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Wind-induced changes to shoaling surface
gravity wave shape

Thomas J. Zdyrski and Falk Feddersen

(Received xx; revised xx; accepted xx)

Unforced shoaling waves experience growth and changes to wave shape. Similarly, wind-
forced waves on a flat-bottom likewise experience growth/decay and changes to wave
shape. However, the combination of shoaling and wind-forcing, particularly relevant in the
near shore environment, has rarely been investigated. Here, we consider small-amplitude,
shallow-water solitary waves propagating up a gentle, planar bathymetry forced by a weak,
Jeffreys-type wind-induced surface pressure. We derive a variable-coefficient Korteweg—de
Vries—Burgers (vKdV-B) equation governing the surface profile’s evolution and solve it
numerically using a Runge-Kutta third-order finite difference solver. The simulations run
until convective pre-breaking—a Froude number limit appropriate to the order of the
vKdV-B. Offshore winds weakly enhance the ratio of pre-breaking height to depth as
well as pre-breaking slope. Onshore winds have a strong impact on narrowing the wave
peak, and wind also modulates the rear shelf formed behind the wave. Furthermore, wind
strongly affects the width of the pre-breaking zone, with larger effects for smaller beach
slopes. After converting our pressure magnitudes to physically realistic wind speeds, we
observe qualitative agreement with prior laboratory and numerical experiments. Finally,
we isolate the wind’s effect by comparing the wave profiles to the unforced case. This
reveals that the numerical results are approximately a superposition of a solitary wave, a
shoaling-induced shelf and a wind-induced, bound, dispersive and decaying tail.

Key words: surface gravity waves, wind-wave interactions, solitary waves

1. Introduction

Wind coupled to surface gravity waves leads to wave growth and decay as well as
changes to wave shape. However, many aspects of wind-wave coupling are not yet fully
understood. Since the sheltering theory of wind-wave coupling by Jeffreys (1925), a variety
of mechanisms for wind-wave interactions have been put forward, often with a focus on
calculating growth rates (e.g., Miles 1957; Phillips 1957). Furthermore, these theories
have been tested by many studies in the laboratory (e.g., Wu 1968; Phillips & Banner
1974; Plant & Wright 1977; Buckley & Veron 2019) and the field (e.g., Hasselmann
et al. 1973; Donelan et al. 2006). Similarly, numerical studies have modeled the airflow
above waves using methods such as large eddy simulations (e.g., Hara & Sullivan 2015;
Yang et al. 2013; Husain et al. 2019) or modeled the combined air and water domain
using Reynolds-averaged Navier Stokes (RANS) solvers (e.g., Zou & Chen 2017) or direct
numerical simulations (e.g., Zonta et al. 2015; Yang et al. 2018).

While wave growth rates and airflow structure have received much attention, wind-
induced wave shape changes have been less studied. Unforced, weakly nonlinear waves
on flat bottoms (e.g. Stokes, cnoidal, and solitary waves) are horizontally symmetric
about the peak (i.e. zero asymmetry) but are not vertically symmetric (i.e. non-zero
skewness, e.g., Amick & Toland 1981; Toland 1999). Laboratory experiments of wind
blowing over periodic waves have demonstrated that wave asymmetry increases with
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2 T. Zdyrski and F. Feddersen

onshore wind speed in intermediate-water (e.g., Leykin et al. 1995) and deep-water (e.g.,
Feddersen & Veron 2005). Theoretical studies have likewise shown that wind-induced
surface pressure induces wave shape changes in both deep (Zdyrski & Feddersen 2020)
and shallow (Zdyrski & Feddersen 2021) water. However, the influence of wind on wave
shape has not yet been investigated theoretically for shoaling waves on a sloping bottom.

In contrast, the shoaling of unforced waves up a beach is a relatively well-studied
phenomenon that causes wave growth and shape change. Field observations have revealed
the importance of nonlinearity in wave shoaling and its relation to skewness and
asymmetry (e.g., Elgar & Guza 1985; Freilich & Guza 1984). Additionally, laboratory
experiments of waves shoaling on planar beach slopes yield how the wave height and
wave shape evolve with distance up the beach (e.g., Zelt 1991; Beji & Battjes 1993; Grilli
et al. 1994). Furthermore, numerical studies have investigated wave shoaling all the way
to wave breaking. A variety of methods have been utilized, including pseudo-spectral
models (e.g., Knowles & Yeh 2018), fully nonlinear potential flow boundary element
method solvers (e.g., Grilli et al. 1997; Derakhti et al. 2020), large eddy simulation volume
of fluid methods (e.g., Derakhti et al. 2020) and two-phase direct numerical simulations
of both the air and water (e.g., Mostert & Deike 2020). Theoretical (e.g., Brun & Kalisch
2018) and numerical (e.g., Derakhti et al. 2020) investigations of wave breaking have
shown that convective wave breaking depends on the surface water velocity v and the
phase speed ¢ and occurs when the Froude number Fr := u/c is approximately unity.
The type of wave breaking (e.g. spilling, plunging, surging, etc.) is related to the beach
slope g, initial wave height Hy and initial wave width Ly through the Iribarren number
Ir :== 8/\/Ho/Lo (e.g., Iribarren 1949; Lara et al. 2011).

There have been extremely few studies looking at the combined effects of wind and
shoaling of surface gravity waves. Experimental studies have found that onshore wind
increases the surf zone width (e.g., Douglass 1990) and decreases the wave height-to-
water depth ratio at breaking (e.g., King & Baker 1996), with offshore wind having
the opposite effect. Additionally, numerical studies using two-phase RANS solvers of
wind-forced solitary (e.g., Xie 2014) and periodic (e.g., Xie 2017) breaking waves have
demonstrated that increasingly onshore winds enhance the wave height at all points
prior to breaking. Furthermore, only Feddersen & Veron (2005) and O’Dea et al. (2021)
have investigated the combined influence of wind and shoaling on wave shape. Feddersen
& Veron (2005) demonstrated that onshore winds enhance the shoaling-induced time-
asymmetry. Cross-shore wind was weakly correlated to the void aspect ratio of strongly-
nonlinear, plunging waves with offshore (onshore) wind reducing (increasing) the aspect
ratio (O’Dea et al. 2021), although the wind-variation was relatively weak. Nevertheless,
a theoretical description of wind-induced changes to wave shoaling (e.g. wave shape,
breaking location, etc.) has not yet been developed.

Therefore, this study will derive a simplified, theoretical model for wind-forced shoaling
waves that takes the form of a variable-coefficient Korteweg—de Vries (KdV)-Burgers
equation. The standard KdV equation describes unidirectional wave propagation with
weak nonlinearity and dispersion in shallow, flat-bottomed domains (e.g., Hammack
& Segur 1974). Tt has localized solutions, known as solitary waves, which propagate
without changing shape by balancing nonlinearity and dispersion (e.g., Mei et al. 2005).
Furthermore, arbitrary initial conditions will decay into a number of discrete solitary
waves as well as an oscillatory, dispersive tail (e.g., Hammack & Segur 1974). When the
bottom bathymetry is allowed to vary, the coeflicients of the KdV equation are no longer
constant and the system is described by a variable-coefficient KAV (vKdV) equation (e.g.,
Johnson 1973; Svendsen & Hansen 1978). The deformation of solitary waves propagating
on a sloping-bottom vKdV system has been studied both analytically (e.g., Miles 1979)



93

94

95

926

97

98

Wind-induced shoaling wave shape changes 3

and numerically (e.g., Knowles & Yeh 2018) with solitary wave initial conditions becoming
deformed and gaining a rear “shelf” for small enough slopes (e.g., Miles 1979). Alternatively,
if the flat-bottomed KdV equation is augmented with a wind-induced surface pressure
forcing, the KdV-Burgers (KdV-B) equation results (Zdyrski & Feddersen 2020). Wind in
the KdV-B equation induces a solitary-wave initial condition to continuously generate a
bound, dispersive and decaying tail with polarity depending on the wind direction (Zdyrski
& Feddersen 2020), analogous to a KdV non-solitary-wave initial condition (e.g., Newell
1985).

