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Preface

When I volunteered to teach the MIT/WHOI Joint Program core course on
“Wave Motions in the Ocean and Atmosphere” in Spring 1989, I naturally turned for
guidance to the notes I had acquired from a similar course taken while a student at
Scripps Institution of Oceanography. In an attempt to broaden the scope of the course,
I borrowed a set of notes from Paola Malanotte-Rizzoli who taught the MIT/WHOI
core course from 1983-1985. It didn’t take long to recognize that Paola’s notes were
nearly identical to mine because she had also based hers on the waves course she had
taken at Scripps. In both cases, the Scripps course was taught by our former advisor
Myrl Hendershott, which means that at least two generations of Physical
Oceanography students have learned the “Hendershott view” of waves. Considering
the seemingly timeless nature of the concepts presented in Myrl’s course as well as the
profound influence Myrl has had on Paola and myself through both his teaching and
his advising, we decided to compile these notes into a form which could be distributed
to students and, at the same time, serve as a tribute to Myrl. Thus, with the exception
of some minor modifications, additions and deletions that Paola and I have made, the
notes contained herein are those developed by Myrl for his course. We hope that these
notes will be as clear and as useful to future readers as they have been to us.

Woods Hole David C. Chapman
1989




These notes have been collected and assembled in different ways over the years
by two people successively, Paola Malanotte-Rizzoli and Dave Chapman. The present
and chronologically latest version has been put together by Dave and constitutes the
bulk of the waves course he taught in Spring 1989. When I taught the course during
the years 1983-85, the chapter on acoustic waves was absent. I had instead a section on
the Garrett and Munk spectrum and a chapter on nonlinear wave interactions. These
differences reflect the different years in which Dave and I took the waves course at
Scripps Institution of Oceanography from our former advisor Professor Myrl C.
Hendershott and the modifications that Myrl had made in his course in successive
years. Thus the inspirational source or, rather, the actual bulk of these notes is the
waves course taught by Myrl at Scripps.

Myrl Hendershott has been at W.H.O.1. this summer as Principal Lecturer of
the GFD Summer School on Ocean Circulation. This opportunity, plus Dave
Chapman’s diligence and patience in typing the notes on his word processor together
with formulas and equations (the latter were handwritten in my own set of notes), has
motivated us to produce this report as an homage to Myrl. Without him, we would
both have had a much harder and more time-consuming role in putting together a
decent course on waves. More importantly, Myrl is in many ways responsible for
whatever success we have had in the field of Oceanography.

I must add here a personal note. Hearing Myrl again as a teacher this summer
after so many years, I have realized how much he has influenced my way of thinking
and teaching. On the not-so-positive side (I will not say negative):

e like him, I “scribble” a lot on the blackboard.
o like him, I erase with my left hand what I have just written with my right hand.

o like him, I put ¢ (z wavenumber) before k (y wavenumber)

As the letters j, k, z,y,w do not exist in the Italian alphabet, k coming before or after
¢ was supremely unimportant to me. On the positive side, Myrl was absolutely the
best teacher I had in the various courses I took at Scripps. His lectures were always
interesting, imaginative and full of physical insight. Looking back, I realize that a
great deal of the important oceanographic concepts and ideas I learned over the years
go back to my long association with Myrl as teacher, advisor, colleague and, last but
not least, dear friend. I hope I absorbed from him some of the positive qualities too.

Woods Hole Paola Malanotte-Rizzoli
1989
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Chapter 1

Basic concepts

Waves are not easy to define. Whitham (1974) defines a wave as “a recognizable signal
that is transferred from one part of a medium to another with recognizable velocity of
propagation”. This is a very broad definition and encompasses an enormous range of
dynamical systems as well as physical processes. That is, waves can occur in many
different media and take on many different forms. We often think of waves as simple
sinusoidal undulations of some substance, but this view is too restricted and often not

very useful.

In this course, we will consider a number of different types of waves and wave
motions in the ocean and in the atmosphere. They will be found to occur at many
different time and space scales. In general, wave-like fluctuations of flow fields are not
exact solutions of the continuum formulation of momentum and mass conservation and
the laws of thermodynamics. However, they often represent good approzimate

solutions of those equations.




Therefore, the first step in discussing wave motion is the appropriate
simplification of the field equations to obtain a set whose solutions are waves. In most
of what we do, this involves linearizing the field equations about some basic state of
rest or of quasi-steady motion. That is, products of any dependent variables in the
equations are typically assumed to be small in relation to the other terms. It usually

proves possible, by this device, to obtain waves as solutions of the linearized equations.

Because the equations are linear, we are entitled to superpose solutions of the
equations in order to find solutions to more general initial and boundary value
problems. This is one of the real beauties of linear wave theory. We will spend most of
our time studying such linear waves and their properties before relaxing the

linearization condition which precludes nonlinear interactions.

As we will see, there are many different waves with quite different
characteristics which can exist within the framework of rotating fluid systems such as
the ocean and the atmosphere. In order to proceed, certain concepts and approaches
which are common to most studies of linear waves should be understood first. Some of

these are presented next.

1.1 Plane waves

The basic state of rest or quasi-steady flow about which the waves are linear
perturbations defines the medium through which the waves propagate. If we assume
that the medium is homogeneous in space and time (even if it strictly is not), then

possible solutions often have the form of a plane wave:

(]5(57 t) =R Aei(i;'f_at)




where ¢(%,1) are the dependent variables (i.e., velocity @, pressure p, density p, etc.),
A is the amplitude, k= (k,€,m) is the wavenumber, o is the radian frequency, and R
means that we take the real part of the expression. Customary auxiliary definitions are

A= 27r/]/;] = wavelength, f = ¢/2r = frequency, T = 27 /o = 1/ f = period.

Since A is complex, it carries with it not only amplitude but also phase

information. We could, of course, write

&
o

$(Z,1) = |A| cos(k - F — ot + tan™"

)

=

where < refers to the imaginary part of the expression. However, it is often much more
convenient to work with the complex form of all variables and to take the real parts
only at the very end. This is always possible because we have linearized the field

equations.

The convention e(F#-7t) i(k-Z+ot

is preferable to the convention e ) because, in the

first case, wave ‘crests and troughs’ move in the direction of &£ when o > 0. This can be
seen by examining the phase of the wave, namely k- % — ot. Surfaces of constant phase,

k-2 — ot = @y, are planes normal to k and moving outward along k as ¢ increases (for

o > 0). In two dimensions we have
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The speed at which phase planes move along k is the phase speed
c=oflk| =T

It is directed along k. Note that the speed of phase plane intersection with the z-axis

1s not ccos @ but rather is
c o k
—_ - ) =0 k
() = !

which can be considerably faster than c. In fact, as § — /2, the phase speed in the

cos §

z-direction approaches infinity!

The form Aei®#-71 is called a ‘travelling plane wave’. The superposition of

oppositely travelling plane waves
AeiFE=ot) + Aei(-FE=0t) _ 9 goict cos(E- T)

is called a standing wave because the crests and troughs do not propagate with time.

It is not always possible to construct such a superposition because oppositely travelling

plane waves are not always possible and, even when possible, may have different

wavenumbers.




1.2 The dispersion relation

All of the foregoing is kinematics, true for any given a,lg with no physics. The physics

are contained in the dispersion relation
o = Q(k)

which is obtained by requiring the plane waves to be solutions of the linearized,
dissipationless equations of motion. The following table contains some examples of
wave equations (all of which we will encounter later) with their respective dispersion

relations.

