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Abstract The effects of barotropic and baroclinic tides on three-dimensional (3-D) coastal dispersion are
examined with realistic, 200-m horizontal resolution simulations of the Central Californian continental shelf
during upwelling. Over multiple tidal cycles, the horizontal relative dispersion and vertical dispersion of 3-D
drifters are similar between simulations with no tides and with barotropic tides. In contrast, baroclinic tides,
which dissipate across the shelf and induce vertical mixing, result in a factor of 2—3 times larger horizontal
and vertical dispersion. The increase in horizontal dispersion with vertical mixing is qualitatively consistent
with weak-mixing shear dispersion. Without shear dispersion, horizontal dispersion of surface-trapped
(2-D) drifters was similar in all simulations. However, 2-D drifter trajectory differences relative to no tide
simulations are 3—4 times larger with baroclinic tides than barotropic tides alone. These results demonstrate
the need to include baroclinic tides and 3-D tracking for coastal passive tracer dispersion.

Plain Language Summary Understanding the dispersal of material in the coastal ocean is
relevant to pollutant dilution, marine ecosystem sustainability, and search-and-rescue operations. Although
numerical circulation models are commonly used to predict material dispersal, these models often do

not include tides. Here the tidal effect on material dispersal is compared with numerical drifters released

in a realistic model without tides, with surface tides (the rise and fall of sea level), and with internal tides
(the rise and fall of interior density layers). Surface tides contribute little additional dispersal in the model
region, while internal tides induce 2-3 times larger horizontal and about 2 times larger vertical dispersal in
comparison to models without tides. In addition, after 48 hr surface drifter trajectory differences between
models with and without internal tides are 8 km. Therefore, internal tides need to be considered in models
used to plan oil-spill response or search-and-rescue operations.

1. Introduction

Tracer dispersion in the coastal ocean has wide reaching impacts on pollutants (e.g..Boehm et al., 2002;
Macfadyen et al., 2011; Poje et al., 2014), search-and-rescue operations (e.g., Spaulding et al., 2006), the
exchange of iron and nutrients (e.g., McPhee-Shaw, 2006), and the connectivity of marine organisms (e.g.,
Cowen & Sponaugle, 2009; Monismith et al., 2018; Pineda et al., 2007). Lagrangian analysis of surface-trapped
drifters (e.g., Davis, 1985; Ohlmann et al., 2012; Spydell et al., 2009), dye releases (e.g., Clark et al., 2010; Dale
et al,, 2006; Hally-Rosendahl et al., 2014; Moniz et al., 2014; Sundermeyer & Ledwell, 2001), and virtual drifter
tracking with high-frequency radar velocities (e.g., Rypina et al., 2016) provide estimates of dispersal patterns
and dispersion rates at different space and time scales that inform coastal resource management. Due to lim-
ited Lagrangian observations, marine connectivity (Drake et al., 2011; Mitarai et al., 2009; Petersen et al., 2010)
and pollutant dispersion (e.g., Thyng & Hetland, 2017) are also estimated by virtual drifters advected with real-
istic numerical models. The broad range of space and time scales from the nearshore (O(10) m and O(1) min)
to the outer continental shelf (O(10) km, O(1) day) also present a challenge to coastal numerical modeling.
Regional operational models such as those from Integrated Ocean Observing Systems (https://ioos.noaa.gov/)
can well represent wind-driven and mesoscale dynamics (e.g., Veneziani et al., 2009) but typically have rel-
atively coarse horizontal resolution (O(1-3) km) and poorly resolve continental shelf circulation from the
shoreline to 100-m water depth (e.g., Drake et al,, 2011; Mitarai et al., 2009). Both U.S. West Coast wide dis-
persal study with a 3-km resolution model (Drake et al., 2011) and regional study with a 1-km resolution
model (Mitarai et al., 2009) describe the effects of large space scale (> 10 km) and long time scale (> 10 day)
dispersion processes. Because < 1-km spatial scales within a model can impact coastal dispersion estimates
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(e.g., Bracco et al., 2018; Rasmussen et al., 2009), these processes can be resolved by further model nest-
ing (e.g., Romero et al., 2013), parameterized within the Lagrangian submodel (e.g., Lacorata et al., 2014;
Rypina et al., 2016) or resolved with an unstructured model grid (e.g., Rayson et al., 2016). For oil-spill response
applications, or to compare with near-surface trapped drifter observations, some model-based dispersion
studies focus on near-surface horizontal (two-dimensional, 2-D) dispersion (e.g., Ohlmann & Mitarai, 2010;
Romero et al., 2013; Thyng & Hetland, 2017). Nonbuoyant tracers such as pollutants, nutrients, and larvae are
transported and mixed in coastal regions by the full three-dimensional (3-D) flow field that includes turbulent
boundary layers, interior internal tide-driven mixing, as well as geostrophic flows, which potentially impact
horizontal and vertical tracer dispersion.