Here, we apply a wind-induced pressure forcing over a sloping bathymetry to derive
a vKdV—-Burgers equation and determine a convective pre-breaking condition in § 2.
We then solve the resulting vKdV-Burgers equation numerically using a third-order
Runge-Kutta solver and investigate the changes to wave shape and pre-breaking location
in § 3. Finally, we examine the relationship between pressure and wind speed, isolate the
effect of wind from the effect of shoaling, and discuss how our findings relate to previous
laboratory and numerical studies in § 4.

2. vKdV—-Burgers equation derivation and model setup
2.1. Governing equations

We derive a vKdV-Burgers equation for wind-forced shoaling waves by considering
incompressible, irrotational, inviscid flows and neglecting surface tension. We restrict our
attention to planar, two-dimensional waves propagating in the +xz-direction. Additionally,
we choose the +z-direction to be vertically upwards with the z = 0 datum at the mean

water level and impose a bottom bathymetry at z = —h(x). The standard incompressibility,
bottom boundary, kinematic boundary and dynamic boundary conditions are
)
0:@4‘@ on —h<Z<77, (21)
¢ Oh 0¢
% = _%% on z = —h, (22)

29 _on 00on
9z Ot Oz dx
99

0=2 ygn+ 241
" pu It T2

on z=rm, (2.3)

(f;f) . (ff” on a1, (24)

We have introduced the wave profile n(x, t), the velocity potential ¢(z, z,t) derived from
the water velocity u = V¢, the surface pressure p(x,t), the gravitational acceleration g
and the water density p,, which is much larger than the air density p, =~ 1.225 x 10 3p,,.
Additionally, we removed the Bernoulli constant from the dynamic boundary condition
by using the ¢ gauge freedom. Next, to examine the wind’s effect on shoaling waves,
we impose the analytically-simple Jeffreys-type surface pressure p(x,t) forcing (Jeffreys
1925):

_ pon(z;t)
p(z,t) =P et

The pressure constant P o p,(U — ¢)? depends on the wave phase speed ¢ and wind speed
U (cf § 4.1). For a wave propagating towards the shore, onshore winds yield P > 0 while
offshore winds give P < 0. The application of a Jeffreys-type forcing to the flat-bottom
KdV equation was discussed in Zdyrski & Feddersen (2021).

(2.5)
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Figure 1. Schematic showing the (periodic) simulation domain and relevant length
scales. The blue line represents the water surface and wave profile n, and the solid
black line is the bottom bathymetry h(x). The solitary wave initial condition has
an effective half-width Lo and height Hy and begins with its peak on the far left
side, in the middle of flat region of depth ho. The initial wave then propagates to
the right with phase speed ¢ up the beach with slope 8 until it reaches pre-breaking
(cf. § 2.6). The positive /negative wind speed U corresponds to an onshore/offshore
wind forcing.

2.2. Model domain and model parameters

The model domain (figure 1) consists of an initial flat section 20 units long at a depth
of hg = 1 and transitions smoothly at = 0 into a planar beach region with constant
slope 3 and characteristic beach width L := ho/8, as defined by Knowles & Yeh (2018).
The bathymetry then smoothly transitions to a flat plateau 40 units long at a depth of
h = 0.1 followed by a downward slope with slope —f. Finally, there is another flat section
at a depth of hg = 1 before the domain wraps periodically.

The initial condition will be a KAV solitary wave with height Hy and width Ly following
Knowles & Yeh (2018), and Ly will be specified later. The solitary wave begins centered
on the left boundary, in between the two flat, deep, 20 unit-long sections. From the defined
dimensional quantities, we specify four non-dimensional parameters,

HO ho 2 P LO
= — = — Py = = 2.5a—d
€0 ) Ho (Lo> ) 0 pngo’ Yo Iy ( a—d)

Here, ¢( is the non-dimensional initial wave height, pq is the square reciprocal of the non-
dimensional initial wave width, Py is the non-dimensional pressure magnitude (normalized
by the initial wave width), and ~ is ratio of the initial wave width to the beach width.
Note that the wave width-to-beach width ratio 7y is related to the beach slope 3 as
Yo = B/y/lo- Together, these four non-dimensional parameters control the system’s
dynamics.

2.3. Non-dimensionalization

We non-dimensionalize our system’s variables using the characteristic scales described
in § 2.2: the initial depth hg; the initial wave’s height Hy; the initial wave’s horizontal
length scale Lg; the gravitational acceleration g; and the pressure magnitude P. Using
primes for non-dimensional variables, we normalize as Zdyrski & Feddersen (2021) did
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and define

/
, h="hhg, (2.6)
/ " n = Hon' = hoeon
z = hoz ,

/
— W HyLo | S = 20 s
'Ly _ ¢ [ny 0= PHoloyp Vit oMy

I Vio \ g’
We later assume the non-dimensional parameters €g, o, 7o and Py are small to leverage
a perturbative analysis. For the constant slope 8 beach profile, the spatial derivative of
the bathymetry is also small 0,-h' = 3/,/ft0 = 70 < 1 (the factor of /1o comes from the
different non-dimensionalizations of h and x). However, perturbation analyses is simplest
when all non-dimensional variables are O(1). Therefore, we leverage the two, horizontal
length scales Lo and Ly (cf. § 2.2) to define a non-dimensional, stretched bathymetry
R’ that depends on z/Ly = 4oz’ as A’ (yox') = h'(2'). Then, denoting derivatives with

xr = Lol‘l = ho

respect to Yoz’ using an overdot, the derivative of h is h' = 0., h'(y02') = O(1), and

the small slope becomes explicit as 9y h/ = Yoh'.
Now, the non-dimensional equations take the form

a2¢/ 82¢/
0= po pe + 5572 on —1<2'<eun, (2.7)
o’ 2 0¢' ~
87(5’ = *Ho’Yoh/afi, on 2/ =—h(yz'), (2.8)
8 / a ! a / a !
on’ o 1 o¢'\> e [0\
O:PO%+UI+ ot +§ 60(8,{6/) +’u7([)) % on Z/:€077/. (210)

For the remainder of § 2, we remove the primes for clarity.

2.4. Boussinesq equations, multiple-scale expansion and vKdV-Burgers equation

We follow the conventional Boussinesq equation derivation presented in, e.g., Mei et al.
(2005) or Ablowitz (2011). The two modifications we include are the weakly sloping bottom,
similar to the treatment in Johnson (1973) and Mei et al. (2005), and the inclusion of a
pressure forcing like that of Zdyrski & Feddersen (2021). For the sake of brevity, we only
detail the relevant differences here. First, we expand the velocity potential in a Taylor
series about the bottom z = —h(x) as

b ~ n
o(x, z,t) = Z [z + h(’yox)} On(x,t). (2.11)
n=0
Substituting this expansion into the incompressibility equation (2.7) and bottom boundary
condition (2.8) and assuming po < 1 gives ¢ as a function of the velocity potential
evaluated at the bottom ¢ = ¢q. If we further assume that the bottom is very weakly
sloping g ~ po < 1, this simplifies to

1 -
¢ = so—uo5(z+h)23§s0+0(u377§,70uo)- (2.12)

Note that the assumption vy ~ pg < 1 implies a moderate slope 8 = 9/l ~ ug/ % and
is used by several other authors (e.g., Johnson 1973; Miles 1979; Knowles & Yeh 2018).
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For reference, if pp = 79 = 0.1, then this implies a physically realistic 8 = 0.03. Svendsen
& Hansen (1978) compares this moderate slope to other theoretical derivations using
larger or smaller slopes.