Linearized Equation Plane wave Dispersion Relation

a) ¢+ coppy =0 gtkz=iot o = cok

b) %tt e Ut o? = c2k?

c) ¢+ V=0 giFE=iot o=23 -k
d) gu—AVip=0 ko o = c3k|?

e) Vi +fg, =0 FFiot oo gLk

Fach linearized equation is a statement of approximate dynamical and
thermodynamical conservation laws. All are solved using plane waves of the type
discussed above. All require different dispersion relations, and the solutions have
different properties. For example, for cases (a)-(d), the phase speed ¢ = a/IE[ s
independent of wavelength, frequency or direction. Such waves are nondispersive or
dispersionless because all waves (for each case individually) travel with the same speed.
In case (e), the phase speed c is dependent upon the wavelength and the direction, so

these waves are dispersive. As we will see, this basically means that a group of such

5




waves will not remain together while propagating through the medium, but instead
will break up or disperse. Standing waves, as defined above, are possible in cases (b)
and (d) because oppositely travelling waves can occur with the same wavenumber but
with frequencies of opposite sign. That is, the dispersion relation has more than one
branch, ¢ = QJ(E) for j =1,..n. However, in cases (a), (c) and (e), a given
wavenumber corresponds to only a single frequency (only one branch), i.e. waves can

travel only in one direction, so standing waves are not possible.

Several cautionary notes are in order here. Plane waves are rarely the complete
solution to any boundary or initial value problem. If the medium is actually
homogeneous and steady, then plane waves may often be superposed to solve such
problems. However, often the medium is not homogeneous or steady, so plane wave
solutions then require modifications before they can be used. We shall spend a good
part of this course deriving linearized equations which isolate particular physics and we
shall discuss the appropriate plane wave solutions in detail. But it must be kept in
mind that, in order to establish a basis for comparison with observations of real
systems, a boundary or initial value problem must be solved, most probably including
medium inhomogeneities. We shall, in some instances, show examples of such problems

for some sets of linearized equations.

1.3 Linear superposition of plane waves

In a homogeneous medium, initial value problems are solvable as Fourier integrals
which amounts to summing an infinite number of plane wave solutions. If the

dispersion relation has n branches




then n initial conditions are normally required. The solution takes the form

n

@0 =3 [ [ [ AjetFaa®i g

i=1

where the A]»(l;) are fixed by the initial conditions. For example, if n = 1, and we are

in one dimension

= Q(k)
(2,1) / " Ak)ele=20 g
A(k) is fixed by specifying ¢(x,0), that is
(z,0) /°° R Ak A(k) = L/oo (z,0)e™* dg
o7 )

Notice that if Q = ck, then
Bla,t) = [ A(R)e ) g = |7 AR k= o(z — ct,0)

This means that, in this special case, the initial condition #(z,0) translates towards

z > 0 at speed ¢ without changing shape.

For homogeneous media, therefore, the problem is generally solved by (i) finding
the dispersion relation, (ii) deducing the Aj(E) from initial conditions, and (iii)

evaluating a set of Fourier integrals.

1.4 The method of stationary phase: Group

velocity

The greatest difficulty with the above procedure is most often that the integrals are

hard to do. A very useful approximate technique with physical content is the method




of stationary phase. As a preview, let us consider a one-dimensional example with the

special initial condition é(z,0) = a(x)e**o®

\

—x
* Ax>> kg
277'/kO
/
—
Ax

This represents a slowly modulated plane wave with envelope a(z). We can always

write

¢(z,0) = /°° A(k)e*= dk 5 A(k) = 51.7;/_0:0 é(z,0)e” " dz

— OO

and so

1 e . oo ‘
A(k) = ?‘2;/__00 a(m)ez(ko—k)z dz | a(:l:) — /~OO A(k)ez(k—ko)x dk

In the integral for A(k), the contribution to the integral itself is mostly from the
regions where the quantity (ko — &)z is small. In fact, where this quantity is large,
e!kFo=k)z oscillates rapidly and the integrated parts cancel each other. Moreover,

a(z) = 0 for z > Az. So, A(k) is centered around ky and peaked there for this special
choice of ¢(z,0).

l

Ko

The modulated plane wave is said to be a ‘narrow band signal’.



We can evaluate ¢(z,t) by expanding Q(k) in a Taylor series about kq:

ba,t) = [ A(k)el=-atd g

~ /oo A(k)ei[kx—ﬂ(ko)t—(k—ko)%%|k=k0t] dlk

— 00

_ /oo A(k)ei[kx—ﬂ(ko)t—-(k—ko)%%]k___kot]eikoz——ikoa: dk

¢ilhor= (ko) /°° A(R)eiE=ko)e= B lkmro] g,

That is
o0

t) = i[koz‘—ﬂ(ko)t] — it
¢($7 ) € G,(ZE 0klk—k0 )

The modulating envelope moves at a velocity 9Q/dk|j=s,, defined by the dispersion

relation o = Q(k). This velocity is called the group velocity

o0

c, =

g %lk=ko

and is not, in general, equal to the phase speed ¢ = o /k of the modulated plane wave.
Therefore, the dominant wavelength A = 27 /ky has two speeds associated with it.
They are the phase speed ¢ = o/ko = Q(ko)/ko and the group velocity

¢g = 00 [Ok|r=k, = 0Q/0kl|;=k,. The modulated envelope thus moves through the

phases of the underlying plane wave rather than with them.

The restriction to narrow band processes is illustrative but not necessary.

Consider
#at) = [ 7 A(k)ete=00 g
Define
O(k; z,t) = ka [t — Q(k)
Then

Bat) = [ Akl g




The Riemann-Lebesgue theorem (e.g. Bender and Orszag, 1978, pp. 277-278) says that
if [23, A(k) dk exists, then lim;_.o, [, A(k)e** dk = 0. Hence, we get little
contribution to ¢(z,t) unless O(k; z,t) has no variation with k, i.e., unless there exist

ko such that (00/0k)|, = 0. Perhaps a more intuitive statement is that the integrand
looks like

Akl (ki X, hAWAWA AWAWL
S AVAVAVAVAVAFARVAVAVAVAVAVEL

in which the rapid oscillations of €'®*, as ¢t — 00, cancel unless 90/9k = 0 somewhere.

Stationary phase now asserts
(z,1) ~ /°° A(k) €O Uo)+(b=ko)0" (ko) +(k=k0)20" (ko) /2] g

In other words, at a given 2 and ¢, the greatest contribution to ¢(z,t) is from that
wavenumber ko at which ©'(ko;z,t) = 0. Since O(k; z,t) = kz/t — Q(k) we have

o0
e/t = =l =0
which means that the wavenumber ko that makes the biggest contribution to ¢(z,¢) is

the one for which
ad
ok

i.e., the one whose group velocity is z/t.

kozm/t )

To estimate that contribution, realise that ©'(ky) = 0, so that

¢($,t) &~ A(ko)eite(ko) /°° ei(k_k0)2@“(ko)t/2 dk

—0C0
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or, since [%° e~ dz = (7/a)Y/?, then
d(z,1) 22 Ako)e™® )21/ — 310" (ko; x, t)]'/?
d(z,t) 2 A(ko)eilbor=k)lior 0" (ko; z,1)]1/?

The solution is thus a slowly modulated plane wave whose wavenumber kq is

characterized by 09/0k

ko = ”C/t

The solution is only valid for very large ¢t and z because it requires the rapid

oscillation of elFe=2R)1 4t 411 except those where = — %—%t = 0. It thus describes the

waves far from and long after their initial generation.

1.5 Waves in slowly varying media: Ray theory

The procedure of Fourier synthesis followed by stationary phase interpretation is
natural in homogeneous media. It introduces the concept of group velocity, but the
idea and significance of group velocity extend into problems for which Fourier synthesis
is clumsy at best. An important set of such problems includes those for which the
medium varies over a scale L,, which is much greater than the length scale of the
waves, L. In these cases, an approximate technique called the WKB method can
exploit the smallness of L,,/L,,. The WKB method, however, is often tedious and
difficult to interpret. Instead, a general ‘recipe’ called ray theory, which corresponds to

the first and second orders of approximation of the WKB method, can be used.

Let us consider a locally periodic solution of the form
¢ = a(z, t)ei@(z’t)

in which the amplitude a and the phase © are slowly varying functions of z and t; i.e.,

they vary with the large space and time scales of the medium or of the wave groups

11




and not the small scale of the sinusoidal plane wave. We can define the local

wavenumber & and the local frequency N by

where V is the gradient operator and |4, |, indicate that the partial derivatives are
carried out keeping the other coordinate constant. Thus, Aa/a < 1 and AO/O « 1

over k~! and N1,

For these definitions, we see first that
Vxk=0

which states that the local wavenumber is irrotational. Now suppose we go from place

A to place B over the path I'.