Many previous U.S. West Coast model-based dispersion studies have not included tides (e.g., Drake et al.,
2011; Kim & Barth, 2011; Mitarai et al., 2009). Although hindcast (Kurapov et al., 2017) and operational models
(Chao et al,, 2017) of the region have recently incorporated tides, dispersion studies with realistic models that
incorporate tides remain limited (e.g., Romero et al., 2013). Barotropic (BT; surface) and baroclinic (BC; internal)
tides potentially impact dispersion through processes including BT tidal rectification (e.g., Ganju et al., 2011),
internal wave shear dispersion (Kunze & Sundermeyer, 2015; Steinbuck et al,, 2011; Young et al,, 1982), and
internal wave Stokes’ Drift (Wunsch, 1971).

In realistic coastal models, the importance of including BT and BC tides relative to coastal processes driven by
winds, stratification, and bathymetric variability on tracer dispersion is not well understood. In a study using
a high-resolution (250-m grid spacing) coastal model that included BT and BC tides, horizontal dispersion
was due to a combination of submesoscale processes and tides (Romero et al., 2013). However, no distinction
between BT and BC tidal effects was made and no direct comparison of dispersal rates or drifter trajectories
between models that include and neglect tides was provided. About 10% of the global energy input to BC
tides (0.1 TW) is eventually dissipated on the continental shelf (e.g., Kelly et al., 2013) and observations of ele-
vated coastal vertical mixing have been linked to BC tides (e.g., MacKinnon & Gregg, 2003; Walter et al., 2012).
Thus, BC tides may have a strong effect on coastal stratification and dispersion. The effect of BT and BC tides
on middle to inner- shelf stratification and vertical mixing was examined using three Central California (U.S.
West Coast) simulations with identical realistic wind and large-scale boundary conditions but with either no
tides (NT), BT only tides, or both BT and BC tides (Suanda et al., 2017). Tidal effects were isolated by analysis of
a time period with similar volume-averaged heat content and upwelling mean flows in the three simulations.
Relative to simulations without BC tides, the onshore-propagating, dissipating BC tide increased midwater col-
umn vertical mixing and reduced subtidal stratification with comparable magnitude to the observed natural
seasonal cycle (Suanda et al., 2017).

Here in this follow-up study utilizing the same simulations, the potential enhanced drifter dispersion due to
BT and BC tides over multiple tidal time scales relative to a simulation without tides is examined. The primary
metric to characterize horizontal drifter dispersion is the time-dependent relative diffusivity (e.g., Richardson,
1926; Salazar & Collins, 2009; Sawford, 2001), which has been used previously in coastal regions (e.g., Ohlmann
et al,, 2012; Romero et al,, 2013; Spydell & Feddersen, 2009). In homogeneous and isotropic turbulence, the
relative diffusivity is understood to be time dependent as long as drifter separations are shorter than the
largest eddy scales (e.g., Jullien et al., 1999; Salazar & Collins, 2009) and times shorter than the Lagrangian
time scale of absolute diffusivity (e.g., Taylor, 1922). In coastal regions, the Lagrangian time scale has been
estimated to be multiple days (e.g., Davis, 1985; Dever et al., 1998; Paduan & Niiler, 1993). As this is longer
than semidiurnal time scales, the effects of BC and BT tides on time-dependent drifter relative dispersion are
examined here.