Substituting this ¢ expansion (2.12) into the kinematic and dynamic boundary
conditions (2.9) and (2.10) yields Boussinesqg-type equations with a pressure forcing
term,

~ Z 1~
Oem + (h - 5077) Do + (70h - 508w) Dutp — u06h33§¢ = O(ug, 13 voro),  (2.13)
1 - 1
Podun) + 1+ Oup = 5 p1oh* 03 0hp + 560(@@)2 = 015,75, Yo ko) - (2.14)

Note that replacing h with the total depth hyotar = h + o7 shows that these are equivalent
to the flat-bottomed B_oussinesq equations with hiota; = 1 + €9n. In ot.her words, any
sloping-bottom terms h only appear in the combinati'on Ophiotal = 'yoﬁ + £90,n. This
is expected since the only sloping-bottom term poyohd.¢ in the governing equations
(2.7)-(2.10) was dropped when we neglected terms of O (u,~3,vox0)-

Since the bathymetry varies on the slow scale x /vy, we expand our system in multiple
spatial scales z,, = ygx for n =0,1,2, ..., so the derivatives become

0 0 7]

— — 4+ ... 2.1
Oz - 0z +70[“)x1 T (2.15)

and the bathymetry is a function of the long spatial scale i = h(x1). Then, we expand 7
and ¢ in asymptotic series of ¢(

(oo} oo
n(z,t) — Zagnk(t,xo,xl,...), o(z,t) %ngapk(t,xo,xl,...). (2.15a,b)
k=0 k=0

Similar to Johnson (1973), we replace xo and ¢ with left- and right-moving coordinates
translating with speed é(x1) dependent on the stretched coordinate z1:

Zo / Zo /
§+:—t+/ dro ¢ :t+/ drp (2.16)

(Y02p) (v0xp)

Then, we replace the derivatives 0; and 9, with

o_06 0 o _1(o 9
ot o0& 0gy oxg E\0&_  0&, )
Now, we will assume that g ~ Py ~ pg < 1 and follow the standard multiple-scale

technique (e.g., Mei et al. 2005; Ablowitz 2011). The order-one terms O(f)) from (2.13)
and (2.14) yield wave equations for ¢g and 7

(2.17)

%o 9?10
—0, ~0, 2.17a,b
9€4. 08— 9€, 08— ( )
with right-moving solutions
eo = fo(&4,21) and o = O¢, fo(&s,21), (2.18)

propagating with the slowly varying, linear shallow-water phase speed &(z1) = 1/ h(z1).
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Continuing to O(eg) of the asymptotic expansion gives

om0 P¢ o1 P Y. 0y o OF Dy
+ ==+ +2 + = 210 2 — 20
S 0Ly 0 08 08406 0€2 g0 0640m1  go Omy O&4 (2.10)
_ 1, Peo b 10w g0 oyl o |
2192 T e ioE, P 0E, 08, 2o 6 OEL
d d P10 1o 83 1 (80>
nl,ﬂJrﬂ:,itﬂ,,@hﬂ,f IPoy (2.20)
(‘9{.,. 65_ Ep C (‘35.,. 2 €0 8354,_ 262 854_
Eliminating 7; from these equations gives
%Py Yo .0mo Yo OC 1 Ono  lpo,8n 1Py 0%
4 = oM%Y, To _ ZHoz9 M0 ~T090 991
D€, OE_ P T R LU T P 061 Gz 0E2 (2.21)

The left-hand operator 92/0¢_0¢, is the same as the O(1) differential operator (2.17a,b).
Therefore, the right-hand side must vanish to prevent ¢, from developing secular terms.
Thus, the right-hand side becomes the variable-coefficient Korteweg—de Vries—Burgers
(vKdV-Burgers) equation

70 - 3770+170 oc 31 8n0+1u0~28 no 1 Pyd*n

e T Mgy AL — 2= 0 0. 2.22
€0 8.731 250 8$1n0+ 262n065+ 660 8§+ + 2¢ €0 853_ ( )

Finally, multiplying (2.22) by ¢, adding the O(1) differential equation Js 1 = 0 derived
from (2.17a,b), and transforming back to the original, non-dimensional variables = and ¢
yields

Oy Oy 10c 3 1 opg 1 5 Pny 1 82770

ot T C0r T20a™ T 2% MG, T g T g,
The pressure term Pyd2n, functions as a damping, positive viscosity for offshore Py < 0
wind, making (2.23) a (forward) vKdV-Burgers equation. Conversely, onshore Py > 0
wind causes a growth-inducing, negative viscosity giving the backward vKdV-Burgers
equation. The backward, constant-coefficient KdV-Burgers equation is ill posed in the
sense of Hadamard (Hadamard 1902). Though it is possible the backward vKdV-Burgers
equation is also ill posed for certain bathymetries }~L, this is irrelevant here owing to the
finite time the wave takes takes to reach the beach.

=0. (2.23)

2.5. Initial conditions

Our initial condition will be the solitary-wave solutions of the unforced (P, = 0), flat-
bottom KdV equation. These waves balance the KdV equation’s nonlinearity 790,19 and
dispersion 9319 terms, propagate without changing shape and require that the height Hy
and width Lg satisfy HoL3 = constant. Therefore, we now fix the previously unspecified
Lg by choosing 1o = (3/4)eg so Lo acts like an effective half-width for the solitary wave
initial condition (e.g., Mei et al. 2005)

no = sech? (), (2.24)
While the unforced KdV equation also possesses periodic solutions called cnoidal waves,

we only consider solitary waves here.

2.6. Convective breaking criterion

The asymptotic assumptions used to derive the vKdV-Burgers equation (2.23) fail
when the wave gets too large. Therefore, we require a condition to determine when the
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simulations should stop. We use a convective “pre-breaking” condition similar to that
derived by Brun & Kalisch (2018) for solitary waves on a flat-bottom depending on the
wave velocity profile u(z,t) at the surface and the phase speed c¢. They utilized the local
Froude number Fr := equ(x,t)/c, with the ¢ coming from non-dimensionalization, and
defined convective breaking to occur wherever max, (Fr) = 1, where max, represents the
maximum over x. However, when the Froude number approaches the breaking value of
unity, our weakly-nonlinear asymptotic assumption used to derive the vKdV-Burgers
equation are violated. Thus, we instead stop our simulations at the smaller pre-breaking
Froude number Frpp, := 1/3 and define the pre-breaking time ¢, as the first time this
condition is met:

max(Fr) := max (50 u(a:)) = Frpp = 1 . (2.25)
& r Cadi 3
Likewise, we define xpp, as the location on the wave where Fr = Fryy,, which will be very
near the wave peak. To calculate Fr, we need to estimate u(x,t) and c.
As the solitary wave propagates on a slope, the wave evolves over time and the phase
speed ¢ can be ambiguous. One option is to use the adiabatic approximation derived by
(Miles 1979) for unforced solitary waves on very gentle slopes:

L €0 (peak)
Cadi = h(:vpcak)<1+ 5 h(xpeak)>’ (2.26)

with Zpeax the location of the wave peak. Alternatively, Derakhti et al. (2020) used
large eddy simulations to numerically investigate unforced solitary wave breaking on
slopes ranging from g = 0.2 to 0.005 for two different forms of ¢. They found wave
breaking at max,(Fr) = 0.85 when using the speed of the numerically-tracked wave
peak cpeak. However, they also found that the shallow-water approximation cshaiow =
\/h(xpeak) + c0n(Tpeak) (equivalent to cag; to (9(6%)) was within 15% of cpeax near
breaking. Therefore, we will use (2.26) owing to its simplicity and theoretical foundation.
Finally, though these studies all considered unforced solitary waves, our results will show
that c,q; varies approximately 3 % across pressure magnitudes P, for our simulations, so
this is a valid approximation.

