles 1979; Knowles & Yeh 2018).173
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For reference, if µ0 = γ0 = 0.1, then this implies a physically realistic β = 0.03. Svendsen174

& Hansen (1978) compares this moderate slope to other theoretical derivations using175

larger or smaller slopes.176

Substituting this φ expansion (2.12) into the kinematic and dynamic boundary177

conditions (2.9) and (2.10) yields Boussinesq-type equations with a pressure forcing178

term,179

∂tη +
(
h̃+ ε0η

)
∂2xϕ +

(
γ0

˙̃
h+ ε0∂xη

)
∂xϕ− µ0

1

6
h̃3∂4xϕ = O

(
µ2
0, γ

2
0 , γ0µ0

)
, (2.13)

P0∂xη + η + ∂tϕ−
1

2
µ0h̃

2∂2x∂tϕ+
1

2
ε0(∂xϕ)

2
= O

(
µ2
0, γ

2
0 , γ0µ0

)
. (2.14)

Note that replacing h̃ with the total depth htotal = h̃+ε0η shows that these are equivalent180

to the flat-bottomed Boussinesq equations with htotal = 1 + ε0η. In other words, any181

sloping-bottom terms ˙̃
h only appear in the combination ∂xhtotal = γ0

˙̃
h + ε0∂xη. This182

is expected since the only sloping-bottom term µ0γ0
˙̃
h∂xφ in the governing equations183

(2.7)–(2.10) was dropped when we neglected terms of O
(
µ2
0, γ

2
0 , γ0µ0

)
.184

Since the bathymetry varies on the slow scale x/γ0, we expand our system in multiple185

spatial scales xn = γn0 x for n = 0, 1, 2, . . ., so the derivatives become186

∂

∂x
→ ∂

∂x0
+ γ0

∂

∂x1
+ . . . , (2.15)

and the bathymetry is a function of the long spatial scale h̃ = h̃(x1). Then, we expand η187

and ϕ in asymptotic series of ε0188

η(x, t)→
∞∑
k=0

εk0ηk(t, x0, x1, . . .) , ϕ(x, t)→
∞∑
k=0

εk0ϕk(t, x0, x1, . . .) . (2.15a,b)

Similar to Johnson (1973), we replace x0 and t with left- and right-moving coordinates189

translating with speed c̃(x1) dependent on the stretched coordinate x1:190

ξ+ = −t+
∫ x0 dx′0

c̃(γ0x′0)
, ξ− = t+

∫ x0 dx′0
c̃(γ0x′0)

. (2.16)

Then, we replace the derivatives ∂t and ∂x0
with191

∂

∂t
=

∂

∂ξ−
− ∂

∂ξ+
,

∂

∂x0
=

1

c̃

(
∂

∂ξ−
+

∂

∂ξ+

)
. (2.17)

Now, we will assume that ε0 ∼ P0 ∼ µ0 � 1 and follow the standard multiple-scale192

technique (e.g., Mei et al. 2005; Ablowitz 2011). The order-one terms O
(
ε00
)
from (2.13)193

and (2.14) yield wave equations for φ0 and η0194

∂2φ0
∂ξ+∂ξ−

= 0 ,
∂2η0

∂ξ+∂ξ−
= 0 , (2.17a,b)

with right-moving solutions195

ϕ0 = f0(ξ+, x1) and η0 = ∂ξ+f0(ξ+, x1) , (2.18)

propagating with the slowly varying, linear shallow-water phase speed c̃(x1) =
√
h̃(x1).196
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Continuing to O(ε0) of the asymptotic expansion gives197

− ∂η1
∂ξ+

+
∂η1
∂ξ−

+
∂2ϕ1

∂ξ2+
+ 2

∂2ϕ1

∂ξ+∂ξ−
+
∂2ϕ1

∂ξ2−
= −2γ0

ε0
c̃
∂2ϕ0

∂ξ+∂x1
+
γ0
ε0

∂c̃

∂x1

∂ϕ0

∂ξ+

− 1

c̃2
η0
∂2ϕ0

∂ξ2+
− γ0
ε0

˙̃
h

c̃

∂ϕ0

∂ξ+
− 1

c̃2
∂η0
∂ξ+

∂ϕ0

∂ξ+
+
µ0

ε0
h̃
1

6

∂4ϕ0

∂ξ4+
,

(2.19)

η1 −
∂ϕ1

∂ξ+
+
∂ϕ1

∂ξ−
= −P0

ε0

1

c̃

∂η0
∂ξ+

− 1

2

µ0

ε0
h̃
∂3ϕ0

∂3ξ+
− 1

2c̃2

(
∂ϕ0

∂ξ+

)2

. (2.20)

Eliminating η1 from these equations gives198

4
∂2φ1

∂ξ+∂ξ−
= −2γ0

ε0
c̃
∂η0
∂x1
− γ0
ε0

∂c̃

∂x1
η0 − 3

1

c̃2
η0
∂η0
∂ξ+

− 1

3

µ0

ε0
c̃2
∂3η0
∂ξ3+

− 1

c̃

P0

ε0

∂2η0
∂ξ2+

. (2.21)

The left-hand operator ∂2/∂ξ−∂ξ+ is the same as the O(1) differential operator (2.17a,b).199

Therefore, the right-hand side must vanish to prevent φ1 from developing secular terms.200

Thus, the right-hand side becomes the variable-coefficient Korteweg–de Vries–Burgers201

(vKdV–Burgers) equation202

γ0
ε0
c̃
∂η0
∂x1

+
1

2

γ0
ε0

∂c̃

∂x1
η0 +

3

2

1

c̃2
η0
∂η0
∂ξ+

+
1

6

µ0

ε0
c̃2
∂3η0
∂ξ3+

+
1

2c̃

P0

ε0

∂2η0
∂ξ2+

= 0 . (2.22)

Finally, multiplying (2.22) by ε, adding the O(1) differential equation ∂ξ−η0 = 0 derived203

from (2.17a,b), and transforming back to the original, non-dimensional variables x and t204

yields205

∂η0
∂t

+ c
∂η0
∂x

+
1

2

∂c

∂x
η0 +

3

2
ε0

1

c
η0
∂η0
∂x

+
1

6
µ0c

5 ∂
3η0
∂x3

+
1

2
P0c

∂2η0
∂x2

= 0 . (2.23)