A

The number of wave crests we pass through is

L
Tl—%‘/‘; +ads

But since § k-ds= [E-Vxkdr=0 (by Stokes’ theorem where £ is the unit vector
normal to the surface and dr is an element of the area inside the path), then the
number of wave crests inside the region is conserved. That is, the crests have no ends,

so the number of crests within a wave group will be the same for all time. This need

not be true for all waves, but it is true for slowly varying plane waves as defined above.

12




From the definition of k and N, it follows that
ok
— |z Nl = .
e+ VN =0 (1)

Now with the above definition of n, we have

on 1 B Ok 1 (B 1
on _ 1 _.r:-_/ o df = (N _
ot 2w Ja Ot @ 27 Ja VN ds 27T(NA Ns)

This says that the rate of change of the number of wave crests between A and B is
equal to the rate of crest inflow at A minus the rate of crest outflow at B. Thus (1.1)
expresses the conservation of wave crests between A and B, i.e., crests are neither

created nor destroyed.

So far, we have defined the local wavenumber and frequency only as derivatives
of ©. There has been no direct statement of dynamics. We introduce dynamics by
asserting that the wavenumber and frequency must be related in just the same way

that they are for a plane wave!

N = Q(k; £, 1)

where, if we solved for plane waves eiFE=ot) while keeping all variable medium
parameters momentarily constant, we would obtain ¢ = Q(l:, Z,t) as our dispersion
relation. This turns out to be equivalent to the lowest order of a WKB calculation,

despite being stated here as an arbitrary recipe.

Now this assertion and the definitions of k and N allow us to introduce the

group velocity in another way.

ON N o0, Ok o0 ON

—

k=S lat %'5’t~87|” = o7 lka Cg"—‘c)?,-lt
in which the group velocity has been defined as

_ON _ 00
= Ok Ok
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and the repeated index implies summation. In vector form, we have

ON o0

Sr VN =2 (1.2)
In a similar manner starting with (1.1)
i Qg’l;t ML
ot dz; ™ Ok; " Dz
Since V x £ = 0, then Ok;/0x; = Ok;/0z;, so we have
%Jrag-w,-:—g—zlat (1.3)

We thus have very simple expressions, (1.2) and (1.3), for the evolution of local
wavenumber £ and local frequency IV as we move along a ray (i.e., we move at the
local group velocity ¢;) in terms of the plane wave dispersion relation. Such variations
occur when Q(l:, Z,t) has parametric z,¢ dependence such as if waves move in water of

variable depth.

The implications of these equations deserve some discussion. Suppose first that

the medium is homogeneous, i.e. N = Q(lt) # Q(E, Z,t). One possible solution is the

{(kZ-Nt) when k and N are constants. The initial condition is

H(&) = aeFZ. Since Ok dz; = 0; 09/ dz; = 0 then from (1.3), 9k/0t = 0 everywhere,

plane wave ¢ = ae

that is k never changes at future times. Similarly, N = Q(E) gives N at t = 0. Since
ON/0z; =0, 0Q/0t = 0, then by (1.2) AN/t = 0 everywhere, that is N never changes
at future times. The plane wave in a homogeneous medium is thus entirely consistent

with the ray theory formulation.

Suppose now that the medium remains homogeneous, but the initial conditions
are more complicated. Both a and k have slow z dependence at ¢ = 0 as illustrated

below:

14
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Notice that a and k should vary slowly over A, even though the sketch is not very

slowly varying.

The initial frequency is obtained from N(z,0) = Q[E(f, 0)]. To find

N(Z,1), E(:f:',t) we solve the initial value problem

Ok Ok _
ot T 9oz,
N . ON _,
at gja.’l,']'_

because the assumed homogeneity of the medium implies 992/t = 0 and 990 /dz; = 0.
This initial value problem may have to be solved numerically, but the equations have a
simple physical interpretation. They say that, if we move at the group velocity

¢y = V£ appropriate to the wavenumber k and the frequency N = Q(E), then we
shall see no change in N and k at future times. In other words, N and & are constant

following a group in a homogeneous medium. The situation can be sketched as follows

15




9’@ ray theory
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Clearly, if we sit at a fixed Z, different groups pass at different times. So at fixed 7

ON/Ot + 0, OE/dt # 0, in general, even though the medium is homogeneous. The
whole idea fails if the rays, given by

t —
T =0+ / & [k(&,1)] dt
0]

cross each other. In that case, the solution is no longer of slowly varying form

From this point of view, the medium inhomogeneities are only technical
complications. In the general inhomogeneous case, we must solve (1.2) and (1.3), so k
and N vary even though we move with a group. If we define a ‘total’ derivative as

d 9

E't'_—_“é;jl-cg'v

which is the derivative following the wave group (or wave packet), then (1.2) and (1.3)

can be rewritten as

dki 09
dt T om
dN 90
at T ot
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while the position of the wave group is given by

ad | =,
= = &lk(E, 1)

Then we have a set of three ordinary differential equations for Z (position of the wave
packet), k and N. These may be integrated in time from a number of different starting
positions Ty in order to get E, N at future times, a procedure which is computationally

efficient and effective. The path dZ/dt = ¢, defines the ray.

The lowest order of the corresponding WKB calculation justifies the foregoing
assertions. The next order of the WKB calculation fixes the amplitude. In many cases,

the more complex WKB calculation amounts to solving

%é +V-(GA) =0

where A = ¢/N and ¢ is the wave energy. A is called the action of the wave. Usually
¢ o a® so this equation really describes a, but a great deal of further discussion is
necessary to establish its validity. Here we have simply set forward ‘recipes’ which give

-
o

a, N, k
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Chapter 2

Acoustic waves

Being now equipped with some ideas about wave motions, it is useful to consider an
example of waves which occurs in both the ocean and the atmosphere and which can
illustrate many of the ideas in a rather simple way. Acoustic or sound waves, as
Lighthill (1978) points out, are the most fundamental waves in fluids because they can
exist in the absence of any external force field. Instead of gravity or rotation, for
example, providing a restoring force for the motions, the restoring force for acoustic

waves is the fluid’s resistance to compression (i.e., its compressibility).

2.1 Basic physics

When viscous dissipation, rotation and gravitational forces are neglected, the

momentum and continuity equations are

ou* 1
~ —mvw:___v*
En +u 7 e p
dp*
V' * ok :0
o TV ()
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An equation relating density and pressure may be obtained from the first law of
thermodynamics (Batchelor, 1967; Chapter 3). It can be shown that, if pr=p(p*,T)

and the motions are adiabatic so that 9S/8¢t = 0 where S is the entropy, then

(50),= (55) . ()
Dt /)]s JOp* S Dt /s

A solution of these equations, although trivial, is

p" = p*(p*,S) and

Pr=po; pP=po; U =0

This solution is not very exciting, so we would like to study small deviations from it.
Thus, we write

pPr=potp;p=pot+p;ui=0+7
where p, p, 7 are of infinitesmal amplitude. After substituting into the original

equations and neglecting products of small quantities, we have

oG 1
I
Jdp L

ot ot

where ¢? = (9p*/9p*)5'. After eliminating @ and p in favor of p, we obtain

52
—a—t—g - Vi =0

We recognize this as a wave equation which was listed in Chapter 1. It is easy to show

that the other variables p, u, v, w each satisfy a similar equation.