The model setup, drifter tracking methods, and Lagrangian statistics are described in section 2. Horizontal
and vertical dispersion statistics in the NT, BT tides, and BC tides simulations are compared in section 3. The
mechanisms inducing additional vertical and horizontal dispersion with BC tides, the differences between 3-D
and 2-D dispersion, and the trajectory difference between simulations are discussed in section 4. Results are
summarized in section 5.

2. Model and Methods

2.1. ROMS Simulations

Realistic continental shelf hydrodynamics within the Central Californian coastal upwelling system are simu-
lated with ROMS (Regional Ocean Modeling System), a nonlinear, three-dimensional, terrain-following, open
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Figure 1. (a) Continental shelf model domain. Bathymetry is contoured in white curves in 10-m increments with the
100-m isobath highlighted by the black and white curves. Black dots denote release locations of near-surface drifters
along the 30- and 50-m isobaths. White triangle denotes location of the Port San Luis (SLO) tide gauge. (b) Schematic of
a portion of the drifter release pattern expanded from black square in panel (a). The dashed line is the release isobath,
and each black dot is the release location at three vertical levels (z = —1, -2, —3 m). (c) Regional model winds and

(d) modeled sea surface elevation versus time at SLO. In (c) and (d), vertical line colors indicate drifter release times
(separated by 6 hr) between 1 July (dark blue) and 6 July (dark red).

source numerical model that solves the Reynolds-averaged Navier-Stokes equations with hydrostatic and
Boussinesq approximations (Haidvogel et al., 2008; Shchepetkin & McWilliams, 2005; Warner et al., 2010). The
ROMS setup is briefly described here with further details in Suanda et al., (2016, 2017). Three levels of offline
nesting (downscaling) transmit large-scale variability through open boundary conditions from a U.S. West
Coast-wide ocean simulation to a continental shelf domain (e.g., Marchesiello et al., 2001; Mason et al., 2010;
Suanda et al., 2017). The shelf domain is about 80 km by 25 km wide, with a horizontal grid spacing of 200 m
and 42 vertical levels (Figure 1). The k-¢ turbulence closure model represents subgrid vertical mixing and gives
the time- and space-varying vertical eddy diffusivity k, (e.g., Umlauf & Burchard, 2005; Warner et al., 2005).
It is a standard turbulence model for coastal application (e.g., Durski et al., 2004; Wijesekera et al., 2003) and
represents well the dissipating BC tide (Kumar et al., 2015). All levels of nesting use the same realistic COAMPS
daily-averaged atmospheric forcing with ~ 9-km resolution (Hodur et al., 2002). The model is run for 60 days
from 1 June to 31 July 2000.
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Three continental shelf simulations are conducted. The first has no BT or BC tides (referred to as NT). A second
simulation includes BT tides (local tides, LT) by adding harmonic sea level and BT velocity of eight astronomical
semidiurnal and diurnal tidal constituents and two overtides from the ADCIRC Tidal Constituent Database for
the Eastern North Pacific Ocean (e.g., Mark et al., 2004) to the domain open boundaries (Figure 1a). BT tides
are accurately simulated with this model setup (Suanda et al., 2016). The third simulation has both BT and
BC tides (with tides, WT), inheriting boundary conditions with the addition of the ADCIRC BT tidal forcing
applied on the prior level of nesting. BT-to-BC tidal conversion within the larger domain resultin a net onshore,
remotely generated, semidiurnal internal tide energy flux of ~ 100 W/m on the boundary of the continental
shelf domain (Suanda et al., 2017). In WT (including BT and BC tides), frequency spectra of midwater column
temperature and surface cross-shore velocity were comparable to observations (Suanda et al.,, 2017).