The pressure term P0∂
2
xη0 functions as a damping, positive viscosity for offshore P0 < 0206

wind, making (2.23) a (forward) vKdV–Burgers equation. Conversely, onshore P0 > 0207

wind causes a growth-inducing, negative viscosity giving the backward vKdV–Burgers208

equation. The backward, constant-coefficient KdV–Burgers equation is ill posed in the209

sense of Hadamard (Hadamard 1902). Though it is possible the backward vKdV–Burgers210

equation is also ill posed for certain bathymetries h̃, this is irrelevant here owing to the211

finite time the wave takes takes to reach the beach.212

2.5. Initial conditions213

Our initial condition will be the solitary-wave solutions of the unforced (P0 = 0), flat-214

bottom KdV equation. These waves balance the KdV equation’s nonlinearity η0∂xη0 and215

dispersion ∂3xη0 terms, propagate without changing shape and require that the height H0216

and width L0 satisfy H0L
2
0 = constant. Therefore, we now fix the previously unspecified217

L0 by choosing µ0 = (3/4)ε0 so L0 acts like an effective half-width for the solitary wave218

initial condition (e.g., Mei et al. 2005)219

η0 = sech2 (x) , (2.24)

While the unforced KdV equation also possesses periodic solutions called cnoidal waves,220

we only consider solitary waves here.221

2.6. Convective breaking criterion222

The asymptotic assumptions used to derive the vKdV–Burgers equation (2.23) fail223

when the wave gets too large. Therefore, we require a condition to determine when the224
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simulations should stop. We use a convective “pre-breaking” condition similar to that225

derived by Brun & Kalisch (2018) for solitary waves on a flat-bottom depending on the226

wave velocity profile u(x, t) at the surface and the phase speed c. They utilized the local227

Froude number Fr := ε0u(x, t)/c, with the ε0 coming from non-dimensionalization, and228

defined convective breaking to occur wherever maxx(Fr) = 1, where maxx represents the229

maximum over x. However, when the Froude number approaches the breaking value of230

unity, our weakly-nonlinear asymptotic assumption used to derive the vKdV–Burgers231

equation are violated. Thus, we instead stop our simulations at the smaller pre-breaking232

Froude number Frpb := 1/3 and define the pre-breaking time tpb as the first time this233

condition is met:234

max
x

(Fr) := max
x

(
ε0
u(x)

cadi

)
= Frpb :=

1

3
. (2.25)

Likewise, we define xpb as the location on the wave where Fr = Frpb, which will be very235

near the wave peak. To calculate Fr, we need to estimate u(x, t) and c.236

As the solitary wave propagates on a slope, the wave evolves over time and the phase237

speed c can be ambiguous. One option is to use the adiabatic approximation derived by238

(Miles 1979) for unforced solitary waves on very gentle slopes:239

cadi =
√
h(xpeak)

(
1 +

ε0
2

η(xpeak)

h(xpeak)

)
, (2.26)

with xpeak the location of the wave peak. Alternatively, Derakhti et al. (2020) used240

large eddy simulations to numerically investigate unforced solitary wave breaking on241

slopes ranging from β = 0.2 to 0.005 for two different forms of c. They found wave242

breaking at maxx(Fr) = 0.85 when using the speed of the numerically-tracked wave243

peak cpeak. However, they also found that the shallow-water approximation cshallow =244 √
h(xpeak) + ε0η(xpeak) (equivalent to cadi to O

(
ε20
)
) was within 15% of cpeak near245

breaking. Therefore, we will use (2.26) owing to its simplicity and theoretical foundation.246

Finally, though these studies all considered unforced solitary waves, our results will show247

that cadi varies approximately 3% across pressure magnitudes P0 for our simulations, so248

this is a valid approximation.249

We now derive the wave velocity profile u(x, z, t) = ∇φ by modifying the example of250

Brun & Kalisch (2018) to include sloping bathymetry and pressure forcing. Combining251

the vKdV–Burgers equation (2.23) and kinematic boundary condition (2.13) eliminates252

∂tη yielding253

c̃2
∂2ϕ

∂x2
− c̃ ∂η

∂x
+ ε0

(
η
∂2ϕ

∂x2
+
∂η

∂x

∂ϕ

∂x
− 3

2

1

c̃
η
∂η

∂x

)
− P0

1

2
c̃
∂2η

∂x2

− µ0

(
1

6
c̃6
∂4ϕ

∂x4
+

1

6
c̃5
∂3η

∂x3

)
+ γ0

(
2c̃

∂c̃

∂x1

∂ϕ

∂x
− 1

2
η
∂c̃

∂x1

)
= 0 .

(2.27)

Assuming an ansatz254

∂ϕ

∂x
=

1

c̃
η + ε0A(x, t) + γ0B(x, t) + µ0C(x, t) + P0D(x, t) (2.28)

=⇒ ∂2ϕ

∂x2
=

1

c̃

∂η

∂x
+ ε0

∂A

∂x
+ γ0

(
∂B

∂x
− 1

c̃2
η
∂c̃

∂x1

)
+ µ0

∂C

∂x
+ P0

∂D

∂x
, (2.29)

we insert (2.28) and (2.29) into (2.27), drop terms of O
(
ε2
)
and solve for A, B, C and D255
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Parameter Range

ε0 0.2
µ0 0.15

|P/(ρwgL0ε0)| 0.003125, 0.00625, 0.0125, 0.025, 0.05
β 0.01, 0.015, 0.02, 0.025

Table 1. Range of non-dimensional parameters simulated.

by using the independence of ε0, γ0, µ0 and P0:256

A = − 1

4c̃3
η2 , B = − c̃′

2c̃2

∫ x

+∞
η(x′) dx′ , C =

c̃3

3

∂2η

∂x2
, D =

1

2c̃

∂η

∂x
.

(2.29a–d)
Note that A represents the nonlinear contribution, B the effect of shoaling, C the dispersive257

effect and D the pressure forcing. Finally, the Taylor expansion of φ(x, z) (2.12) gives the258

fluid velocity at the surface u(x, t, z = ε0η) = ∂xφ as259

u(x, t) = ∂xϕ− µ0
1

2
c̃4∂3xϕ

=
1

c̃
η − ε0

1

4c̃3
η2 + P0

1

2c̃

∂η

∂x
− µ0

c̃3

6

∂2η

∂x2
− γ0

c̃′

2c̃2

∫ x

∞
η(x′) dx′ .