19




2.2 Plane waves

Consider a homogeneous medium; ¢(Z,t) = cg. Then p = e~"ottikztily+imz oglyeq the
wave equation provided

o = c(k* + & +m?)
which is the dispersion relation. For fixed o, the locus of allowed wavenumbers in
k,£,m space is a sphere of radius o/cy. All wavenumbers k= ki+ 07 + mk extending
from the center of this sphere to its surface are allowed. In a given plane wave, phases
propagate along the wavenumber vector at speed cy; that is, O’/“—:l = ¢g, so the waves

are nondispersive. The group velocity ¢, is defined by

Jo do o
o SR = op T
and it is easy to show that |¢;| = co. <

H(F-&-at

If p=ae ), then the momentum equations say —ic#@ = —il:;p/po, or

This means that @ and k are parallel, i.e. these are longitudinal waves (displacement is
parallel to the direction of wave propagation). Also, @ and p are in phase in this

travelling plane wave.

2.3 Reflection at a solid boundary

Suppose a plane wave of the form

Dine = poe—iat+ik1:+ily—-imz
ne —

P —
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is incident upon a solid boundary. At the solid boundary, the normal velocity must

vanish; 4 - = 0 which means that Vp-f = 0. If the solid boundary is at z = 0, then

the boundary condition is
p.=0 at z2=0
incident * z

wave

reflected
wave

To satisfy this boundary condition, we must add a reflected wave

—tot+ikztily4+imz
Prey = Po€

to the incident wave. The solution is

—tot+ikz+ily

P = Dinc F+ Pref = 2pge cosmz

Suppose the solid boundary is tilted, say z = az, and the incident energy

approaches along l-c‘i while the reflected energy travels along l;,.
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normal

If pine and p,.s are to sum such that p = p;,. + Pres satisfies Op/On = 0 at the solid

boundary, then we must have
]1;:,| cosf; = ]E,{ cos 0,

1.e., the projection of the incident wavenumber on the boundary must equal the
projection of the reflected wavenumber on the boundary. But we know that

k| =

k.| = o/co, 50 0, = ;. That is, the reflection of these waves is specular. (This is

not true of all waves, however.) Note that dp/dn = 0 at the boundary means @ - = 0

there, so i, -+ N = —Upef 1.

2.4 Plane waves in a channel

A very important aspect of wave motion is the effect of boundaries which form a
channel or waveguide. Thus far, the plane waves we have considered have not been
restricted in the choice of wavenumbers. That is, the entire continuum of k, £, m
choices has been available, provided we were willing to accept whatever frequency was
required by the dispersion relation. We saw that the form Qf the plane wave was
altered somewhat due to the presence of one boundary, so now we consider the effect of

a second boundary.
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z=0E

Now the field equation is still valid in the interior of the channel, but the free waves
must satisfy dp/0z = 0 on both boundaries, at z = 0, —D. To find a solution, we
assume that the waves are free to travel along the channel, but that the cross-channel

dependence is unknown.
p(l', Y, z, t) — poe—iat-{-ikr-f—il’yp(z)

This is substituted into the field equation to obtain an equation for the cross-channel

structure

P, 4 (0% =k =) )P =0
P,=0 at =z=0,-D
This equation has the solution

P(z) = cosnrz/D

provided that
o2/t =k* + 02 + n?*r?/D? n=0,1,2..
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Notice that these solutions are each a sum of two plane waves

1/2p06—iat+ikx+i€y+in7rz/D + 1/2p08—iot+ikx+i€y-—imrz/1)

which satisfy dp/0z = 0 at z = 0 regardless of whether n is an integer or not. However

bl

to satisfy dp/0z =0 at z = —D, we need n = 0, 1,2.... These solutions are called

wavegutde modes.

Another important point to notice is that each three-dimensional plane wave by
itself satisfies the dispersion relation, so that both waves are the usual nondispersive
plane waves if we think of n as continuously variable. Yet the solution viewed as a

two-dimensional plane wave restricted to the channel direction is dispersive!
con = o/ (K* + 62)1/2 = +tco[l + n®r?/(k? + KQ)D?-]l/?
The horizontal group velocity do/dk, do /0l is
& = colki+ €5)/(k* + €* + nx?/ D})'/?

It is parallel to the horizontal wavenumber ki + €7 but not equal to the phase velocity.

n=0

(k2+12) 1/2

The n = 0 mode actually is nondispersive.

If we fix the horizontal wavelength 27 /(k? + ¢2)"/?, say by a wavemaker of fixed

size perhaps but variable frequency, then there is an infinity of waveguide modes
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n = 0,1,2... of ever increasing frequency o = ¢3(k? + €% + n?x%/D?). However, if we fix
the frequency, then
(k* + %) = a*/ck — n*z?/ D?

and only for n = 0, 1..n,,4, Will k% + €% > 0 where n,,,, = int[(D/7)(0/co)]. That is,
only for n = 0,1..n,,,, will the waveguide modes propagate down the channel! For

example, consider waves in the z-direction only

-1 o2 /c2 —n2x2/D2)1/2 nmwz
n < Moy p = ¢ iotilet/gontn? (D) e g

——iat-—(n27r2/D2-a2/cg)l/2r S nmwz

n > Npaz p=e

The first set represents travelling waves. The second set represents evanescent waves
which decay exponentially away from their source. Practically, this means that if we
have a harmonic wavemaker in the channel, then we may expect to see more

cross-channel structure near the wavemaker than far away from it.

2.5 Scattering at a discontinuity

We have considered the effect of a solid boundary on the propagation of sound waves.
Suppose, however, that a plane wave encounters a boundary between two fluids at

which the properties change abruptly, i.e. a discontinuity.

25




Py

Pr

This discontinuity could represent the air-sea interface or the ocean bottom (which is

not truly a solid boundary because it transmits sound waves). In both cases the

incident wave approaches the discontinuity while travelling through the medium which

has density p; and phase speed ¢;. The density of the medium on the other side is P2

while the phase speed is c;.

For the case on the left (upward propagating incident wave), the incident,

reflected and transmitted waves have the following forms;

Pr

PR

Pr

. ae—«iat+ikx+im12
_ Rae——iat+ikx—imlz

- Tae«—iat+ikr+im-zz

where R is the reflection coefficient and 7 is the transmission coefficient. Notice that

the incident and reflected waves have the same wavenumber component in z but that

they propagate in opposite directions. The transmitted wave has a different

wavenumber in z because the medium has different properties. The wavenumber in the

direction of the boundary z as well as the frequency o are the same for all three waves

because there is nothing in the fluids which would change them.
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To solve the problem, we require that the pressure as well as the velocity normal

to the boundary w be continuous across the boundary. That is

pr+pr=pr at z=0

1 1
—(pr: + pr.) = —pr. at z=0
1 P2

Now, substituting the expressions for p;, pr and pr, we obtain

1+R=T

m, mo

1—R)=—=T
Pl( ) P2

From the dispersion relation, m = o cos/c which changes the second matching

condition to

1 1
—(1 = R)cosfy = —T cosOr

P1Cy P2c2

These can be combined to yield

R pacy cos @y — pycy coslOp

paCy cos B + picy cosOp

T 2pacq cos O
pa2cq cos 1 + pycy cos Or

Identical expressions for R and T result for the downward propagating incident wave.

We see from these expressions that if the density times the phase speed of the
second medium is much less than that of the first, pyc; < pie, then the transmission
coefficient vanishes and the reflection coeflicient goes to unity, 7' — 0, R — —1. This is
consistent with the result we obtained for a solid boundary. It is also nearly the case
for the boundary between the ocean and the atmosphere where pc is about 1.5 x 108 kg

2 571 for the atmosphere. So, very little sound is

m~2 s~! for the ocean and 400 kg m~
transmitted from the ocean to the atmosphere. On the other hand, a sound wave in

the atmosphere is actually amplified upon encountering the ocean. That is, if medium
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1 is the atmosphere, then T' — 2. Of course, the sound wave in the atmosphere travels
so slowly relative to the ocean that its energy flux is generally fairly small, so the
amplification is a rather small effect as well. In either case, the energy flux in the z

direction is conserved because

lprwr| = |prwg| + |prwr|

To complete the calculation, we must find the angle of the transmitted wave, 0r.