2.2, Lagrangian drifter tracking

In the three simulations (NT, LT, and WT), virtual drifters are released and tracked with the offline
Lagrangian TRANSport model (LTRANS) software package (North et al., 2006), utilizing the ROMS model
three-dimensional (3-D) and time-dependent velocities and diffusivity. In the east-west (x) direction drifters

are advected by
%% =u+ % v R m
5t 5t "

where X; is the i-th drifter x position, u is the ROMS x velocity interpolated to drifter position, and k; = 1
m?/sis a constant random-walk horizontal diffusivity, chosen to be small relative to drifter-derived continental
shelf diffusivity values of O(100 m?/s) at spatial scales of 3-5 km (e.g., Romero et al., 2013). The LTRANS time
step 6t = 120 s and R, is a normally distributed random number. LTRANS integrates (1) with a fourth-order
Runga-Kutta scheme (North et al., 2006). The LTRANS time step of 6t = 120 s is at least 2 orders of magnitude
smaller than the tidal time scales that dominate initial drifter dispersion. In limited tests, bulk drifter dispersion
statistics were very similar with a much shorter LTRANS time step 6t = 10 s. North-south (y) drifter advection
is analogous to (1). Vertical (z) drifter advection is given by

5z, RLAWELY WR )
—_— w —_— —_—
5t 0z 5t "

where the space- and time-dependent vertical diffusivity k, from k-e closure is interpolated to the drifter
position. Because k, varies in z, an additional term ok, /9z is included to account for Lagrangian advection to
regions of high diffusivity (e.g., Davis, 1991; North et al., 2006; Schlag & North, 2012).

2.3. Drifter Releases

Upwelling favorable conditions are common during the summer in Central California. The specific 5-day
time period of coastal upwelling was chosen as there was similar heat content across NT, LT, WT, and similar
spatial-temporal mean current patterns (Suanda et al., 2017). Time-dependent model winds were from the
northwest, increasing in intensity from ~ 5 m/s to ~ 10 m/s over the 5 days (Figure 1c). Model winds com-
pare well to buoy observations at this location (Suanda et al., 2016). BT tides had a 2-m maximum tide range
(Figure 1d) and were similar in LT and WT (Suanda et al., 2017). In each simulation, drifters are repeatedly
released in two near-surface patches centered on the 30- and 50-m isobaths (black dots, Figure 1a) in regions
of relative along-shore uniformity corresponding to the analysis region of Suanda et al. (2017). Each patch
extends 500 m by ~ 4 km by 2 m in the cross, along-isobath and vertical directions with release spacing of
125 and 200 m, respectively (Figure 1b). At each release location, drifters are released atz = —1,-2,-3 m
below the tidally modulated sea surface. A total of 21 releases separated by At = 6 hr was conducted over
the 5-day period resulting in 6,300 drifters in each patch. After release, drifters are tracked for four semidiurnal
tidal cycles (48 hr) to quantify their initial spreading rates over multiple tidal cycles but before the longer-time
dispersion processes that occur at larger separation (e.g., Davis, 1985). Drifters crossing land, sea surface, or
bottom boundaries are specularly reflected. In 48 hr, ~ 2% of released drifters leave the model domain and
are only included in the analysis when within the domain.

2.4. Drifter Statistics
Bulk drifter relative dispersion rates are quantified by temporal growth in drifter position variance from the
30- and 50-m isobath releases, respectively. The time-staggered releases are recast into hours after release t
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Figure 2. (a-c) Snapshot of all (n = 21) 30-m isobath drifter releases versus latitude and longitude at t = 30 hr after
release in the (a) NT, (b) LT, and (c) WT simulations. Colors indicate release times (see Figures 1c and 1d). Each release
center of mass is denoted by white circles. Black curve is the 100-m isobath, and drifter release locations are marked by
the black strip in panel (a). (d-f) Snapshot of all 30-m isobath drifter releases in the principal axes coordinate system
(x",y’) at t = 30 h after release. The white ellipses indicate the horizontal dispersion ellipse with area Dé (4). Dark shaded
curves are the normalized probability distribution functions along each axes. NT = no tides; LT = local tides;

WT = with tides.