(2.30)

Therefore, the Froude number is calculated as260

Fr :=
εu(x, t)√
h(xpeak)

(
1 +

ε0
2

η(xpeak)

h(xpeak)

)−1
, (2.31)

with u(x, t) given by (2.30), and (2.25) defines our pre-breaking condition.261

2.7. Numerics262

The vKdV–Burgers equation (2.23) lacks analytic, solitary-wave-type solutions, so263

we solve it numerically using a third-order explicit Runge-Kutta adaptive time-stepper264

with the error controlled by a second-order Runge-Kutta method as implemented in265

SciPy (Virtanen et al. 2020). We discretize the spatial domain using a fourth-order finite266

difference method on a periodic domain with grid spacing dx = 0.05. We employ adaptive267

time stepping to keep the relative error below 10−6 and the absolute error below 10−3 at268

each step. For all cases, the average time-step is ∆t ≈ 2× 10−3. The pressure is initially269

turned off until the solitary wave is one unit (i.e. a half-width L0) away from the start of270

the beach slope. The pressure is linearly ramped up to its full value over the time the271

wave takes to cross a full-width 2L0. For numerical stability, we included a biviscosity272

νbi∂
4
xη0 with νbi = 1× 10−5.273

We validated the solver against the unforced, flat-bottom analytical solution and had274

a normalized root-mean-square error of 3.9× 10−4 after non-dimensional time t = 100275

(longer than the longest simulation) as well as a normalized wave height change of276

1− [max(η0)−min(η0)]/
[
max(η

(0)
0 )−min(η

(0)
0 )
]
= 2.4× 10−4. Furthermore, the results277

were qualitatively consistent with the simulations of Knowles & Yeh (2018) of an unforced278

solitary wave shoaling on a slope. Finally, the simulation reproduced the finding of Knowles279

& Yeh (2018) that small waves (ε0 � 1) on weak slopes (γ0 � 1) yield Green’s Law280

for the wave height H(x) := maxt(η) ∝ h(x)1/4 (with maxt the maximum over time t),281
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x

h0

Lb

xshore

xpb Lpz

Figure 2. Schematic showing the definition of the pre-breaking zone and shore
locations. The blue line represents the water surface and wave profile η at pre-
breaking, and the solid black line is the bottom bathymetry h(x). The bathymetry
consists of a flat region of depth h0, a sloping region, and a shallow plateau. The
shoreline xshore (black dot) is the location where the bathymetry would intersect
the still water level if it had a constant slope (dashed line). The beach width Lb is
the distance from the toe of the beach slope to xshore, and the pre-breaking point
xpb is the location on the wave where Fr = Frpb, which will be very near the wave
peak. The pre-breaking zone width Lpz is the distance from xpb to xshore.

while moderate waves (ε0 < 1) on very weak slopes (γ0 ≪ 1) give Miles’ adiabatic law282

H(x) ∝ h(x)−1 (Miles 1983).283

The vKdV–Burgers equation (2.22) is determined by two non-dimensional parameter284

combinations: the pressure term P0/ε0 and the shoaling term γ0/ε0. Recall that the285

dispersive term µ0/ε0 is a redundancy which we fixed by specifying L0 (cf. § 2.5). We286

investigate this two-dimensional parameter space by choosing ε0 = 0.2 and µ0 = 0.15 and287

varying the beach slope β = 0.01 to 0.025 and pressure P = 0.003 125 to 0.05 (cf. § 4.1288

for a discussion of the size of P ). This yields a total of 20 simulations (table 1). Note289

that (2.22) demonstrates changing ε0 → λε0 is equivalent to γ0 → γ0/λ in the wave’s290

co-moving reference frame. Therefore, solutions for waves with different initial heights291

ε0 can be generated from our solutions to the vKdV–Burgers equation in the lab frame292

(2.23) by scaling the height, boosting and adjusting γ0. Note, the asymptotic expansion293

assumed P0 ∼ ε0, or P/(ρwgL0ε0) ∼ 1, but the pressure values we are using (table 1)294

are smaller than unity. Nevertheless, multiple-scale expansions are often accurate outside295

their parameters’ validity ranges, and this constraint would be satisfied asymptotically296

for smaller values of ε0.297

2.8. Shape statistics298

When stopping the simulations at tpb (§ 2.6), we are interested in determining the wave299

location xpb at pre-breaking. To estimate how xpb changes, we first calculate the shoreline300

xshore as the location where the bathymetry would intersect z = 0 if it had a constant301

slope β without our shallow plateau (figure 2). Then, we calculate the pre-breaking zone302

width as Lpz := xpb − xshore. For a given beach slope β, we will analyze the change in303

pre-breaking zone width relative to the unforced case ∆Lpz := Lpz − Lpz
∣∣
P=0

normalized304

by the unforced pre-breaking zone width Lpz
∣∣
P=0

. This global statistic ∆Lpz/(Lpz
∣∣
P=0

)305

determines the variance in pre-breaking locations as a fractional change of the pre-breaking306

zone width.307

Additionally, we will investigate four more shape statistics that vary as the wave308
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propagates. The first three are local shape parameters defined at each location x. First,309

we directly examine the maximum Froude number maxt(Fr) expressed in (2.31). Second,310

we investigate the maximum height relative to the local water depth maxt(η)/h(x) at311

each location x. Third, we consider the maximum slope maxt(|∂η/∂x|). Both the relative312

height and maximum slope contribute to the convective breaking criterion (2.25). Finally,313

we introduce a global shape parameter, the full width of the wave at half of the wave’s314

maximum (FWHM) LW (t) normalized by the local water depth h(x). For our unforced315

KdV solitary wave initial condition (2.24), the FWHM divided by the initial depth is316

LW /h0 = 2 cosh−1(
√
2)/
√
µ0. We seek to compare this global shape parameter defined at317

each point in time t with the local parameters defined at each point in space. Therefore,318

we define LW (x) = LW (tpeak(x)) at the time ttpeak(x) when the wave peak passed location319

x.320

3. Results321

Now, we use the results of the numerical simulations to investigate the effect of wind on322

solitary wave shoaling. We will present shape statistics (§ 2.8) for the 20 different runs323

(table 1) to detail the wave shape changes and pre-breaking behavior across the parameter324

space. For the remainder of the paper, we will utilize dimensional variables for easier325

comparison to experiments and observations.326

3.1. Profiles of shoaling solitary waves with wind327

First, we qualitatively investigate the effect of varying pressures P and bathymetric328

slopes β on solitary-wave shoaling by examining the wave profile η/h0, normalized by the329

initial depth h0, at three different times t (figure 3) corresponding to when the solitary330

wave first feels the slope (t = 0), the time of pre-breaking (t = tpb) and half-way between331