This is found by writing the frequency on both sides of the discontinuity as
o =c (k* + mf)l/2 = cy(k* + m%)l/2

We can write this in terms of the wave angles since (k? + m?)'/2 = k/sin . Thus,

sinf;  sinfr

(&1 Co
which is known as Snell’s Law. From this we see that, if ¢; < ¢y, then there exists a
critical angle of incidence
0rc = sin™!(c; /o)
beyond which there is total reflection of the incident wave despite the fact that the

second medium can support sound waves. The boundary is then effectively solid.

Pr

9, pI pR
pl pR
6, <0, 6,=6

Ic

This is called total internal reflection.
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2.6 Generation of plane waves

At this point, it is natural to ask how these plane waves may be generated. What
initial or boundary conditions or forcing terms are needed to generate solutions of the
wave equation corresponding to some physical situation? If there are wavemakers in

the medium, they can be modelled by body forces F/po and mass sources ()
d, = —Vp/po + F/po

pe+ poV i =Q

Combining these with p, = c?p, yields

-

Pt — 02V2p = C2(Qt -V F)

We can now consider two types of problems: initial value problems and those forced
from rest. In both types we solve the homogeneous wave equation while satisfying
dp/dn = 0 on the solid boundaries and requiring outgoing waves at infinity, i.e. a
radiation condition. For the initial value problems, p and p, are specified at time t = 0,
while for those forced from rest they are set to zero. Of course, there is not really a
fundamental distinction because solutions of one type may be linearly superposed to
obtain solutions to the other type. The solution procedures may, however, be quite

different.

2.6.1 An initial value problem

Let us consider a one-dimensional initial value problem
2
Pt — C'Pre =0 —00 <z <00

p(z,0) = Po(z) ; pilz,0) = Qo(z)
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We will solve this be the method of characteristics. The most general solution is
p=f(z—ct)+g(x+ct)

To satisfy the initial conditions

f(@) +9(z) = Po(z)

—cf'(z) +cg'(z) = Qolz)
The second integrates to f(z) — g(z) = —1/c 5 Qo(z’) dz’ + K whence
2f(z) = Polz) - l/c/ Qo(z') dz' + K
0
29() = Roe)+1/e [ Qo(e!) da’ - K
These give the solution as
r+4ct
p(z,t) = 1/2[Po(z — ct) + Po(a + ct) + 1/c/ z Qo(z") dz']
Note that p(z,t) depends only on the initial conditions over the range z + ct.
If Qo(x) = 0, then the solution is very simple
plz,t) = 1/2[Po(z — ct) + Po(z + ct)]

for which case the solution could have been obtained using the Fourier method,

although it is not the method of choice in this problem. Set

pat)= [ plk 1) dk

—CO

Then
Pu + C2k215 =0

p(k,0) = Po(k) 5 pu(k,0) =0
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The solution to this problem is
plk,t) = Py(k) cos(ckt)
from which

plz,t) = /Oo Py(k) cos(ckt)e™ dk

_ 1/2 /oo Po(k)(eikx+ickt+eikz-—z’ckt) dk

— 0o

= 1/2[Py(z — ct) + Po(z + ct)]

The integration is trivial in this case but not always.

2.6.2 Forcing from rest

Assume that the forcing has the rather simple form
Qi = V- F =5(z)qt)

where ¢(t) = q,(t) = 0 for ¢ < 0 and ¢, is finite. Now we solve

Pt — C2pmr = 6($)qt(t)62

p(2,0) = p(e,0) =0 at t=0
We may put the forcing into the boundary condition by
oF 2 2 0+ _ 2
_/0~ (Ptt —C pa:x) dz = —c Pzlg. = C Qt(t)

That is, pz(z = 0+,%) — ps(z = 0—,1) = —¢;(¢) so that the forcing at z = 0 is

interpretable as a specified discontinuity there. So we must solve

31




Py (0.1) =P (0,1) = -q, (1)

X \
—
;X
L 2 L x=0
Pr—=C Pxx =0 pt’?-—czp?x:O

where p* and p? are solutions on the left and right of the discontinuity, respectively.
Most generally, p” and p® are functions of z -+ ct. We write them along with the

requirement of symmetry
pR(w) t) = pL(“x’ t)
p(z,t) = f(z — ct) + g(z + ct)

pL(x,t) = f(—z —ct) + g(—z + ct)

Imposing the jump condition at z = 0 yields
fi(=ct) +g'(ct) + f(=ct) + g'(ct) = —q,(t)

but this does not specify f and g. To specify them, we must impose a radiation

condition, i.e.,
pl(z,t) = f(z — ct) p™ is all right going waves

pH(z,t) = f(—z — ct) pY is all left going waves

Now we have

2f'(=ct) = —q(t)
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from which
R c
pi(e,t) = Sal-efet )
c
Pi(et) = ga(a/c+1)

Thus, forcing at the origin is modelled as a jump in p, and we must assume that all of

the motion is away from the source in order to get a unique answer.
If the forcing were harmonic with ¢(t) = e™¢/(—io) then

—iot

Pit — Cpee = 26(z)e

and the solution would be

—C

R —_ —io(—z/c+1t)
r,t) =
pi(t) Q(ia)e
L _ —C —id(z/c+t)
t) = o

In other words, plane waves radiating outwards from z = 0. The radiation condition
that we imposed models a little bit of dissipation in the sense that the solution looks
dissipationless locally, but nothing is reflected from |z| — oo because even small
dissipation attenuates any reflected waves over a long distance. We could, in fact, add
a friction term to the momentum equations and solve again to obtain a solution which

would become the present solution for vanishingly small friction.

2.7 Slowly varying medium

We have considered cases in which the speed of sound remains constant in the medium
or changes abruptly at an interface. However, the speed of sound within the ocean

varies in space because the ocean is not a uniform fluid. In fact the sound speed in the
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ocean is sensitive to the temperature, salinity and pressure of the ocean and may be

described by the following empirical formula:

(s, T, 2) = cotao(T—10)+Fo(T—10)* +70(T—18)*+80(s—35) +eo(T—18)(5—35)+ (o 2]
where the coefficients have the appropriate mks units and have values of

co = 1493.0, ap=3.0, By = =0.006, 7o = —0.04, 6 = 1.2, € = —0.01, (o, =0.0164

This says that the speed of sound varies quadratically with temperature, and linearly
with salinity and depth. The depth effect is due to changes in the ambient pressure.
For typical ocean conditions, the temperature effect dominates in the shallow water,
while the pressure effect dominates in the deep water. The sound speed increases with
an increase in either temperature or depth, so there is typically a sound speed

minimum in the ocean interior.

c(m/s)
1490 1500
1 !
|
1200 - Deep Sound
B Channel
N
s
&
Q
4000 -

The situation is different in the arctic where there is little effect of warming near the

surface. There the sound speed tends to decrease right up to the surface.
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We can examine the effects of these variations in sound speed by applying our
knowledge of ray theory. We must assume that the wavelengths of the acoustic waves
are much less that the scale over which the sound speed changes. That is, the
wavelength must be small compared to the total ocean depth. We will consider only
two dimensions, the vertical and one horizontal. Recalling our discussion of ray theory,

we write the dispersion relation as
o= Qk,m;z)

Since the medium varies only in z, we have dQ/dz = 0, 9Q/dt = 0 but Q/dz # 0.

Thus, the ray equations become

AN
di
dk
dt

dm _ %
dt 0z

These say that the component of the wavenumber in the z direction remains constant

in time (which makes sense since the medium varies only in z), and that the frequency

remains fixed at the initial frequency. We could integrate these following along a ray
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with the group velocity, but we will examine the qualitative behavior by considering
Snell’s Law which can be derived in the same manner as for the case of scattering at
the discontinuity. The frequency can be written in terms of the angle that the
wavenumber makes with the vertical to obtain

sinfy sind

Co c(z)

or

sinf = @ sin
Co

where ¢y and 6y are the initial values.

Consider the case in which the sound speed decreases with depth, ¢ = ¢p(1 + z)
(remember that z is positive upwards). This means that a wave moving upward moves
into a region of increasing sound speed, so the angle with the vertical must increase as

well. Thus, the wave moves toward a horizontal path. This may also be seen from the

ray equations where —9§1/0z < 0, so that m must decrease with upward motion.
Decreasing m leads to a more horizontal propagation path.