(e.g., Davis, 1983). In the x direction, the patch relative dispersion D2 (e.g., LaCasce, 2008; Rypina et al., 2016) is

D2,(6) = ((ax(0) - Bx(0)*). ®

where Ax(t) is a drifter’s east-west displacement from release Iocation,ﬂi is the mean east-west displacement
of all drifters in a release i (center of mass), and the ensemble average (-) is over all drifters in a release and
all 21 releases. An analogous expression to (3) is defined in the north-south (y) direction (Df/y(t)) and also for
the cross-dispersion D)Z(y(t). These D? components are used to define principal axes directions (x’, y’) such that
Dz,y, and D)Z(,X, are the relative dispersion in the major and minor axes direction, respectively (e.g., Romero

et al., 2013; Rypina et al.,, 2016; Sundermeyer & Ledwell, 2001). The principal axes dispersion defines a bulk
horizontal relative dispersion ellipse with area (ensemble patch size),
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Figure 3. (a, b) Horizontal relative dispersion ellipse area DE (equation (4)) and (c, d) horizontal diffusivity K¢ (equation
(5)) versus time after release t for the (a, c) 50 and (b, d) 30-m isobath releases. The WT, NT, and LT simulations are
indicated in legend (panel a). WT = with tides; NT = no tides; LT = local tides.

Di(t) = =(DL,, D%, )2 )
A single metric bulk horizontal relative diffusivity Kz, combining both x and y dispersion, is calculated from
the time derivative of the ellipse area,

2
1 DE
Kc(t) = ——, 5
e =5 (5)
where derivatives are estimated as forward Euler differences. Although dispersion does not scale as DLZ: ~
t over the tracking period (see section 3.1) and K is not constant, K; is called a bulk horizontal diffusivity
following previous relative dispersion studies (e.g., LaCasce, 2008). To minimize error in noisy estimates of K,
a time-smoothing box car filter with linearly increasing span up to 24 hr is used before calculating the time
derivative.

In the vertical (z), the relevant statistic is absolute dispersion as the sea surface is adjacent to the release
location (e.g., Clark et al., 2010; Spydell & Feddersen, 2012a). The absolute vertical dispersion Dﬁz is defined as

D2 (t) = (Az(b)*), ©)

where Az is the drifter displacement from its release location. A corresponding vertical diffusivity K, is defined
analogous to the horizontal diffusivity (5).

3. Results

A snapshot of drifter positions at t = 30 hr for all 30-m isobath releases shows the initial center of mass and
dispersal pattern in the NT, LT, and WT simulations (Figures 2a-2c). In all three simulations, the release center
of mass (white circles, Figures 2a—2c) has migrated south and offshore of their initial location (white strip,
Figure 2a), consistent with coastal upwelling. Drifters remain onshore of the shelf break (~ 100-m isobath) and
form alongshore-elongated patches, as in previous studies (e.g., Davis, 1985; Dever et al., 1998; Romero et al.,
2013). In geographic coordinates, the alongshore-drifter dispersion in WT (Figure 2c) is larger than in NT or LT
(Figures 2a and 2b).
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Figure 4. (a) Vertical drifter location probability distribution function at t = 30 hr after release from the 30-m isobath.
The initial release locations at z = —1, -2, —3 m are indicated by dashed cyan lines and reach fractional value of 0.33.
(b) Vertical drifter dispersion Dg and (c) one half its time derivative analogous to equation (5) versus time after drifter
release. The WT, NT, and LT simulation line colors are indicated in legend (panel a). WT = with tides; NT = no tides; LT =
local tides.

3.1. Horizontal Relative Dispersion

In all three simulations with 30-m isobath releases, the relative dispersion major axis is 3-4 times larger than
the minor axis (Figures 2d-2f) at t = 30 hr. At this time, the bulk horizontal relative dispersion ellipse area
D§ (4) is very similar between NT and LT (Figures 2d and 2e). In contrast, the WT Dé is about twice as large
as NT and LT (Figure 2f). The drifter probability distribution in both x’ and y’ directions are similar in NT and
LT (shaded curves, Figures 2d and 2e). The WT simulation probability distributions are significantly wider
(Figure 2f) consistent with the larger Dg. Results are similar for the 50-m isobath release.