(t = tpb/2). Note that these t = 0 wave profiles (purple in figure 3) are nearly identical332

to the sech2(x/L0) initial condition (2.24) since the waves have only propagated over333

a flat bottom (figures 3g ,h) and the pressure has not yet been turned on. Halfway to334

pre-breaking (t = tpb/2, blue), the solitary wave has grown through shoaling with a335

steeper front face (+x side) and increased asymmetry for all P and β. At the time of336

pre-breaking (t = tpb, green) the solitary wave has increased in height, steepened and337

gained a substantial rear shelf for all P and β. The generation of rear shelves by shoaling338

solitary waves like those in figure 3 was first calculated by Miles (1979) and results339

from the mass shed by the sech2 wave as it narrows. Onshore wind (P > 0) reinforces340

the shoaling-based wave growth and yields relatively narrow peak widths for both β341

(figures 3a,b). In contrast, offshore wind (P < 0) reduces the wave shoaling but results342

in wider peak widths (figures 3a,b). These differences in wave-shoaling result in the343

offshore-forced (P < 0) solitary wave reaching pre-breaking (xpb, ×’s in figure 3) farther344

onshore (shallower water) than the onshore-forced (P > 0) solitary wave. Similarly, the345

larger beach slope (β = 0.025, figures 3b,d ,f ) causes waves to reach xpb in less horizontal346

distance, though they pre-break in shallow water than the milder beach slope (β = 0.015)347

waves. At t = tpb, the rear shelf is wider and extends higher up the rear face for offshore348

winds (≈ 0.1h0 in figure 3e) than for onshore winds (≈ 0.07h0 in figure 3a). As the349

control case, the unforced (P = 0) solitary wave has xpb located between the onshore and350

offshore wind cases with an intermediate rear shelf. Finally, the milder slope (β = 0.015)351

has a sharper, more pronounced rear shelf while the steeper slope (β = 0.025) has a more352

gently sloping rear shelf.353

We next investigate the impact of onshore (figures 4a,c,e) and offshore (figures 4b,d ,f )354

wind on shoaling waves’ slopes ∂xη and wave velocity profiles u/
√
gh0. The wave slope355
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Figure 3. Shoaling solitary-wave η evolution under (a,b) onshore P > 0, (c,d)
unforced P = 0 and (e,f ) offshore P < 0 wind-induced surface pressure versus non-
dimensional distance x/h0 as the wave propagates up the (g ,h) planar bathymetry.
The profile times shown depend on the Froude number (2.31) and therefore vary
between the panels. The first profile (purple) occurs when the peak is located at
x = −L0 where the pressure begins turning on, and the time is defined so t = 0
here. The last profile (green) occurs when the convective pre-breaking condition
maxx(Fr) = Frpb = 1/3 is met (cf. § 2.6), and the middle profile (blue) occurs at
a time halfway between the first and last profiles. Both columns have ε0 = 0.2 and
µ0 = 0.15, and the left-column forced cases (a,e) have |P/(ρwgL0ε0)| = 0.05 and
β = 0.015 while the right-column forced cases (b,f ) use |P/(ρwgL0ε0)| = 0.025
and β = 0.025. The ×’s denote the locations with the highest Froude number
(2.31), and the ×’s on the last profiles (green) are the pre-breaking locations xpb.
We only display a subset of the full spatial domain.
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Figure 4. Shoaling solitary-wave (a,b) non-dimensional profile η/h0, (c,d) slope
∂η/∂x (e,f ) and non-dimensional wave velocity profile u/

√
gh0 under (a,c,e)

onshore and (b,d ,f ) offshore wind-induced surface pressure as the wave propagates
up the (g ,h) planar bathymetry. Values are shown versus non-dimensional distance
x/h0 for ε0 = 0.2, µ0 = 0.15, |P/(ρwgL0ε0)| = 0.05, β = 0.015 and non-
dimensional times t

√
gh/L0 indicated in the legends. The red lines in (e,f )

represent the phase speed cadi (2.26) at each location multiplied by the pre-
breaking Froude number Frpb = 1/3. The ×’s denote the locations with the
highest Froude number, and the ×’s on the last (green) profiles are the pre-
breaking locations xpb. The squares are the locations of the maximum slope
magnitude |∂η/∂x|, and the upside-down triangles represent the locations of the
maximum wave velocity profile. We only display a subset of the full spatial domain.
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(figures 4c,d) highlights the shoaling- and wind-induced shape changes by accentuating356

the front-rear asymmetry. At t = 0 (purple figures 4a,b), the wave slope has odd-parity357

about the peak. However, as the wave propagates onshore, both the front and rear face358

steepen, though the front face steepens more dramatically. The influence of the wind is359

most noticeable in three aspects: the offshore-forced wave (P = −0.05, figure 4b) is 10%360

smaller than the onshore forced wave (P = 0.05, figure 4a); the offshore-forced rear-face361

wave slope (figure 4d) is 15% smaller than the onshore-forced wave slope (figure 4c),362

though the front-face slope is only 2% smaller; and the trailing shelf’s slope extends363

further behind the offshore-forced wave (≈ 8h0, figure 4d) than the onshore-forced wave364

(≈ 5h0, figure 4c). The wave velocity profile u/
√
gh0 ((2.30), figures 4e,f ) nearly mirrors365

the wave profile (figures 4a,b), as is expected given that u ∝ η to leading order (2.30).366

Finally, the phase speed cadi (red, (2.26)) decreases as the wave shoals which enhances367

convective pre-breaking, though cadi only varies 3% between onshore and offshore wind.368

Note, in figures 4(e,f ), cadi is multiplied by Frpb = 1/3 so that the intersection of the red369

curve with the wave velocity profile occurs at xpb, the location of pre-breaking.370

3.2. Shape statistics with shoaling and variations of pre-breaking zone width with wind371

Building on the previous qualitative descriptions of the wave profile, slope and wave372

velocity profile, we also quantify the change in the shoaling wave’s shape parameters373

for onshore and offshore P (figure 5). First, we consider the maximum Froude number374

maxt(Fr) as a function of non-dimensional position x/h0 (figure 5a). In the flat region375

(x < 0), the maximum Froude number is maxt(Fr) = 0.1818, and it increases as the waves376

shoal to the pre-breaking value maxt(Fr) = Frpb = 1/3 (light gray line). The wind has a377

significant impact on the location of pre-breaking xpb, with onshore wind (red) causing378

the Froude number to increase faster and xpb to occur farther offshore than offshore wind379