Cc

ko kO

T mo/ mq| 7 m;h

Similarly if ¢ increases in the deep ocean, sound waves moving downward will be

turned toward the horizontal.

When the ray becomes nearly horizontal, ray theory must be applied very

carefully. From the ray definition, we can write

_d_z_ ¢y 0Q/0m

m 52 2
dz  cpe  O0Q/0k Tk <c2(z)k2 - l)
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which gives the slope of the ray path. This may be approximated near the critical level

z. by expanding in a Taylor series to obtain

dz d o? 12
Eg’ ’.:J. I\(z — ZC)_‘E (CZ(Z)k2>z=zC:]

which integrates to

A Py | R
G 4 |dz \ 2(2)k? s T o

Thus, the ray path is parabolic near the critical level, so an upward propagating ray

turns downward.

Similarly, a downward propagating ray which encounters an increasing c at
depth will eventually turn upward (provided it does not intersect the bottom). The
end result is that the minimum in the sound speed acts as a sound channel where
acoustic energy can propagate over hundreds of kilometers without encountering the
bottom provided the incidence angle is not too oblique. Numerous examples are
reproduced in Apel (1987). This is the basis of acoustic tomography, in which this
efficient propagation is used to infer properties of the ocean. Sound waves are
generated at a source and received at a listening station. For a fixed vertical profile of
the sound speed, the rays may be calculated using ray theory. The received signal is
then compared with that expected for a horizontally uniform medium, and differences
are used to deduce various physical phenomena which might have occurred along the
ray paths. This is generally called an inverse problem because boundary observations

are used to determine the interior physics, rather than the reverse.
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Chapter 3

Surface gravity waves

Probably the most familiar form of wave motion with which we have extensive
experience is surface gravity waves. This class of waves includes most of the waves
which occur on the interface between the atmosphere and a body of water, be it the
ocean, a lake or a puddle. The restoring force which makes such waves possible is

gravity — hence the name.

3.1 Homogeneous medium

Let us consider an inviscid, incompressible, homogeneous fluid bounded by a free

surface near z = 0 and a flat bottom boundary at z = —D.
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Because the fluid is inviscid

Di/Dt = —=Vp/p — gk

If the vorticity is defined as

w=Vxdq

then we may take the curl (Vx) of the momentum equations to obtain
D&/Dt = (& - V)i

In this form, we see that if initially &(&,0) = 0 everywhere, then &(&,t) = 0 forever.
We therefore suppose that the motions we consider are generated without making @

nonzero, so that V x @ = 0. This being the case, we can define a velocity potential by
i(3,1) = V(i)
Since the fluid is incompressible, V - @ = 0, so
Vig=0
The boundary conditions are derived as follows. At the bottom, z = —D, we

require that w = 0, i.e.

¢, =10 at z=-D

The free surface is made up of fluid parcels (i.e., points that move with the fluid

velocity field, ‘lumps’ of the continuum but not necessarily or probably molecules)
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which never leave the interface. Consider one such parcel. It moves vertically (i) if the
interface rises or falls, or (ii) if the fluid flows horizontally under the sloping interface.

If we let z = n(z,y,t) be the interface, then
wle,y,n(z,y,1),t] = e +ung +on, at  z=7
This is really just a restatement of Dn/Dt = w. In terms of ¢, this says

e+ ¢a:77x + ¢y77y = QSZ at <=7

This is nothing more than a kinematic condition which simply says what we mean by

calling z = n an interface.

The interface is massless. In the absence of surface tension, therefore, it
supports no pressure differences across it. The appropriate dynamical boundary

condition is
p(xv Y, 1, t) = Patmosphere

To write this in terms of @, 7 return to
i+ (- V)i = =Vp/p - gk

Using the identity
(- VYi=(Vxu)xid+ V(@ ad/2)

we can rewrite this (exactly) as
U +dxud=-Vp/p—V(i- i7/2)—Vgz
Now if & = 0 so that @ = V¢, then this becomes
V(g +p/p+ %IWV +gz) =0
bt plp+ gzt 5V = (1)
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which is the Bernoulli integral. We apply this at z = 7 to find

1
és + -Q-IWV + 91 = f(t) = Patm/p

The function f(t) may be chosen to cancel the space independent part of pym(z,y,1).
We may as well do this since f(t) only adds a space independent part to ¢. For

constant (i.e., spatially non-varying) py¢m, we then have
1 2
¢t 5IVOl +gn=0 at ==y

Notice how a specified pgi,(z,y,t) would enter the problem through this boundary

condition.

The full problem is

UP + sz‘nx + ¢y77y = ¢z at Z2=7

1
¢t+§!V¢|2+gn=0 at z=n
Vig =0

¢, =0 at z=-D

3.2 Linear solutions

To get some idea of possible solutions, we will linearize and solve in one horizontal
dimension. For now we just drop the nonlinear terms. We will check a posterior: that

they are small compared with the linear terms. The linearized problem is
m=¢, at z=0

$t+gn=0 at 2=0
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Notice that the surface conditions have been applied at z = 0. We seek plane wave
solutions n = ae™" %= and ¢ = Ae™"""**2 7(2). The interior equation gives

—k*Z + Z,, = 0 which has the solutions Z(z) = e***. The linear combination of these
that satisfies the bottom boundary condition is Z(z) = cosh k(z + D). The free surface

conditions may be combined into

I
o

&y

du+9o, =0 at

The solution

¢ = Ae " cosh k(z + D)
satisfies this provided
o? = gktanh kD

which is the dispersion relation.

o}
o=\gk

o=\{gD k

k
Finally 7, = ¢, and ¢, + gn = 0 say that if n = ae™ !+ then

A = —iac/(ksinh kD) = —tag/(o cosh kD)

These are the plane wave solutions. They are dispersive and the same wavelength can

propagate in either the 4z or the —z direction.
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For completeness, we take the real parts

n = acos(kz — ot)
b = —= h k(z + D)sin(kz — ot
= Temnip CshA(z sin(kz — ot)
ao
U = ¢y = TiD cosh k(z + D) cos(kz — ot)
ac .
w o= ¢, = D sinh k(z + D) sin(kz — ot)
2
pota
= - — : —
P pgz + TS kD coshk(z + D) cos(kx — ot)

0 = gktanhkD

Notice that n,u,p are in phase and that p is not hydrostatic.

The above derivation is valid for waves of any wavelength and for fluid of any
depth. However, the case of deep water waves for which the depth of the fluid is much

greater than the wavelength of the wave, kD — oo, may be more appropriate to some

waves in the deep ocean. In this limit, the plane wave solutions become

n = acos(kx — ot)
¢ = %—g-ekz sin(kz — ot)
o = gk

3.3 Internal waves

The interface between the atmosphere and a body of water is not the only interface
which can support gravity waves. In fact, any interface separating two fluids can
support gravity waves. Consider the interface between two semi-infinite fluids of

different densities. We have
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At the interface z = 0
e = d)lz ) e = ¢22
PP+ gn) = pa(das + gn)

We can satisfy these equations and the finiteness of the solution as z —» +oco by taking

¢1 — Ale-—iat-f-ik.r—kz
¢2 — A26~iat+ikx+kz
n = ae—iot+ikm‘

The three interface conditions become
—wwa=—kAy ; —ica=kA; ; p(—icA; +ga) = p2(—to Ay + ga)
which yields
Av=tac/k 5 Ay=—iac/k 5 pi(0®/k+ g) = py(=0/k +g)
The latter may be rewritten

0_2 :ngZ — /1
P2+ p1

Note that if p; = 0, then we recover the deep water dispersion relation of the previous

section, o? = gk.
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For general p; < p;, the quantity ¢(pa — p1)/(p2 + p1) can be regarded as a
reduced gravity, typically denoted by ¢’. In the ocean, ¢’ ~ O(107%)g. These interfacial

waves are called internal waves, and from o?