We now derive the wave velocity profile u(z, z,t) = V¢ by modifying the example of
Brun & Kalisch (2018) to include sloping bathymetry and pressure forcing. Combining
the vKdV-Burgers equation (2.23) and kinematic boundary condition (2.13) eliminates
01 yielding

526‘2@ _On < 0%p Ondp 31 31]) _p 1_0%n

22 ‘o V"2 Tor 0 2802 9022 (2.27)
604 e 150 o¢ Oy 1 oc '
— 6 — - - —
“°<6 92t T 6" a3>+7°<2 o1 00 290 ) ="
Assuming an ansatz

dp 1
Oz ~77 + €0A(.’£ t) + ’Y()B((t t) + ,LL(]C(CL' t) + PoD( ) (228)
D?p  10n 0A 0B 1 o¢ ocC oD
922 " Gor 00 ”0(@3@ - 'ax) thogy Thys s (229

we insert (2.28) and (2.29) into (2.27), drop terms of O(e?) and solve for A, B, C and D
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Parameter  Range

€0 0.2
Mo 0.15

|P/(pwgLoco)| 0.003125, 0.00625, 0.0125, 0.025, 0.05
B 0.01, 0.015, 0.02, 0.025

Table 1. Range of non-dimensional parameters simulated.

by using the independence of €q, 7o, po and Py:

1 g o[ & 0% 1 0n

A:—72 B:—i /d/ 0277 D:ii

a3 2 ), 1) dat 3 022’ 2 O
(2.29a-d)

Note that A represents the nonlinear contribution, B the effect of shoaling, C' the dispersive
effect and D the pressure forcing. Finally, the Taylor expansion of ¢(x, z) (2.12) gives the
fluid velocity at the surface u(x,t,z = ggn) = 0,0 as

L4

u(,0) = Oup — o500
_1 —¢ 1 2+P i@_ é@_ ¢ /I (ac')dx’ (230)
T eE T, TG g2 T Moo T '
Therefore, the Froude number is calculated as
-1
Fr o eu(x,t) (1 n f‘:()n(xpeak)> , (2.31)
h(xpeak) 2 h(-Tpeak)

with u(z,t) given by (2.30), and (2.25) defines our pre-breaking condition.

2.7. Numerics

The vKdV-Burgers equation (2.23) lacks analytic, solitary-wave-type solutions, so
we solve it numerically using a third-order explicit Runge-Kutta adaptive time-stepper
with the error controlled by a second-order Runge-Kutta method as implemented in
SciPy (Virtanen et al. 2020). We discretize the spatial domain using a fourth-order finite
difference method on a periodic domain with grid spacing dz = 0.05. We employ adaptive
time stepping to keep the relative error below 1076 and the absolute error below 10~ at
each step. For all cases, the average time-step is At ~ 2 x 103. The pressure is initially
turned off until the solitary wave is one unit (i.e. a half-width Lg) away from the start of
the beach slope. The pressure is linearly ramped up to its full value over the time the
wave takes to cross a full-width 2Lg. For numerical stability, we included a biviscosity
Vbia;lno with v =1 x 105,

We validated the solver against the unforced, flat-bottom analytical solution and had
a normalized root-mean-square error of 3.9 x 10~ after non-dimensional time ¢t = 100
(longer than the longest simulation) as well as a normalized wave height change of
1 — [max(no) — min(no)]/ max(n(()o)) - min(n(()o))] = 2.4 x 10~%. Furthermore, the results
were qualitatively consistent with the simulations of Knowles & Yeh (2018) of an unforced
solitary wave shoaling on a slope. Finally, the simulation reproduced the finding of Knowles

& Yeh (2018) that small waves (g9 < 1) on weak slopes (7y < 1) yield Green’s Law
for the wave height H(z) := max,(n) o h(z)'/* (with max, the maximum over time ),
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1 |
r 1

Tpb Ly,
x
— xsliorc

ho

Ly

Figure 2. Schematic showing the definition of the pre-breaking zone and shore
locations. The blue line represents the water surface and wave profile n at pre-
breaking, and the solid black line is the bottom bathymetry h(z). The bathymetry
consists of a flat region of depth hg, a sloping region, and a shallow plateau. The
shoreline Zshore (black dot) is the location where the bathymetry would intersect
the still water level if it had a constant slope (dashed line). The beach width Ly is
the distance from the toe of the beach slope to Zshore, and the pre-breaking point
Zpb is the location on the wave where Fr = Frpy,, which will be very near the wave
peak. The pre-breaking zone width Ly, is the distance from zp, to Zshore.

while moderate waves (g9 < 1) on very weak slopes (79 <« 1) give Miles’ adiabatic law
H(z) o< h(z)~! (Miles 1983).

The vKdV-Burgers equation (2.22) is determined by two non-dimensional parameter
combinations: the pressure term Pj/eo and the shoaling term ~g/eg. Recall that the
dispersive term pg/ep is a redundancy which we fixed by specifying Ly (cf. § 2.5). We
investigate this two-dimensional parameter space by choosing g = 0.2 and o = 0.15 and
varying the beach slope 5 = 0.01 to 0.025 and pressure P = 0.003 125 to 0.05 (cf. § 4.1
for a discussion of the size of P). This yields a total of 20 simulations (table 1). Note
that (2.22) demonstrates changing g — Aeg is equivalent to v9 — 7o/A in the wave’s
co-moving reference frame. Therefore, solutions for waves with different initial heights
€p can be generated from our solutions to the vKdV—Burgers equation in the lab frame
(2.23) by scaling the height, boosting and adjusting 7y. Note, the asymptotic expansion
assumed Py ~ &g, or P/(py,gLogo) ~ 1, but the pressure values we are using (table 1)
are smaller than unity. Nevertheless, multiple-scale expansions are often accurate outside
their parameters’ validity ranges, and this constraint would be satisfied asymptotically
for smaller values of .

2.8. Shape statistics

When stopping the simulations at ¢, (§ 2.6), we are interested in determining the wave
location zp1, at pre-breaking. To estimate how z 1, changes, we first calculate the shoreline
Tshore @S the location where the bathymetry would intersect z = 0 if it had a constant
slope 8 without our shallow plateau (figure 2). Then, we calculate the pre-breaking zone
width as Ly, = Zph, — Tshore- For a given beach slope 3, we will analyze the change in
pre-breaking zone width relative to the unforced case ALy, = Ly, — Ly, | Po normalized
by the unforced pre-breaking zone width LpZ’ p—o- This global statistic AL,/ (Lpz‘ o)
determines the variance in pre-breaking locations as a fractional change of the pre-breaking
zone width.

Additionally, we will investigate four more shape statistics that vary as the wave
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propagates. The first three are local shape parameters defined at each location z. First,
we directly examine the maximum Froude number max;(Fr) expressed in (2.31). Second,
we investigate the maximum height relative to the local water depth max;(n)/h(z) at
each location z. Third, we consider the maximum slope max;(|0n/dx|). Both the relative
height and maximum slope contribute to the convective breaking criterion (2.25). Finally,
we introduce a global shape parameter, the full width of the wave at half of the wave’s
maximum (FWHM) Ly (t) normalized by the local water depth h(z). For our unforced
KdV solitary wave initial condition (2.24), the FWHM divided by the initial depth is
Ly /ho = 2cosh™ " (v/2)//ft0. We seek to compare this global shape parameter defined at
each point in time ¢ with the local parameters defined at each point in space. Therefore,
we define Ly (7) = Lw (tpeax(2)) at the time ¢; ., (z) when the wave peak passed location
z.

3. Results

Now, we use the results of the numerical simulations to investigate the effect of wind on
solitary wave shoaling. We will present shape statistics (§ 2.8) for the 20 different runs
(table 1) to detail the wave shape changes and pre-breaking behavior across the parameter
space. For the remainder of the paper, we will utilize dimensional variables for easier
comparison to experiments and observations.