(blue) does. This can also be seen in figures 4(e,f ), where the maximum velocities u/
√
gh0380

(upside-down triangles), which are proportional to maxt(Fr), are growing faster for the381

onshore wind (figure 4e) than the offshore wind (figure 4f ). Notably, at a fixed location382

x/h0, the maxx(Fr) varies substantially (e.g. 0.25 to 0.30 at x/h0 = 20). In addition, we383

consider the maximum height maxt(η) at a fixed location and normalized by the local384

water depth h(x) (figure 5b). For all pressures P , the solitary wave increases in height,385

but the onshore wind enhances this growth while the offshore wind partially suppresses386

the growth. Again, this is apparent in the evolution of the maximums η(xpeak)/h0 in387

figure 3, with the peak locations xpeak closely approximated by the ×’s marking the388

location of maximum Fr. Since Fr ∝ η to leading order, the relative height at pre-breaking389

is approximately 0.41 for all P (figure 5b) with offshore-forced wave slightly larger (1%)390

than onshore-forced waves.391

Figure 5(c) shows the evolution of the maximum wave slope magnitude maxt |∂xη|,392

corresponding to the front face’s slope (figures 4c,d). Like the relative height (figure 5b),393

the steepness is enhanced by onshore wind P > 0, suppressed for offshore wind P < 0394

and approaches nearly the same pre-breaking value of 0.14 for all wind speeds, being395

only 1% larger for offshore winds than onshore winds. Finally, we examine the FWHM396

LW , normalized by the local water depth h(x) (figure 5d). While LW /h(x) decreases397

from its initial value of 4.55 for all pressure magnitudes, there is significant variation398

in the pre-breaking value. For our parameters, LW /h(x) changes nearly 19% more for399

onshore wind (P = 0.05) than offshore wind (P = −0.05) from start to pre-breaking.400

Figures 4(a,b) show that the rear shelf does not rise to half the wave height, so the401

FWHM does not incorporate the shelf’s width. Instead, the onshore-forced narrowing is402

occurring in the top region above the shelf. Hence, while the relative height and slope at403
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Figure 5. Shoaling solitary-wave shape statistics under onshore and offshore
pressure forcing versus non-dimensional distance x/h0. The (a) Froude number
maxt(Fr) (2.31), (b) maximum height normalized by the local water depth
maxt(η)/h(x), (c) maximum slope maxt(|∂η/∂x|) and (d) full width at half
maximum normalized by the local water depth LW /h(x) (cf. § 2.8) are displayed
at each location along the (g) planar bathymetry. Results are shown for ε0 = 0.2,
µ0 = 0.15, β = 0.015 and pressure magnitude |P/(ρwgL0ε0)| up to 0.05, as
indicated in the legend. The solid black line is the unforced case, P = 0. The light
gray line on (a) represents the convective pre-breaking Froude number Frpb = 1/3
at which the simulations were stopped.

pre-breaking are largely similar for all the wind speeds, the FWHM at pre-breaking is404

strongly affected by the wind speed indicating wind effects on shoaling shape.405

We also investigate the change in the pre-breaking zone width ∆Lpz (§ 2.8) as a function406

of pressure P/(ρwgL0ε0) for four different values of the beach slope β (figure 6). First,407

∆Lpz is linearly related to the pressure magnitude, and the wind has a larger effect on408

∆Lpz for smaller beach slopes, with P/(ρwgL0ε0) = −0.05 changing the pre-breaking zone409

width by approximately 5% for the smallest slope β = 0.01. This is because the wind has410

more time to affect the wave before it reaches pre-breaking. This wind-induced change in411

pre-breaking location is visible in figure 3, where the breakpoint xpb (×’s on green profiles)412

occurs closer to the shoreline (+x direction) for offshore winds P < 0 (figures 3e,f ) than413

for onshore winds P > 0 (figures 3a,b). Additionally, we note that for the smallest slope414

β = 0.01, the fractional change in pre-breaking zone width ∆Lpz/(Lpz
∣∣
P=0

) is asymmetric415
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P/(ρwgL0ε0). The results are shown for beach slopes β = 0.01–0.025 as indicated
in the legend.

with respect to pressure, with offshore P/(ρwgL0ε0) = −0.05 yielding a 23% larger change416

than onshore P/(ρwgL0ε0) = 0.05 (figure 6).417

3.3. Normalized pre-breaking wave shape changes induced by wind and shoaling418

As figure 5 quantified the shape statistics at pre-breaking for all x, we now directly419

investigate the effect of pressure P and shoaling β on pre-breaking wave shape by420

normalizing each pre-breaking wave profile η by its maximum height maxx(η) and aligning421

the pre-breaking locations xpb/h0 (figure 7). Each solution is dominated by the sech2422

wave centered near x− xpb = 0, which becomes taller and narrower as the wave shoals as423

required by energy conservation (Miles 1979). Furthermore, while the sech2 component424

is symmetric in time at a fixed location, it becomes slightly deformed when viewed at425

a fixed time as the front face moves slower than the rear face (cf., e.g., Newell 1985;426

Knickerbocker & Newell 1985). We also observe a shelf behind the wave, which Miles427

(1979) calculated by requiring that the right-moving mass-flux be conserved as the sech2428

narrows and sheds mass. While long-duration calculations of the Miles shelf reveal a429

nearly horizontal shelf extending far behind the wave (e.g., Knickerbocker & Newell 1980,430

1985), our shelf instead slopes gently downward, likely due to insufficient development431

time and distance.432

In figure 7, we plot the pre-breaking wave shape for fixed bottom slope β (figure 7a)433

and fixed pressure magnitude P (figures 7b,c). For a fixed slope (figure 7a), the front434

wave faces at pre-breaking are qualitatively very similar and match an unforced solitary435

wave of the same height. However, wind strongly affects the rear shelves as observed in436

figure 3. The offshore winds (blue) cause the shelf to be thicker and extend higher up the437

rear wave face than the offshore wind (reds) do, although the shelf intersects z = 0 at438