= ¢’k we see that they move much more
slowly than surface waves. We will spend several future lectures examining internal

waves in much greater detail.

Note also that if p; > ps, then 0% < 0 so that o is imaginary. Now e~
represents exponential growth or decay in time. This corresponds to gravitational

instability of the interface because heavier fluid overlays lighter fluid.

3.4 Qualitative retreatment of surface waves

Let’s redo the problem of surface gravity waves to bring out a few points.

a) The full momentum equations are Di/Dt = —Vp*/p — glAc, Separate p* as
p* = po(z) + p(Z,t) where pg is the hydrostatic part of the pressure which satisfies
0 = —po./p — g and p is a small perturbation from py. The linearized momentum

equations become (in one horizontal dimension)

U=—pz/p i W=-pfp 5 Uptw,=0

At the bottom w =0, i.e.,, p, = 0 at z = —D. At the surface, Dp*/Dt =0 at z = 7, for
which the linearization is p; + wpo, = 0 at z = 0. Using the definition for the
hydrostatic pressure, this becomes p; — gpw = 0 at z = 0, or using the vertical
momentum equation, p; + ¢gp, = 0 at z = 0. Now compare these with the results of the

previous linearization:
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Uy = “‘Pw/ﬁ u= st

Wy = —p./p w= ¢,
Uy +w, =0=Vip=0 Vig=0
ptt+gpz:0atz“_-0 <z5“+g¢z:()atz:0
pz=0atz:—-D QSz:Oa,tZ:—D
We see that, in this linearized problem, p = —p¢, which could also have been obtained

from the Bernoulli equation.

b) When is the linearization valid? To answer this, consider the surface condition

¢+ gn + %|V¢[2 = 0 at z = 5. The linearization is ¢; + gn = 0 at z = 0. Now

Qst‘z:n - d)t'z:O + 77¢tzlz=0--~
= [—i0A+ a(—iokA)e otk mivthibe
where we have used ¢ = Ae™"o"*+=+k2 which is appropriate for deep water waves. So
we see that n¢s, < ¢, provided —ickAa < —ioA. That is, provided that ak < 1. This
means that the linearization is valid for waves which have a gentle slope. Evidently

deep water waves are the beginning of an expansion in (ak) of solutions to the full

equations. We will return to a more formal expansion of the equations shortly.

c) The foregoing linearization yielded

u=-=pylp 5 we=-pilp—g ; up+w,=0

Suppose the wavelength A of the wave is much longer than the water depth D. Then
Uug + w; = 0 becomes, in order of magnitude, v/A = w/D or w = uD/\. If D/ — 0,

then w — 0 and the pressure becomes entirely hydrostatic, 0 = —p:/p —g. Hence

p* = gp(n — z) which leads to the new linearized momentum equation of

Ut = =GNz
Notice that this implies u is a function of z and ¢ but not a function of z since
n= 77(37’ t)'
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Now, from continuity and v # u(z),

n
z T d = 0
LD(w +u,) dz
n
m+u77z+/ up dz = 0
-D
ne+un+ D). = 0.
Linearization of this (n <« D) yields

e+ Du, =0

which, along with the new momentum equation above, are the linearized shallow water

equations, so called because D <« A. Eliminating u between them yields

Mt — gD??m = O

1/2

which is simply a one-dimensional wave equation with ¢ = (¢D)"/*. From this, if

n = ae~% then o/k = +(gD)"? and

gak . .. i
u = e tot+ikx

ag
—igak? -
w = tga <z+D)6—wt+zk$
o2
p* = gp(n—2)

Note that w # 0, but rather w <« u, and we will see shortly that w enters the solution

at second order.

3.5 Careful retreatment of surface waves

The last sections have shown that the waves are very different depending on whether

the wavelength is much greater or much less than the depth. A more systematic
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treatment returns to the full problem

1
b+ gn + (43

+o,+6)=0 at z=y

Ny + ((/533772 + <J5y77y) = sz at 2z = n

Vi =0

¢, =0 at z=-D

Introduce the following scaling

dimensional =

(z,y) =

Z prmacs

t =

For example now

a(gD)'/? gal

dimensionless
(z,y)L
zD
tL/(gD)*?
na

gal
¢

(g D)2

(from ¢; + gn ~ 0)

77t+¢z77x = ¢z
a gal

becomes

D(gD)\/? s

ne+(a/D)gen, = (L/D)*¢, at

We see that the only two dimensionless numbers that appear are

e=a/D ; 6=D/L

which are called the amplitude and the aspect ratio, respectively.

We obtain for all of the equations:

bt g+ )+

-2

5 ¢z+77:() at z =e€n
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M+ €(Nete + dymy) = 620, at z=ep
¢22 + 62(¢(L’:L‘ + ¢yy) = 0

¢, =0 at z=-1
a) Notice that if we take € < 1, § = 1, then we obtain
pe+n=0 ; m=¢, at z=0
Vi =
p, =0 at z=-1

which is the dimensionless version of the deep water wave problem we previously

derived.

b) Consider now ¢ = 1, § < 1. Let ¢ = ¢y + 6%¢3 + ..., and insert this into the interior

equation. At lowest order
§@% By, =0 ; ¢o, =0 at z=—1
which means that ¢q is independent of z. At next order

6(2) . d)?zz + ¢’Oa:a: + ¢0yy =0 ; ¢22 =0 at z=-1

which yields

a(2,y,2,1) = (2 + 1)*(Pozz + boyy)/2
Therefore

¢ = do(e,y,t) — (2 + 1)6*(boss + Boyy) /2

This expression is now substituted into the surface boundary conditions to obtain
1
dor + 596z + 65,) + O(6%) +n =0
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ht + (hdos)s + (hoy )y = 0 4 O(8?)

where h =1 4+ 7. Note that these equations are now the field equations because the
dependence on z is gone. Recall that ug = ¢q,, vg = doy, etc. Inserting these into the

above yields

Ilg + (Uoh)a; + ('Uoh)y = 0
Ugt + UoUgy + Voloy = —7,

Vot + UgUoz + Voloy = —T)y

These equations can be converted to the dimensional form by multiplying the right
hand side of the second and third equations by g and by interpreting & as D + 1.
These are the nonlinear shallow water equations. We previously arrived at their
linearization by heuristic reasoning. Note that w = @, = §%¢,, which is O(§?), in

agreement with the result that we obtained using heuristic arguments.

3.6 An initial value problem

Now that we have established appropriate linearized equations for deep and shallow
water waves, we consider an application. Since o = gk is quadratic, it is likely that
solutions for n(z,t) on —oo < & < oo require specification of n(z,0) and n,(z,0). If we
set

U(I,t) — /__oo[c(k)eiat-‘-ikx + D(k)e—iat+ikx] dk

then
n(z,0) = [ [C(h) + D(k)e™ db

n(,0) = [ io[C(K) ~ D(k)]e™ di

-0
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For simplicity, consider 7,(z,0) = 0. Then 2C(k) = 7, and
U(x,t) = 1/2/ ﬁo(k)(eiot-’rikx+e—i0t+ikm) dk

k

where o = (signk) (g|k|)'/? to ensure that waves at frequency ¢ propagate in the same
direction regardless of the sign of k. The solution may be separated into left and right
going wave contributions by writing
_ - 04t % N iet
n(z,t) = 1/2/ io(k)e©+t dk + 1/2/ io(k)e'®=t dk

o0

where

Q4 = kz/t + (signk) (g]k|)"/?