Time series of bulk horizontal ellipse area DLZ:(t) (4) and bulk horizontal diffusivity K¢(t) (5) further quantify the
dispersion differences between WT, NT, and LT for 30- and 50-m isobath releases (Figure 3). For t < 10 hr,
drifters occupy less than 3 km? (Figures 3a and 3b), with rapidly increasing K (Figures 3c and 3d) for both 30-
and 50-m isobath releases in all simulations. For longer times (10-48 hr), D2 and K; continue increasing with-
out reaching a constant K; diffusive limit, as might be expected given the overall red velocity spectrum with
strong diurnal and semidiurnal peaks in the BC and BT simulations (Suanda et al., 2017) and the coastline vari-
ability. Over the 48 hr,NT and LT D7 and K;: are similar while WT D7 and K;; are a factor of 2-3 times larger than
NT and LT for both 30- and 50-m releases (Figure 3). The similarity between LT and NT horizontal dispersion
statistics indicates that at this location BT tides only induce a weak increase in horizontal dispersion relative to
the horizontal stirring in NT. In contrast, BC tides induce a 2-3 times increase in horizontal dispersion statis-
tics. Note that the bulk horizontal diffusivity K; due to the horizontal stirring of coastal eddies (NT) with tidal
processes (LT and WT) is much greater than the LTRANS random walk horizontal diffusivity of k, = 1 m?/s
(Figures 3c and 3d).

3.2. Vertical Drifter Dispersion
Increased horizontal dispersion in WT relative to NT and LT is also mirrored in the vertical drifter dispersion.
At t = 30 hr the NT and LT vertical drifter distributions are similar (green and red lines, Figure 4a) having
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Figure 5. Vertical profiles of 30-m isobath root-mean-square (rms) Eulerian quantities: (a) rms horizontal velocity

(@) (V = (u? +v2)'/2), (b) shear (S = ((3,u)? + (3,v)%)'/2), (c) rms model vertical eddy diffusivity (k,), and (d) rms vertical
velocity (w). The rms is calculated in both time between 1 July and 6 July and 20 km following the 30-m isobath latitude
34.9°N and 35.1°N. The bottom 2 m of the water column is masked due to tidal sea level fluctuations.

dispersed from their near-surface release (-3 < z < —1 m) down to about z = —12 m, with few drifters below
z = —15 m. In contrast, the WT simulation has a smaller near-surface drifter fraction relative to NT and LT with
substantial drifter fraction below z = —15 m (black line, Figure 4a). After 48 hr, drifter dispersion Dﬁz is about
50 m? in NT and LT, whereas WT Dﬁz is 4 times larger than NT and LT (Figure 4b). For WT, the vertical diffusivity
K, is fairly constant over the 48 hr (Figure 4c). The NT and LT K, are similar, initially increasing and becoming
approximately constant for t > 30 hr (Figure 4c), suggesting that BT tides do not have a large effect on the
vertical dispersion of near-surface released drifters. For t < 24 hr, the WT K, is a factor of 5-10 times larger
than the LT and NT K,,. For longer times (t > 40 hr), the WT K, is a factor of 2-2.5 times larger than LT and NT.
Thus, BC tides in this region also significantly increase drifter vertical dispersion.

3.3. Eulerian Profiles

Root-mean-square (rms) Eulerian profiles of horizontal speed (V = (u2+v?)'/?), shear (S = ((3,u)?+(3,v)?)'/?),
vertical velocity w, and model vertical eddy diffusivity k,, (Figure 5) are examined to understand differences
between WT, NT, and LT horizontal and vertical drifter dispersion. Here the rms is taken through both time
(5-day period, 1-6 July) and space (20 km following the 30-m isobath) and includes both tidal and subtidal
time scales. The vertical profiles of rms(V; Figure 5a) and rms (S; Figure 5b) are not strongly affected by the
presence of BT or BC tides, although the WT rms(V) and rms(S) are elevated a factor of about 1/3 over LTand NT
in the lower water column (z < —10 m). With drifters concentrated in the upper water column, this suggests
that increased WT horizontal dispersion is not due to horizontal stirring alone. In all three simulations, model
rms(k,) are generally similar in the upper 10 m (Figure 5c) as wind-driven processes dominate near-surface
mixing (e.g., Allen et al., 1995; Austin & Lentz, 2002; Wijesekera et al., 2003) and are not significantly modified
by BT or BC tides (Suanda et al., 2017). This 10-m thick surface layer roughly corresponds to the depth reached
by NT and LT drifters after 30 hr (Figure 4a). Note that in this upper layer the rms(k, ) are dominated by the time
mean. Below z = —10 m, WT rms(k,) is larger than NT or LT due to increased shear from dissipating BC tides
(Suanda et al.,, 2017). Throughout the water column, WT rms(w) is significantly (4-5 times) larger than in the
NT and LT simulations (Figure 5d). The WT rms(w) vertical profile has midwater column maximum, similar to
the expected structure of a mode-1 BC tide. The additional vertical stirring provided by WT rms(w) together
with the subsurface enhanced WT rms(k,) induces increased vertical drifter dispersion relative to NT and LT
(Figure 4).