(x− xpb)/h0 ≈ −10 for all wind speeds.439

We also consider the wave shape at breaking for different values of the beach slope β440

with a fixed onshore (figure 7b) or offshore (figure 7c) wind. The rear half of the wave441

shows that bottom slope β affects the rear shelf differently than pressure P/(ρwgL0ε0)442

does. While the shelf intersected z = 0 at the same location for all wind speeds (figure 7a),443

increasing β causes the intersection point (i.e. the base of the shelf) to move forward444

and closer to the peak. Finally, the offshore wind (figure 7c) causes a noticeably larger445
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Figure 7. Pre-breaking wave profile η/maxx(η) normalized by the maximum
height versus non-dimensional position (x− xpb)/h0 relative to the pre-breaking
location xpb. All profiles occur at pre-breaking tpb when maxx(Fr) = Frpb = 1/3
(cf. § 2.6) and display different values of the (a) pressure magnitude P/(ρwgL0ε0)
and the (b,c) bottom slope β, as indicated in the legend. Results are shown for
ε0 = 0.2, µ0 = 0.15 and (a) slope β = 0.015, (b) onshore P/(ρwgL0ε0) = 0.05 or
(c) offshore P/(ρwgL0ε0) = −0.05 pressure magnitude. The light gray line shows
where the FWHM is measured.

shelf than the onshore wind (figure 7b) for the weakest slope β = 0.01 (purple), with a446

similar pattern observed in figure 4(a) (β = 0.015) compared to figure 4(b) (β = 0.025).447

However, this difference is much smaller for the steeper (green) slopes, implying that448

stronger shoaling partially suppresses the wind-induced shape change because there is449

less time for pressure to act prior to pre-breaking.450

4. Discussion451

4.1. Wind Speed452

Our derivation in § 2 coupled wind to the wave’s motion through the use of a surface453

pressure (2.5). The resulting vKdV–Burgers equation (2.23) had a wind-induced term454

dependent on the pressure magnitude constant P/(ρwgL0ε0). We analyzed the evolution455

and pre-breaking of solitary waves for variable P (§ 3). While the usage of P was the most456

natural since it is the physical coupling between wind and waves (in the absence of viscous457

tangential stress), measuring the surface pressure is challenging in field observations or458

lab experiments (e.g., Donelan et al. 2006; Buckley & Veron 2019). Therefore, we also459

consider the evolution and pre-breaking of the shoaling solitary waves as a function of460

the wind speed U . Zdyrski & Feddersen (2021) did this by considering a surface pressure461

acting on a flat-bottom KdV solitary wave initial condition (equivalent to our (2.24))462
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|P/(ρwgLε)| h[m] Uonshore[ms−1] Uoffshore[ms−1] h[m] Uonshore[ms−1] Uoffshore[ms−1]

0 2.5 4.9 4.9 1 3.1 3.1
0.0031 2.5 8.7 1.2 1 5.5 0.73
0.0063 2.5 10 −0.41 1 6.5 −0.26
0.013 2.5 13 −2.6 1 7.9 −1.7
0.025 2.5 16 −5.8 1 9.9 −3.6
0.050 2.5 20 −10 1 13 −6.5

Table 2. Wind speeds as functions of pressure P/(ρwgLε) and local depth h for
solitary waves (4.1) with ε = 0.2. Uonshore corresponds to P > 0 and Uoffshore to
P < 0. The conversion from P/(ρwgLε) to U is given in (4.2).

with dimensional form463

η = εh sech2

(√
3ε

4

x

h

)2

, (4.1)

with non-dimensional height ε = H/h and width L = 2h/
√
3ε in water of depth h. They464

used energy growth rate considerations and a non-separated parameterization by Donelan465

et al. (2006) for periodic, shallow-water waves to approximate the wind speed U as466

U√
gh

= 1±

√
1

5

∣∣∣∣ P

ρwghε

∣∣∣∣ρwρa 2

4.91
= 1±

√
1

5

∣∣∣∣ P

ρwgLε

∣∣∣∣ρwρa 4

4.91
√
3ε
, (4.2)

where U is measured at a height of half the solitary wave’s width. Note that the radicand467

differs by a factor of 2 from Zdyrski & Feddersen (2021) owing to the different definitions of468

ε. Even though (4.2) was originally applied to flat-bottomed KdV solitary waves (2.24), our469

assumption that γ = L/Lb � 1 implies that the bathymetry is approximately flat over the470

wave’s width 2L. Therefore, we use (4.2) to translate between the pressure P/(ρwgL0ε0)471

and the wind speed U at any point on the sloping bathymetry by using the local ε and h and472

relating the initial pressure to the local pressure P/(ρwgLε) = (ε0L0/εL)P/(ρwgL0ε0).473

Table 2 shows the onshore (P > 0) and offshore (P < 0) wind speeds corresponding to474

the pressures used in our simulations for two representative depths h. It shows that the475

pressure magnitudes in our simulations correspond to physically reasonable wind speeds,476

with onshore U from 3.1m s−1 to 13m s−1 for water 1m deep or 4.9m s−1 to 20m s−1 for477

water 2.5m deep. Notice that unforced waves with P = 0 correspond to a wind speed478

matching the wave phase speed U = c, with c approximately the linear shallow-water479

phase speed c ≈
√
gh. In particular, this means that onshore P > 0 and offshore P < 0480

winds with the same pressure magnitude |P | will have different wind speed magnitudes481

|U |. Additionally, note that keeping P fixed implies that the wind speed U changes as482

the wave shoals. This is mostly due to the decrease in the phase speed c ∝
√
gh, with483

higher-order effects coming from the ε and L dependence of the radicand in (4.2). Finally,484

note that as the wave shoals and ε increases, the height at which the wind speed is485

measured z = L/2 = h/
√
3ε decreases.486

We now re-examine our results regarding the pre-breaking zone width (figure 6) in487

terms of the wind speed U/
√
gh(x) using (4.2). In addition to changing the abscissa of488

the plot (figure 8), we also modify the definition of the change in pre-breaking zone width489

∆Lpz := Lpz − Lpz
∣∣
U=0

by comparing and normalizing each pre-breaking zone width to490

the U = 0 case rather than the P = 0 case. This transformation changes the initially491

straight lines of figure 6 into approximate pairs of upward- and downward-facing
√
∆Lpz492
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Figure 8. The fractional change in pre-breaking zone width ∆Lpz compared to
the unforced case Lpz

∣∣
U=0

(cf. § 2.8) versus the non-dimensional wind speed
U/
√
gh(xpb) normalized by the local, shallow-water phase speed

√
gh(xpb) and

evaluated at a height of half the solitary wave width L. The results are shown for
beach slopes β = 0.01–0.025.

curves shifted to the right by one unit (figure 8). Furthermore, we see that ∆Lpz is now493

much flatter for onshore winds (U > 0) than for equal magnitude offshore winds (U < 0).494