3.1. Profiles of shoaling solitary waves with wind

First, we qualitatively investigate the effect of varying pressures P and bathymetric
slopes (8 on solitary-wave shoaling by examining the wave profile n/hg, normalized by the
initial depth hg, at three different times ¢ (figure 3) corresponding to when the solitary
wave first feels the slope (¢ = 0), the time of pre-breaking (¢ = t,1,) and half-way between
(t =tpn/2). Note that these ¢t = 0 wave profiles (purple in figure 3) are nearly identical
to the sech?(x/Lg) initial condition (2.24) since the waves have only propagated over
a flat bottom (figures 3¢,h) and the pressure has not yet been turned on. Halfway to
pre-breaking (¢t = tp1,/2, blue), the solitary wave has grown through shoaling with a
steeper front face (+z side) and increased asymmetry for all P and /. At the time of
pre-breaking (¢ = tpp, green) the solitary wave has increased in height, steepened and
gained a substantial rear shelf for all P and . The generation of rear shelves by shoaling
solitary waves like those in figure 3 was first calculated by Miles (1979) and results
from the mass shed by the sech® wave as it narrows. Onshore wind (P > 0) reinforces
the shoaling-based wave growth and yields relatively narrow peak widths for both 3
(figures 3a,b). In contrast, offshore wind (P < 0) reduces the wave shoaling but results
in wider peak widths (figures 3a,b). These differences in wave-shoaling result in the
offshore-forced (P < 0) solitary wave reaching pre-breaking (z,p, x’s in figure 3) farther
onshore (shallower water) than the onshore-forced (P > 0) solitary wave. Similarly, the
larger beach slope (8 = 0.025, figures 3b,d,f) causes waves to reach xp, in less horizontal
distance, though they pre-break in shallow water than the milder beach slope (5 = 0.015)
waves. At ¢ = t,p, the rear shelf is wider and extends higher up the rear face for offshore
winds (& 0.1hg in figure 3e) than for onshore winds (&~ 0.07hg in figure 3a). As the
control case, the unforced (P = 0) solitary wave has zpp, located between the onshore and
offshore wind cases with an intermediate rear shelf. Finally, the milder slope (8 = 0.015)
has a sharper, more pronounced rear shelf while the steeper slope (5 = 0.025) has a more
gently sloping rear shelf.

We next investigate the impact of onshore (figures 4a,c,e) and offshore (figures 4b,d,f)
wind on shoaling waves’ slopes 9,1 and wave velocity profiles u/v/ghg. The wave slope
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Figure 3. Shoaling solitary-wave 7 evolution under (a,b) onshore P > 0, (¢,d)
unforced P = 0 and (e,f) offshore P < 0 wind-induced surface pressure versus non-
dimensional distance z/h¢ as the wave propagates up the (g,h) planar bathymetry.
The profile times shown depend on the Froude number (2.31) and therefore vary
between the panels. The first profile (purple) occurs when the peak is located at
x = —Lo where the pressure begins turning on, and the time is defined so t = 0
here. The last profile (green) occurs when the convective pre-breaking condition
max, (Fr) = Frpp = 1/3 is met (¢f. § 2.6), and the middle profile (blue) occurs at
a time halfway between the first and last profiles. Both columns have g9 = 0.2 and
o = 0.15, and the left-column forced cases (a,e) have |P/(pwgLogo)| = 0.05 and
B = 0.015 while the right-column forced cases (b,f) use |P/(pwgLoco)| = 0.025
and 8 = 0.025. The x’s denote the locations with the highest Froude number
(2.31), and the x’s on the last profiles (green) are the pre-breaking locations zpt.
We only display a subset of the full spatial domain.
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Figure 4. Shoaling solitary-wave (a,b) non-dimensional profile n/ho, (c,d) slope
on/dz (e,f) and non-dimensional wave velocity profile u/+/gho under (a,c,e)
onshore and (b,d,f) offshore wind-induced surface pressure as the wave propagates
up the (g,h) planar bathymetry. Values are shown versus non-dimensional distance
x/ho for eg = 0.2, uo = 0.15, |P/(pwgLoco)] = 0.05, 8 = 0.015 and non-
dimensional times t\/gh/Lo indicated in the legends. The red lines in (e,f)
represent the phase speed caai (2.26) at each location multiplied by the pre-
breaking Froude number Frp, = 1/3. The X’s denote the locations with the
highest Froude number, and the x’s on the last (green) profiles are the pre-
breaking locations xpn. The squares are the locations of the maximum slope
magnitude |9n/0x|, and the upside-down triangles represent the locations of the
maximum wave velocity profile. We only display a subset of the full spatial domain.
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(figures 4¢,d) highlights the shoaling- and wind-induced shape changes by accentuating
the front-rear asymmetry. At ¢ = 0 (purple figures 4a,b), the wave slope has odd-parity
about the peak. However, as the wave propagates onshore, both the front and rear face
steepen, though the front face steepens more dramatically. The influence of the wind is
most noticeable in three aspects: the offshore-forced wave (P = —0.05, figure 4b) is 10 %
smaller than the onshore forced wave (P = 0.05, figure 4a); the offshore-forced rear-face
wave slope (figure 4d) is 15 % smaller than the onshore-forced wave slope (figure 4c),
though the front-face slope is only 2% smaller; and the trailing shelf’s slope extends
further behind the offshore-forced wave (= 8hg, figure 4d) than the onshore-forced wave
(= 5ho, figure 4c¢). The wave velocity profile u/v/ghg ((2.30), figures 4e,f) nearly mirrors
the wave profile (figures 4a,b), as is expected given that u o n to leading order (2.30).
Finally, the phase speed c,q; (red, (2.26)) decreases as the wave shoals which enhances
convective pre-breaking, though c.q; only varies 3 % between onshore and offshore wind.
Note, in figures 4(e,f), caai is multiplied by Frp, = 1/3 so that the intersection of the red
curve with the wave velocity profile occurs at xpp, the location of pre-breaking.

3.2. Shape statistics with shoaling and variations of pre-breaking zone width with wind

Building on the previous qualitative descriptions of the wave profile, slope and wave
velocity profile, we also quantify the change in the shoaling wave’s shape parameters
for onshore and offshore P (figure 5). First, we consider the maximum Froude number
max, (Fr) as a function of non-dimensional position x/hg (figure 5a). In the flat region
(x < 0), the maximum Froude number is max;(Fr) = 0.1818, and it increases as the waves
shoal to the pre-breaking value max;(Fr) = Frp, = 1/3 (light gray line). The wind has a
significant impact on the location of pre-breaking xpp,, with onshore wind (red) causing
the Froude number to increase faster and xp1, to occur farther offshore than offshore wind
(blue) does. This can also be seen in figures 4(e,f), where the maximum velocities u/v/gho
(upside-down triangles), which are proportional to max;(Fr), are growing faster for the
onshore wind (figure 4¢) than the offshore wind (figure 4f). Notably, at a fixed location
x/hg, the max, (Fr) varies substantially (e.g. 0.25 to 0.30 at x/hy = 20). In addition, we
consider the maximum height max;(n) at a fixed location and normalized by the local
water depth h(z) (figure 5b). For all pressures P, the solitary wave increases in height,
but the onshore wind enhances this growth while the offshore wind partially suppresses
the growth. Again, this is apparent in the evolution of the maximums 7(Zpeax)/ho in
figure 3, with the peak locations zpeax closely approximated by the x’s marking the
location of maximum Fr. Since Fr o 7 to leading order, the relative height at pre-breaking
is approximately 0.41 for all P (figure 5b) with offshore-forced wave slightly larger (1 %)
than onshore-forced waves.