4, Discussion

4.1. Shear Dispersion Due to Coastal BC Tides

Horizontal dispersion in the NT and LT simulations is due to horizontal stirring by coastal eddies on length
scales spanning 1-10 km (Figure 2). As the WT, NT, and LT simulations have largely similar near-surface
(z>—10 m) rms horizontal velocities (Figure 5a), horizontal stirring is likely similar and cannot explain the
increased WT horizontal dispersion. For WT, the increased vertical velocity and mixing with sheared and
slightly stronger horizontal currents potentially induce additional horizontal dispersion through shear
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dispersion (e.g., Steinbuck et al.,, 2011; Young et al., 1982). Classic, bounded
vertical shear dispersion (e.g., Taylor, 1953), an asymptotic state with ver-
tically uniform drifter distribution (i.e., strong mixing), has long-time hor-
izontal diffusivity inversely proportional to the constant vertical absolute
diffusivity. This result also applies for a vertical diffusivity with a finite
Lagrangian time scale (Spydell & Feddersen, 2012b). However, for shear
dispersion in an unbounded fluid (Saffman, 1962) or with weak mixing
(Young et al., 1982), horizontal diffusivity increases with vertical mixing,
similar to the K; and K, results here over 48 hr.

For the 30-misobath release, the near-surface released WT drifters are con-
centrated in the upper half of the water column (Figure 4a) and Dﬁz < h?
over 48 hr (Figure 4b), indicating no influence of the lower boundary. Fur-
thermore, Young et al. (1982) introduce a nondimensional parameter k* =

K,m?/w to distinguish strong (k* > 1) and weak (k* < 1) mixing regimes,
where m and w are the vertical wavenumber and frequency of oscillatory

shear, respectively. Applied to the WT simulation at the 30-m isobath, the
t = 48 hr WT vertical diffusivity is K, = 4.7 X 107 m?/s (section 3.2) and
a mode 1 semidiurnal (12.42-hr period) internal tide hasm = z/h = 0.1
rad/m and w = 1.4 x 10~* rad/s. This yields k = 0.03, indicating a weak
mixing regime where horizontal dispersion increases with vertical disper-
sion. This is consistent with the larger horizontal and vertical dispersion in
the WT simulation relative to NT and LT.

4.2. Evolution of Near-Surface Trapped Drifters

Three-dimensional (3-D) drifter evolution is not important for all coastal
tracers. For example, search-and-rescue or oil-spill response applications
5 (e.g., Spaulding et al., 2006; Thyng & Hetland, 2017) require knowledge of
surface-trapped (2-D) horizontal relative dispersion statistics and accurate
drifter trajectory realizations. As vertical shear dispersion enhances WT

Figure 6. (a) Horizontal relative dispersion ellipse area DE versus time after
drifter release from the z = —1 m, 50-m isobath. Two methods of drifter
tracking are from the full 3-D velocity field and vertical mixing (WT3p, solid

t (hrs)

bulk horizontal dispersion, this raises the question of whether including
BT and BC tides is similarly important to accurately represent the evolu-
tion of surface-trapped drifters. To address this question, the z = —1-m
near-surface released drifters are horizontally (2-D) advected, maintaining
a constant z level, denoted (for WT) WT,, and 3-D tracking is denoted
WT;p (and similarly for NT and LT).

black) and the 2-D surface horizontal velocity only (WT,p, NT,p, and LT,p,

dashed). The WT, NT, and LT simulation line colors are indicated in legend.
(b) Ensemble separations 3" (7) and 3N versus time after drifter release
from the 50-m isobath for 2-D tracking. WT = with tides; NT = no tides; LT =

local tides.