This is due to the inflection point of the unforced case (P = 0) being shifted to the right495

at U/
√
gh = 1.496

4.2. Isolating the Effect of Wind497

For no wind (P = 0), solitary wave shoaling is well-understood to generate a rear498

shelf (Miles 1979). The variation in the rear shelf’s thickness with P (figure 7) is reminiscent499

of the variability in the wind-generated bound, dispersive, and decaying tails of flat-bottom500

solitary waves (Zdyrski & Feddersen 2021). Additionally, Zdyrski & Feddersen (2021)501

showed that flat-bottom, wind-generated tails are analogous to the dispersive tails of KdV502

solutions with non-solitary-wave initial conditions (e.g. Mei et al. 2005). Both the rear503

shelf and wind-generated tail can be viewed as weak perturbations to the KdV equation504

by transforming the non-dimensional vKdV–Burgers equation (2.22) into a constant-505

coefficient, perturbed KdV equation by defining ν := (3/2)η0/h̃
2, and τ :=

∫
c̃dx1 ε0/(6γ0):506

507

∂ν

∂τ
+ 6η0

∂ν

∂ξ+
+
∂3ν

∂ξ3+
= −9

4

γ0
ε0

1

h̃

∂h̃

∂x1
ν − 3

1

c̃3
P0√
ε0µ0

∂2ν

∂ξ2+
. (4.3)

The first term on the right-hand-side (RHS) is the shoaling term which leads to the rear508

shelf (Miles 1979), and the second term is the wind-induced Burgers term (Zdyrski &509

Feddersen 2021). With non-dimensional P0 = 0, (4.3) reduces to the perturbed KdV510

equation for a gently sloping bottom (e.g. Newell 1985). Although our derivation assumed511

all terms in (4.3) were the same order, |P0|/ε0 = 0 to 0.05 and γ0/ε0 = β
√
4/(3ε3) =512

0.1 to 0.3 were smaller than unity, so the RHS terms are weak perturbations to the KdV513

equation and its sech2 solitary-wave solution.514

Reverting back to dimensional variables, we isolate the effect of wind by separating515

out the sech2 solitary wave and the Miles rear shelf using the unforced P = 0 normalized516

profiles to represent shoaling and rear-shelf generation. We define a normalized tail ζ as517
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Figure 9. Normalized tail ζ (4.4) versus non-dimensional position (x − xpb)/L
relative to the pre-breaking location xpb. The wave profile is normalized by the
maximum height maxx(η), and the spatial coordinate (x− xpb) is normalized by
the wave width L ((4.5)). All profiles occur at pre-breaking maxx(Fr) = Frpb = 1/3
(cf. § 2.6) and are displayed for bottom slopes β of (a) 0.01, (b) 0.015, (c) 0.02,
(d) and 0.025. Results are shown for ε0 = 0.2, µ0 = 0.15 and pressure magnitude
|P/(ρwgL0ε0)| up to 0.05, as indicated in the legend. The solid black line is the
unforced case, P = 0, and is zero by definition.

the difference between the forced and unforced P = 0 normalized profiles of figure 7:518

ζ :=
η

maxx(η)
−
(

η

maxx(η)

)∣∣∣∣
P=0

. (4.4)

For constant depth, the height H and width L of unforced, sech2 solitary waves always519

satisfy HL2 = const. Since our numerical results (e.g. figure 7) are dominated by the520

sech2 solitary wave profile, scaling the wave profile by H requires that we scale the spatial521

coordinate by L ∝ 1/
√
H to respect this symmetry and enable comparison of waves with522

different heights. We replace h→ h(xpeak) in the expression for the flat bottom solitary523

wave width L (4.1) to yield the wave width for a slowly-varying depth as524

L = h(xpeak)

√
4h(xpeak)

3H
. (4.5)
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We normalize the spatial coordinate as x/L to compare the normalized tails ζ in figure 9.525

We show the normalized tail ζ versus (x− xpb)/L for different pressure P and bottom526

slope β in figure 9. First, increasing the pressure magnitude |P | increases the tail’s527

amplitude and wavelength. For example, the wavelength with β = 0.01 is approximately528

5L for P/(ρwgL0ε0) = −0.025 and 7.5L for P/(ρwgL0ε0) = −0.05. This amplitude529

increase is expected, as higher pressures put more energy into the tail, causing growth.530

Additionally, increasing the bottom slope β decreases the shelf’s width and the tail’s531

amplitude without noticeably changing its wavelength. We can explain the narrower shelf532

and smaller amplitude by recognizing that larger β’s cause the wave to reach pre-breaking533

(when these profiles are compared) earlier, decreasing the time over which the wind (tail)534

and shoaling (shelf) act. The wavelength’s independence of the beach slope β also implies535

that the width L of the solitary wave sets the tail’s wavelength. Additionally, we note that536

onshore (P > 0) and offshore (P < 0) winds change the polarity of the tail, consistent537

with Zdyrski & Feddersen (2021). Lastly, wind-induces a small, bound wave in front of538

the pre-breaking solitary wave with minimum near (x − xpb) = 0 and extremum near539

(x−xpb)/L ≈ 2 of the same polarity as the rear shelf (figure 9), similar to the flat-bottom540

results of Zdyrski & Feddersen (2021).541

Hence, the numerically-calculated wave profiles (figure 7) are a superposition of the542

sech2 solitary wave, Miles’ shelf (Miles 1979) and a wind-induced bound, dispersive and543

decaying tail (Zdyrski & Feddersen 2021). Furthermore, this decomposition of the full544

wave enables us to understand the effects of wind and shoaling from previously studies.545

The sech2 solitary wave grows and narrows due to wave shoaling (e.g. Miles 1979) and546

wind-forcing (Zdyrski & Feddersen 2021). Miles’ shelf is generated by the mass-flux of547

the growing wave. The shelf’s absence from the normalized tails in figure 9 implies its548

shape is largely unchanged by the wind, and its amplitude for a given bottom slope549

β is approximately proportional to the sech2 solitary wave. And finally, the amplitude550

and wavelength of the bound, dispersive and decaying tail grow with the sech2 solitary551

wave (Zdyrski & Feddersen 2021).552

This decomposition relies on the assumption that the tail and shelf are both small553

compared to the solitary wave and do not influence each other or the solitary wave. This is554

only possible when the wind-forcing P0 is weak and the wave width-to-beach width ratio γ0555

is small. Miles (1979) analyzed a vKdV equation requiring the same weak-slope assumption556