Figure 5(¢) shows the evolution of the maximum wave slope magnitude max; |0,7/,
corresponding to the front face’s slope (figures 4¢,d). Like the relative height (figure 5b),
the steepness is enhanced by onshore wind P > 0, suppressed for offshore wind P < 0
and approaches nearly the same pre-breaking value of 0.14 for all wind speeds, being
only 1% larger for offshore winds than onshore winds. Finally, we examine the FWHM
Ly, normalized by the local water depth h(x) (figure 5d). While Ly /h(x) decreases
from its initial value of 4.55 for all pressure magnitudes, there is significant variation
in the pre-breaking value. For our parameters, Ly /h(x) changes nearly 19 % more for
onshore wind (P = 0.05) than offshore wind (P = —0.05) from start to pre-breaking.
Figures 4(a,b) show that the rear shelf does not rise to half the wave height, so the
FWHM does not incorporate the shelf’s width. Instead, the onshore-forced narrowing is
occurring in the top region above the shelf. Hence, while the relative height and slope at
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Figure 5. Shoaling solitary-wave shape statistics under onshore and offshore
pressure forcing versus non-dimensional distance z/ho. The (a) Froude number
max¢(Fr) (2.31), (b) maximum height normalized by the local water depth
max¢(n)/h(z), (¢) maximum slope max(|0n/0z|) and (d) full width at half
maximum normalized by the local water depth Lw /h(z) (cf. § 2.8) are displayed
at each location along the (g) planar bathymetry. Results are shown for 9 = 0.2,
o = 0.15, f = 0.015 and pressure magnitude |P/(pwgLoco)| up to 0.05, as
indicated in the legend. The solid black line is the unforced case, P = 0. The light
gray line on (a) represents the convective pre-breaking Froude number Fry;, = 1/3
at which the simulations were stopped.

pre-breaking are largely similar for all the wind speeds, the FWHM at pre-breaking is
strongly affected by the wind speed indicating wind effects on shoaling shape.

We also investigate the change in the pre-breaking zone width AL, (§ 2.8) as a function
of pressure P/(p,gLogo) for four different values of the beach slope § (figure 6). First,
ALy, is linearly related to the pressure magnitude, and the wind has a larger effect on
AL, for smaller beach slopes, with P/(p.,g9Logo) = —0.05 changing the pre-breaking zone
width by approximately 5 % for the smallest slope 8 = 0.01. This is because the wind has
more time to affect the wave before it reaches pre-breaking. This wind-induced change in
pre-breaking location is visible in figure 3, where the breakpoint x,1, (X’s on green profiles)
occurs closer to the shoreline (+z direction) for offshore winds P < 0 (figures 3e,f) than
for onshore winds P > 0 (figures 3a,b). Additionally, we note that for the smallest slope
B = 0.01, the fractional change in pre-breaking zone width ALy, /( Lpz| po) is asymmetric
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Figure 6. The fractional change in pre-breaking zone width AL, compared to the
unforced case LpZ’ P—o (cf. § 2.8) versus the non-dimensional pressure magnitude
P/(pwgLoco). The results are shown for beach slopes 3 = 0.01-0.025 as indicated
in the legend.

with respect to pressure, with offshore P/(p,,gLogo) = —0.05 yielding a 23 % larger change
than onshore P/(p,,gLoco) = 0.05 (figure 6).

3.3. Normalized pre-breaking wave shape changes induced by wind and shoaling

As figure 5 quantified the shape statistics at pre-breaking for all z, we now directly
investigate the effect of pressure P and shoaling S on pre-breaking wave shape by
normalizing each pre-breaking wave profile 7 by its maximum height max, (n) and aligning
the pre-breaking locations xp,/ho (figure 7). Each solution is dominated by the sech?
wave centered near x — xp, = 0, which becomes taller and narrower as the wave shoals as
required by energy conservation (Miles 1979). Furthermore, while the sech? component
is symmetric in time at a fixed location, it becomes slightly deformed when viewed at
a fixed time as the front face moves slower than the rear face (cf., e.g., Newell 1985;
Knickerbocker & Newell 1985). We also observe a shelf behind the wave, which Miles
(1979) calculated by requiring that the right-moving mass-flux be conserved as the sech?
narrows and sheds mass. While long-duration calculations of the Miles shelf reveal a
nearly horizontal shelf extending far behind the wave (e.g., Knickerbocker & Newell 1980,
1985), our shelf instead slopes gently downward, likely due to insufficient development
time and distance.

In figure 7, we plot the pre-breaking wave shape for fixed bottom slope 5 (figure 7a)
and fixed pressure magnitude P (figures 7b,c). For a fixed slope (figure 7a), the front
wave faces at pre-breaking are qualitatively very similar and match an unforced solitary
wave of the same height. However, wind strongly affects the rear shelves as observed in
figure 3. The offshore winds (blue) cause the shelf to be thicker and extend higher up the
rear wave face than the offshore wind (reds) do, although the shelf intersects z = 0 at
(x — xpp)/ho =~ —10 for all wind speeds.

We also consider the wave shape at breaking for different values of the beach slope S
with a fixed onshore (figure 7b) or offshore (figure 7¢) wind. The rear half of the wave
shows that bottom slope /3 affects the rear shelf differently than pressure P/(pwgLoco)
does. While the shelf intersected z = 0 at the same location for all wind speeds (figure 7a),
increasing § causes the intersection point (i.e. the base of the shelf) to move forward
and closer to the peak. Finally, the offshore wind (figure 7¢) causes a noticeably larger
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Figure 7. Pre-breaking wave profile 7/ max,(n) normalized by the maximum
height versus non-dimensional position (x — zp1)/ho relative to the pre-breaking
location zpp. All profiles occur at pre-breaking ¢,, when max, (Fr) = Fry, =1/3
(cf. § 2.6) and display different values of the (a) pressure magnitude P/(pwgLoco)
and the (b,c) bottom slope 3, as indicated in the legend. Results are shown for
€0 = 0.2, po = 0.15 and (a) slope 8 = 0.015, (b) onshore P/(pwgLoco) = 0.05 or
(¢) offshore P/(pwgLogo) = —0.05 pressure magnitude. The light gray line shows
where the FWHM is measured.

shelf than the onshore wind (figure 7b) for the weakest slope 8 = 0.01 (purple), with a
similar pattern observed in figure 4(a) (8 = 0.015) compared to figure 4(b) (5 = 0.025).
However, this difference is much smaller for the steeper (green) slopes, implying that
stronger shoaling partially suppresses the wind-induced shape change because there is
less time for pressure to act prior to pre-breaking.

4. Discussion
4.1. Wind Speed

Our derivation in § 2 coupled wind to the wave’s motion through the use of a surface
pressure (2.5). The resulting vKdV-Burgers equation (2.23) had a wind-induced term
dependent on the pressure magnitude constant P/(p,,gLogo). We analyzed the evolution
and pre-breaking of solitary waves for variable P (§ 3). While the usage of P was the most
natural since it is the physical coupling between wind and waves (in the absence of viscous
tangential stress), measuring the surface pressure is challenging in field observations or
lab experiments (e.g., Donelan et al. 2006; Buckley & Veron 2019). Therefore, we also
consider the evolution and pre-breaking of the shoaling solitary waves as a function of
the wind speed U. Zdyrski & Feddersen (2021) did this by considering a surface pressure
acting on a flat-bottom KdV solitary wave initial condition (equivalent to our (2.24))
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|P/(pngE)| ” h[m] | Uonshore [Hl Sil] Uoffshore[m 571] ” h[m] | Uonshore [m Sil] Uoffshore[m Sil]

0 2.5 4.9 4.9 1 3.1 3.1
0.0031 2.5 8.7 1.2 1 5.5 0.73
0.0063 2.5 10 —0.41 1 6.5 —0.26
0.013 2.5 13 —2.6 1 7.9 —1.7
0.025 2.5 16 —5.8 1 9.9 —3.6
0.050 2.5 20 —10 1 13 —6.5