Over 48 hr, WT,p, NT,p, and LT, have similar bulk horizontal ellipse area
Dﬁ reaching ~ 2 km at 48 hr (Figure 6a). This indicates that, over 48 hr,
near-surface trapped 2-D relative dispersion is not affected by BT or BC
tides in this region. Furthermore, over the 48 hr WT;;,D; is significantly (8
times) larger than for WT,5, NT,p, and LT, (Figure 6a). This is consistent
with the WT, strongly influenced by shear dispersion. Thus, in this region, BC and BT tides can be neglected
for application that requires near-surface trapped relative dispersion statistics only.

In contrast to the relative dispersion statistics estimated from a single model simulation, a separation statistic
across different simulations is constructed to examine BT and BC tide influence on individual drifter trajecto-
ries. The difference in drifter trajectories across simulations is quantified with the ensemble separation statistic
5"V (between WT,p and NT,p),

() = ([(AX™ (D) + (Ay"™ (1)]'/?) )

where Ax"N(t) and Ay"N(t) are the time-dependent east-west and north-south drifter separations between
WT,; and NT,p simulations, respectively, and the ensemble average (-) is over all drifter trajectories and
releases. The ensemble LT, and NT,, separation 5" is similarly defined. Note that the 5"V statistic is not a dis-
persion metric. The WT, and NT, ensemble separation 3"V grows with time, from s*" = 3 kmat t = 24 hr
to 3™V = 8 km at t = 48 hr (black, Figure 6b). In contrast, 5V is much smaller than sV, reaching only 5V = 2
km at t = 48 hr (red, Figure 6b). Thus, the substantial drifter trajectory difference between WT,; and NT,;
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is due to BC tides, as regional BC tidal currents are twice as strong as BT tidal currents (Buijsman et al., 2011;
Suanda et al., 2017). Simulations that neglect BC tides will result in large trajectory errors for specific applica-
tions (search and rescue) in this region. Different regions a have different mix of BC, BT, and subtidal currents
which will govern the size of trajectory errors when neglecting BC or BT tides. However, for accurate trajec-
tory realizations, the sources and phasings of BC tides must be accurately simulated, which is challenging as
coastal BC tides have multiple sources (e.g., Buijsman et al., 2011; Suanda & Barth, 2015) with unpredictable
phasing (Nash et al., 2012).

5. Summary

The effects of BT and BC tides on coastal drifter dispersion are examined with realistic high-resolution Central
Californian shelf simulations. During coastal upwelling, for 3-D tracked drifters over 48 hr, the horizontal rela-
tive dispersion and vertical dispersion are similar between simulations with NT and with BT tides. In contrast,
BC tides induce a factor of 2-3 times larger horizontal dispersion and about a factor of 2 times larger vertical
dispersion through increased vertical velocities and subsurface model vertical diffusivity. Here the k- turbu-
lence closure model is able to respond to increased shear from dissipating BC tides to increase subsurface
model vertical diffusivity.

The increase in horizontal dispersion with vertical mixing is qualitatively consistent with weak-mixing shear
dispersion. For surface-trapped (2-D) drifters, horizontal relative dispersion is similar in the WT, NT, and LT
simulations and much weaker than the horizontal dispersion in WT with 3-D tracking. In contrast, after 48
hr drifter trajectory differences between simulations with NT and BC tides are 8 km, much larger than hori-
zontal relative dispersion estimates from an individual model. This suggests the importance of BC tides for
search-and-rescue or oil-spill response applications. These results apply to the Central Californian continen-
tal shelf region and require accurate BC tide predictions. Other regions have different relative strengths of BC
and BT tides, which will affect their relative importance on coastal dispersion with both 3-D tracking and 2-D
tracking.
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