γ0 ∼ ε0, though his adiabatic results required an even smaller γ0 = O
(
10−2

)
(Knowles557

& Yeh 2018). The realistic beach widths we utilized yield a γ0 = 3× 10−2 to 6× 10−2
558

somewhat larger than this adiabatic regime, and the γ0/ε0 term in (4.3) is not as small559

as the pressure-forcing term, implying some nonlinear interactions between the shoaling-560

induced shelf and the sech2 solitary are possible. For this reason, we subtracted off the561

unforced solitary wave and shelf rather than approximate them analytically. Nevertheless,562

the pressure forcing |P0|/ε0 = 0 to 0.05 we used was sufficiently small that the weak563

wind-forcing can be considered to interact linearly, as seen in the clean separation between564

pressure-induced tail and sech2 plus shelf in figure 9.565

4.3. Relationship to previous laboratory experiments and models566

Previous laboratory experiments investigated wind’s effect on the breaking character-567

istics of shoaling, periodic waves (e.g., Douglass 1990; King & Baker 1996). Douglass568

(1990) considered waves with initial height H0/h0 = 0.3 and initial inverse wavelength569

h0/λ0 = 0.1 under wind speeds of up to U/
√
gh0 = ±2.3 on a beach with slope 0.04 while570

King & Baker (1996) considered waves with initial height H0/h0 = 0.2 and initial inverse571

wavelength h0/λ0 = 0.3 with wind speeds of up to U/
√
gh0 = ±1.1 on a beach with572

slope 0.05. Douglass (1990) measured how wind speed changes the surf zone width for573
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periodic waves. Directly comparing our figure 8 to figure 2 of Douglass (1990), we see many574

qualitative similarities, including the pre-breaking zone width’s flatter response near U = 0575

and a stronger response for offshore winds (U < 0) than the corresponding onshore winds576

(U > 0), with our change roughly four times smaller than theirs. The laboratory studies also577

found that the relative breaking height H(xbreak)/h(xbreak), normalized by the breaking578

depth, decreased by as much as 40% for offshore wind speeds of U/
√
gh(xbreak) = 4579

and increased by up to 10% for onshore wind speeds of U/
√
gh(xbreak) = −2 compared580

to the unforced case (e.g., Douglass 1990; King & Baker 1996). By comparison, over581

those same wind speed ranges of U/
√
gh(xpb) = 1± 3, our simulations found that the582

relative pre-breaking height H(xpb)/h(xpb) varied by approximately 1% between onshore583

and offshore winds (figure 5b), with the same polarity as the laboratory experiments.584

Numerical studies have also investigated the effect of wind on the breaking of shoaling585

solitary (e.g., Xie 2014) and periodic (e.g., Xie 2017) waves using a RANS k–ε model586

to simulate both the air and water. Xie (2014) considered solitary waves with initial587

height H0/h0 = 0.28 on a beach slope of 0.05 with onshore winds of up to U/
√
gh0 = 3,588

while Xie (2017) investigated periodic waves with initial height H0/h0 = 0.3175 and589

initial inverse wavelength h0/λ0 = 0.02 on a beach slope of 0.029 forced by onshore590

winds up to U/
√
gh0 = 2. These studies determined that the (absolute) maximum wave591

heights maxt(η)/h0 increased with increasing onshore wind at each location x < xbreak,592

consistent with our findings in figure 5(b). Furthermore, we can infer from their wave593

profiles at different wind speeds that the breaking depth h(xbreak) increased for onshore594

winds compared to offshore winds, again consistent with our findings.595

Our results qualitatively agree with prior experimental and numerical results (Douglass596

1990; King & Baker 1996; Xie 2014), and the quantitative mismatch can be partly597

explained by the different non-dimensional parameters. Douglass (1990), Xie (2014)598

and Xie (2017) all used larger initial waves (ε0 ≈ 0.3), so nonlinear effects were likely599

more important. All of the laboratory and numerical experiments discussed also used600

steeper beach slopes. Additionally, while the surf zone width change is roughly four601

times larger for Douglass (1990) than for our simulations over the same wind speed602

range, Douglass (1990) investigated waves that were actually breaking. In contrast, we603

stopped our simulations at pre-breaking maxx(Fr) = Frpb = 1/3, significantly before604

actual breaking maxx(Fr) ≈ 1 (e.g. Derakhti et al. 2020), thus we expect smaller changes605

to the surf zone width.606

5. Conclusion607

While shoaling-induced changes to wave shape are well-understood, the interaction of608

wind-induced and shoaling-induced shape changes has not been extensively studied.609

Utilizing a Jeffreys-type wind-induced surface pressure, we defined four non-dimensional610

parameters that controlled our system: the initial wave height ε0, the inverse wavelength611

squared µ0, the pressure strength P0 and the wave width-to-beach width ratio γ0. We612

leveraged these small parameters to reduce the forced, variable-bathymetry Boussinesq613

equations to a variable-coefficient Korteweg–de Vries–Burgers equation for the wave profile614

η. We also extended the convective breaking criterion of Brun & Kalisch (2018) to include615

pressure and shoaling. A third-order Runge-Kutta solver determined the time evolution616

of a solitary wave initial condition up a planar beach under the influence of onshore and617

offshore winds. Stopping the simulations at a pre-breaking Froude number of 1/3 revealed618

that the pre-breaking relative height and maximum slope are largely independent of wind619

speed, but onshore winds cause a narrowing of the waves. The width of the pre-breaking620

zone is strongly modulated by wind speed, with offshore wind decreasing the pre-breaking621
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zone width by approximately 5% for the mildest beach slopes. Investigating the wave622

shape at pre-breaking revealed that the front of the wave is relatively unchanged and623

matches an unforced solitary wave, while the rear shelf is strongly affected by wind speed624

and bottom slope. We isolated the effect of wind from the effect of shoaling and revealed625

a bound, dispersive and decaying tail similar to wind-induced tails on flat bottoms. By626

leveraging the relationship between surface pressure P and wind speed U , we directly627

compared our results to existing experimental and numerical results. We found qualitative628

agreement in surf width changes and wave height changes, and expect better quantitative629

agreement as the waves propagate closer to breaking. These results suggest that wind630

significantly impacts wave breaking, and our simplified model highlights the relevant631

physics. Future avenues of research could include deriving coupled equations for both the632

water and air motions to more accurately predict the surface pressure distribution.633
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