Table 2. Wind speeds as functions of pressure P/(p.,,gLe) and local depth h for
solitary waves (4.1) with € = 0.2. Uonshore corresponds to P > 0 and Usfishore t0
P < 0. The conversion from P/(pwgLe) to U is given in (4.2).

with dimensional form

2
3ex

— chsech? il 4.1

1 = ehsec <“4h> , (4.1)

with non-dimensional height e = H/h and width L = 2h/v/3¢ in water of depth h. They
used energy growth rate considerations and a non-separated parameterization by Donelan
et al. (2006) for periodic, shallow-water waves to approximate the wind speed U as

pw 4

2 1
—144/= Pw ,
.ﬁ Do 191 \/5 Pa 4.911/32

where U is measured at a height of half the solitary wave’s width. Note that the radicand
differs by a factor of 2 from Zdyrski & Feddersen (2021) owing to the different definitions of
e. Even though (4.2) was originally applied to flat-bottomed KdV solitary waves (2.24), our
assumption that v = L/L;, < 1 implies that the bathymetry is approximately flat over the
wave’s width 2L. Therefore, we use (4.2) to translate between the pressure P/(p.gLogo)
and the wind speed U at any point on the sloping bathymetry by using the local € and h and
relating the initial pressure to the local pressure P/(p,gLe) = (e0Lo/eL)P/(pwgLoco).

Table 2 shows the onshore (P > 0) and offshore (P < 0) wind speeds corresponding to
the pressures used in our simulations for two representative depths h. It shows that the
pressure magnitudes in our simulations correspond to physically reasonable wind speeds,
with onshore U from 3.1ms ! to 13ms ! for water 1m deep or 4.9ms ! to 20ms ! for
water 2.5m deep. Notice that unforced waves with P = 0 correspond to a wind speed
matching the wave phase speed U = ¢, with ¢ approximately the linear shallow-water
phase speed ¢ ~ v/gh. In particular, this means that onshore P > 0 and offshore P < 0
winds with the same pressure magnitude |P| will have different wind speed magnitudes
|U|. Additionally, note that keeping P fixed implies that the wind speed U changes as
the wave shoals. This is mostly due to the decrease in the phase speed ¢ o< \/gh, with
higher-order effects coming from the € and L dependence of the radicand in (4.2). Finally,
note that as the wave shoals and ¢ increases, the height at which the wind speed is
measured z = L/2 = h/\/3¢ decreases.

We now re-examine our results regarding the pre-breaking zone width (figure 6) in
terms of the wind speed U/+/gh(x) using (4.2). In addition to changing the abscissa of
the plot (figure 8), we also modify the definition of the change in pre-breaking zone width
ALy, =Ly, — Lp, ’U:O by comparing and normalizing each pre-breaking zone width to
the U = 0 case rather than the P = 0 case. This transformation changes the initially
straight lines of figure 6 into approximate pairs of upward- and downward-facing /AL,

P
pwyLe

(4.2)

pwgha
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Figure 8. The fractional change in pre-breaking zone width ALy, compared to
the unforced case LpZ’U:O (c¢f. § 2.8) versus the non-dimensional wind speed

U/+/gh(zpn) normalized by the local, shallow-water phase speed /gh(zpp) and

evaluated at a height of half the solitary wave width L. The results are shown for
beach slopes 8 = 0.01-0.025.

curves shifted to the right by one unit (figure 8). Furthermore, we see that ALy, is now
much flatter for onshore winds (U > 0) than for equal magnitude offshore winds (U < 0).
This is due to the inflection point of the unforced case (P = 0) being shifted to the right

at U/+/gh = 1.

4.2. Isolating the Effect of Wind

For no wind (P = 0), solitary wave shoaling is well-understood to generate a rear
shelf (Miles 1979). The variation in the rear shelf’s thickness with P (figure 7) is reminiscent
of the variability in the wind-generated bound, dispersive, and decaying tails of flat-bottom
solitary waves (Zdyrski & Feddersen 2021). Additionally, Zdyrski & Feddersen (2021)
showed that flat-bottom, wind-generated tails are analogous to the dispersive tails of KAV
solutions with non-solitary-wave initial conditions (e.g. Mei et al. 2005). Both the rear
shelf and wind-generated tail can be viewed as weak perturbations to the KdV equation
by transforming the non-dimensional vKdV-Burgers equation (2.22) into a constant-
coefficient, perturbed KdV equation by defining v == (3/2)n0/h?, and 7 := [ ¢dz1 e0/(670):

Ov ov  Ov 99 1 Oh 1 Py 0*v
87‘1‘677087-1-73: = v—3= Yo
T E+ a£+ 4eg hOxy C \/m 854-
The first term on the right-hand-side (RHS) is the shoaling term which leads to the rear
shelf (Miles 1979), and the second term is the wind-induced Burgers term (Zdyrski &
Feddersen 2021). With non-dimensional Py = 0, (4.3) reduces to the perturbed KdV
equation for a gently sloping bottom (e.g. Newell 1985). Although our derivation assumed
all terms in (4.3) were the same order, |Py|/ep = 0 to 0.05 and ~o/eq = 8+/4/(3e3) =
0.1 to 0.3 were smaller than unity, so the RHS terms are weak perturbations to the KdV
equation and its sech? solitary-wave solution.
Reverting back to dimensional variables, we isolate the effect of wind by separating
out the sech? solitary wave and the Miles rear shelf using the unforced P = 0 normalized
profiles to represent shoaling and rear-shelf generation. We define a normalized tail ¢ as

(4.3)
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Figure 9. Normalized tail ¢ (4.4) versus non-dimensional position (z — zpp)/L
relative to the pre-breaking location z,,. The wave profile is normalized by the
maximum height max,(n), and the spatial coordinate (z — xpb) is normalized by
the wave width L ((4.5)). All profiles occur at pre-breaking max, (Fr) = Frp, = 1/3
(¢f. § 2.6) and are displayed for bottom slopes 3 of (a) 0.01, (b) 0.015, (¢) 0.02,
(d) and 0.025. Results are shown for eg = 0.2, po = 0.15 and pressure magnitude
|P/(pwgLoco)| up to 0.05, as indicated in the legend. The solid black line is the
unforced case, P = 0, and is zero by definition.

the difference between the forced and unforced P = 0 normalized profiles of figure 7:

(4.4)

= ) (mafm))

For constant depth, the height H and width L of unforced, sech? solitary waves always
satisfy HL? = const. Since our numerical results (e.g. figure 7) are dominated by the
sech? solitary wave profile, scaling the wave profile by H requires that we scale the spatial
coordinate by L oc 1/ V'H to respect this symmetry and enable comparison of waves with
different heights. We replace h — h(Zpeak) int the expression for the flat bottom solitary
wave width L (4.1) to yield the wave width for a slowly-varying depth as

4h(:cpcak)
3H

P=0

L = h(zpeax) (4.5)
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We normalize the spatial coordinate as /L to compare the normalized tails ¢ in figure 9.

We show the normalized tail ¢ versus (x — xpp)/L for different pressure P and bottom
slope 8 in figure 9. First, increasing the pressure magnitude |P| increases the tail’s
amplitude and wavelength. For example, the wavelength with 8 = 0.01 is approximately
5L for P/(pwgLoco) = —0.025 and 7.5L for P/(pwgLoco) = —0.05. This amplitude
increase is expected, as higher pressures put more energy into the tail, causing growth.
Additionally, increasing the bottom slope 8 decreases the shelf’s width and the tail’s
amplitude without noticeably changing its wavelength. We can explain the narrower shelf
and smaller amplitude by recognizing that larger 8’s cause the wave to reach pre-breaking
(when these profiles are compared) earlier, decreasing the time over which the wind (tail)
and shoaling (shelf) act. The wavelength’s independence of the beach slope 3 also implies
that the width L of the solitary wave sets the tail’s wavelength. Additionally, we note that
onshore (P > 0) and offshore (P < 0) winds change the polarity of the tail, consistent
with Zdyrski & Feddersen (2021). Lastly, wind-induces a small, bound wave in front of
the pre-breaking solitary wave with minimum near (z — zp,) = 0 and extremum near
(x —xpb)/L =~ 2 of the same polarity as the rear shelf (figure 9), similar to the flat-bottom
results of Zdyrski & Feddersen (2021).

Hence, the numerically-calculated wave profiles (figure 7) are a superposition of the
sech? solitary wave, Miles’ shelf (Miles 1979) and a wind-induced bound, dispersive and
decaying tail (Zdyrski & Feddersen 2021). Furthermore, this decomposition of the full
wave enables us to understand the effects of wind and shoaling from previously studies.
The sech? solitary wave grows and narrows due to wave shoaling (e.g. Miles 1979) and
wind-forcing (Zdyrski & Feddersen 2021). Miles’ shelf is generated by the mass-flux of
the growing wave. The shelf’s absence from the normalized tails in figure 9 implies its
shape is largely unchanged by the wind, and its amplitude for a given bottom slope
B is approximately proportional to the sech? solitary wave. And finally, the amplitude
and wavelength of the bound, dispersive and decaying tail grow with the sech? solitary
wave (Zdyrski & Feddersen 2021).

This decomposition relies on the assumption that the tail and shelf are both small
compared to the solitary wave and do not influence each other or the solitary wave. This is
only possible when the wind-forcing Py is weak and the wave width-to-beach width ratio g
is small. Miles (1979) analyzed a vKdV equation requiring the same weak-slope assumption
Yo ~ €0, though his adiabatic results required an even smaller o = O(10~2) (Knowles
& Yeh 2018). The realistic beach widths we utilized yield a 79 = 3 x 1072 to 6 x 102
somewhat larger than this adiabatic regime, and the vy/g¢ term in (4.3) is not as small
as the pressure-forcing term, implying some nonlinear interactions between the shoaling-
induced shelf and the sech? solitary are possible. For this reason, we subtracted off the
unforced solitary wave and shelf rather than approximate them analytically. Nevertheless,
the pressure forcing |Py|/eg = 0 to 0.05 we used was sufficiently small that the weak
wind-forcing can be considered to interact linearly, as seen in the clean separation between
pressure-induced tail and sech? plus shelf in figure 9.

4.3. Relationship to previous laboratory experiments and models

Previous laboratory experiments investigated wind’s effect on the breaking character-
istics of shoaling, periodic waves (e.g., Douglass 1990; King & Baker 1996). Douglass
(1990) considered waves with initial height Hy/ho = 0.3 and initial inverse wavelength
ho/Ao = 0.1 under wind speeds of up to U/v/gho = £2.3 on a beach with slope 0.04 while
King & Baker (1996) considered waves with initial height Hy/ho = 0.2 and initial inverse
wavelength hg/A\g = 0.3 with wind speeds of up to U/+/ghg = £1.1 on a beach with
slope 0.05. Douglass (1990) measured how wind speed changes the surf zone width for
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periodic waves. Directly comparing our figure 8 to figure 2 of Douglass (1990), we see many
qualitative similarities, including the pre-breaking zone width’s flatter response near U = 0
and a stronger response for offshore winds (U < 0) than the corresponding onshore winds
(U > 0), with our change roughly four times smaller than theirs. The laboratory studies also
found that the relative breaking height H(Zpreak)/h(Zbreak ), normalized by the breaking
depth, decreased by as much as 40 % for offshore wind speeds of U/+/gh(xprear) = 4
and increased by up to 10 % for onshore wind speeds of U/+/gh(Zpreax) = —2 compared
to the unforced case (e.g., Douglass 1990; King & Baker 1996). By comparison, over
those same wind speed ranges of U/+/gh(zpn) = 1 £ 3, our simulations found that the
relative pre-breaking height H(zpy)/h(zpb) varied by approximately 1% between onshore
and offshore winds (figure 5b), with the same polarity as the laboratory experiments.
Numerical studies have also investigated the effect of wind on the breaking of shoaling
solitary (e.g., Xie 2014) and periodic (e.g., Xie 2017) waves using a RANS k— model
to simulate both the air and water. Xie (2014) considered solitary waves with initial
height Hp/ho = 0.28 on a beach slope of 0.05 with onshore winds of up to U/\/ghg = 3,
while Xie (2017) investigated periodic waves with initial height Hy/hg = 0.3175 and
initial inverse wavelength hg/Ag = 0.02 on a beach slope of 0.029 forced by onshore
winds up to U/+v/gho = 2. These studies determined that the (absolute) maximum wave
heights max;(n)/ho increased with increasing onshore wind at each location z < Zpreak,
consistent with our findings in figure 5(b). Furthermore, we can infer from their wave
profiles at different wind speeds that the breaking depth h(xpreak) increased for onshore
winds compared to offshore winds, again consistent with our findings.

Our results qualitatively agree with prior experimental and numerical results (Douglass
1990; King & Baker 1996; Xie 2014), and the quantitative mismatch can be partly
explained by the different non-dimensional parameters. Douglass (1990), Xie (2014)
and Xie (2017) all used larger initial waves (eg &~ 0.3), so nonlinear effects were likely
more important. All of the laboratory and numerical experiments discussed also used
steeper beach slopes. Additionally, while the surf zone width change is roughly four
times larger for Douglass (1990) than for our simulations over the same wind speed
range, Douglass (1990) investigated waves that were actually breaking. In contrast, we
stopped our simulations at pre-breaking max, (Fr) = Fr,, = 1/3, significantly before
actual breaking max, (Fr) ~ 1 (e.g. Derakhti et al. 2020), thus we expect smaller changes
to the surf zone width.

5. Conclusion

While shoaling-induced changes to wave shape are well-understood, the interaction of
wind-induced and shoaling-induced shape changes has not been extensively studied.
Utilizing a Jeffreys-type wind-induced surface pressure, we defined four non-dimensional
parameters that controlled our system: the initial wave height ¢, the inverse wavelength
squared p, the pressure strength Py and the wave width-to-beach width ratio ~y. We
leveraged these small parameters to reduce the forced, variable-bathymetry Boussinesq
equations to a variable-coefficient Korteweg—de Vries—Burgers equation for the wave profile
7. We also extended the convective breaking criterion of Brun & Kalisch (2018) to include
pressure and shoaling. A third-order Runge-Kutta solver determined the time evolution
of a solitary wave initial condition up a planar beach under the influence of onshore and
offshore winds. Stopping the simulations at a pre-breaking Froude number of 1/3 revealed
that the pre-breaking relative height and maximum slope are largely independent of wind
speed, but onshore winds cause a narrowing of the waves. The width of the pre-breaking
zone is strongly modulated by wind speed, with offshore wind decreasing the pre-breaking
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zone width by approximately 5% for the mildest beach slopes. Investigating the wave
shape at pre-breaking revealed that the front of the wave is relatively unchanged and
matches an unforced solitary wave, while the rear shelf is strongly affected by wind speed
and bottom slope. We isolated the effect of wind from the effect of shoaling and revealed
a bound, dispersive and decaying tail similar to wind-induced tails on flat bottoms. By
leveraging the relationship between surface pressure P and wind speed U, we directly
compared our results to existing experimental and numerical results. We found qualitative
agreement in surf width changes and wave height changes, and expect better quantitative
agreement as the waves propagate closer to breaking. These results suggest that wind
significantly impacts wave breaking, and our simplified model highlights the relevant
physics. Future avenues of research could include deriving coupled equations for both the
water and air motions to more accurately predict the surface pressure distribution.
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