Points of stationary phase are where © = 0 (the prime means 0/0k). Now O/ =0

has no real root for z > 0, so we must use ©_
n(z > 0,t) = 1/2/ To(k)e®-t dk

Thus, for &£ >0
O_ = ka/t — (gk)"/?

whence
0L =/t~ (g/k)* = 0
yields
1
zft = ‘2“(9‘/’%)1/2
and
1/2 923
v g% 228
@_(ko) - 4](73/2 - gt3
Thus
) ] .
T]k>0($ > O,t> ~ §ﬁ0(k0)eze—(ko)t[2ﬂ'/it®z(ko)]1/2
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becomes
1 . .
Mooz > 0,) = Si(ko)e™ 9% 6=/ (rge? 7)1 /2

An identical contribution obtains from k£ < 0, so
t
n(z > 0,t) = 7o(ko)(7g) 1/2 vz cos(gt*/da + w/4)
If no(z,0) = 6(z), then 7jo(ky) = 1/27 and then

n(z > 0,t) = %(g/w)1 -:—ﬂcos(gtz/éia: +7/4)

[f we plot 5(z,t) versus z at a fixed ¢t (snapshot), we see

Lwa e
M=

The wavelength 27/kq increases and the amplitude decreases with z. A wavestaff

4

record of n(z,t) at fixed z shows

n

Clearly neither kg nor oy is constant at any fixed z or ¢. Yet it turns out that

Jdo

00t+5‘k‘]1c000x =0 ; kot koz =0

7
ok ™
i.e., if we travel at ¢/t = do/0k|y,, then oy and ko do not change.

It 1s instructive to consider the same problem from the ray theory point of view.

Ray theory postulates a solution of the form n = ae'f’, defines a local wavenumber k by
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k= 0P/0z|, and a local frequency N by N = —dP/dt|,, and asserts that these satisfy
the plane wave dispersion relation N = Q(k). We now see that the stationary phase

solution does all of these things as well. Since P = t0 = koz — Q(ko)t, we have

o0 | Ok
N = Q(ko) + (CII - —a?ot)—a—to == Q(k‘o) = 0Jg
,‘ o0 dky

where o¢ = Q(ko) and z/t = 9Q/Jky have been used. Thus, the phase P and the local
wave parameters ko, g satisfy the relationships asserted by ray theory. We further

have

vor oop
dr ot T dtox 't
i.e., 0oz + kot = 0. Since o9 = Q(ko) and oo, = (/) Oko)kos, then we recover
do do
00t+'57€"k000z =0 ; k0t+5];|kok01 =0

which again says that ky and og do not change if we travel at the group velocity. This

much all by itself tells us that if we are at (z,t), then the solution there looks like

ae~ioot+koT where Jo/Ok|y, = z/t.

Ray theory also tells us how to get the amplitude which, in this case, is
prescribed by
€+ (cge)s =0

where € = %pgnn*. So, the stationary phase approximation to this initial value problem
in a homogeneous dispersive medium could have been obtained by the simpler ray

theory approach.

At any (z,t), the stationary phase solution has well defined frequency o, and
wavenumber kg. This is because, at the long times ¢ for which the stationary phase

approximation is valid, dispersion has separated the concentrated initial disturbance
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into a slowly varying wave train of the sort postulated beforehand by the ray theory.
Neither theory handles the details of how the solution evolves near the initial

disturbance.

Note that as ¢ — oo, the foregoing says n(z,t — oo) = ¢. The solution never
‘settles down’. This happens because no(z,0) = §(z) contains infinitely short waves
that travel infinitely slowly. Therefore, at any given (z,t), short waves are still arriving

and shorter ones are en route. This does not happen for the finite initial displacement.

3.7 Ship waves

Let’s consider another application. We have seen, in one dimension, that
no(z,0) = 6(x) , noe(z,0) = 0 leads to

1/2

n(z,t) = REK; et

x

where P = gt*/4z. In two dimensions, i.e. radial spreading, it turns out that

no(z,y,0) = 6(2)6(y) , no(z,y,0) = 0 leads to
n(z,y,t) = %Kg—}—:eﬂj
r

where P = gt?/4r and r = (22 + y?)/2. The dispersive characteristics of the wave train

P

- summarized in € - are common to both one dimension and two dimensions

although the envelope changes from one dimension to two dimensions.

We use the two dimensional result to discuss ship waves. A ship is idealized as a

travelling delta function which moves with speed V.
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| —vt -l -

—vt —r cos© r cos © t=0

At time ¢ = 0, we are at r, 0 relative to the ship. At time ¢ the ship was p(t) from us.

Keep in mind that ¢ < 0. We have, therefore,

e gt

o p
0.t=0 :/ K
" )= 0

where P(t) = gt*/4p(t) and p(t) = (r? + V42 + 2Vtr cos 0)'/2,

This is like a stationary phase problem if P(t) is large. Points of stationary

phase are when P, = 0, i.e.

Wt oo _
4p 4p?
%g;t — i%;%;(?‘ﬂt +2Vrcosf) =0
2p% — V2 — Vrtcos =0
2(r? + V2 4 2Vrtcos0) — V2 — Vrtcosf = 0
2r* + V232 + 3Vrtcosf =0
te = =27 [cos 0 + (cos? 0 — 8/9)/?]
2V
We get an appreciable contribution only when ¢4 lie on the path of integration —oo to
0, i.e. when they are real. This requires cos?§ > 8/9, i.e. 6 < 19°28'. So, for § > 19°28'
we get far smaller waves than for 6 < 19°28'. Notice that this angle is independent of
V. This means that the waves following a ship will be at the same angle regardless of
the speed that the ship travels! (Of course, the ship must be idealized as a point
source.) i

%)




Inside this cone there are two wave systems e'(*+) and ¢'P(*~), They give rise to

the system of cross waves seen behind a ship.

Small Amplitude

19°28'
Large v
Amplitude
19°28'

Small Amplitude

Details of their shape come from P(t,) = constant and P(t_) = constant.

The V independence is surprising. But remember that these waves are
dispersive — some always travel as fast as the ship regardless of its speed. The
nondispersive case is different. If all waves travel at ¢ [= (¢D)"? in a shallow sea] and

a ship moves at V > ¢, then the wave pattern looks like

Absolutely No Waves

Waves

~ <
]
(@]

Absolutely No Waves

The waves are confined to 6 < sin™"(ct/Vt) which is dependent on the velocity just as
we would expect. This is because the waves all travel slower than the ship. The waves

arrive as a sharp discontinuity.
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3.8 A wave energy equation

The linearized waves satisfy
pily = —Vp — gpk
V.i=90

From these

(-;:m?' u)e+1u-Vp+gpw=0
In the linearized case, w = z, which can be used with continuity to obtain

[épﬂﬁ-{—gpz]ﬂ—v‘{[p:@

ke + pely + V- efluz =0

Integrate from z = —D(z) to z = 7 and note that

[ [0:up) + 0,(op) + 0.(wp)l dz = 0, [ up dz ~ ptm)un. + p(~D)uD,

+wp(n) — wp(=D)
n
= 0, /—D up dz

Thus

[ Q— 1 — L
[/D§pﬁ-ﬁdz+5pg772]t+VH-/Dﬁpdz:0

[KE + PEl, +Vy-Efluz =0

where K'E and PE are energy densities per unit surface area, Vg = 19/dz + 79/dy

and the overbar denotes a time average over one wave period.

P
’/' E, KE

For
n = acos(kz — ot) 0? = gktanh kD
ao
= —— k in(kz — ot
¢ e iD coshk(z + D)sin(kz — ot)
= + P70 coshk(z + D) cos(ka — ot)
p = —gpz Fenh kD cos z cos(kr — o
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we find that

1
KE = Dl 2
P 4pga

&

so that the total energy is £ = %pga?‘. Finally, after some algebra, the energy flux can

be written
0
Lfluz = / up dz
-D
2
= %pgcﬁ (% coth kD) ‘;k(l +2kD/ sinh 2k D)
\’\f—/\-g—-\,—/
= I 1 do [0k
That is

Efluz = EE,

Thus, the period average of the energy equation is, for the plane wave
L+ Vy-(EE)=0

It may be used to determine E(&,t) from E(&,0) if the wave is slowly varying, i.e. if
a = a(Z,t). This may occur either if a(, 0) is slowly varying or if D is a slowly varying

function of position.

3.9 Slowly varying medium

The ‘medium’ is made nonuniform if the fluid depth is variable in space or (rarely) in
time. The techniques used up to now accomodate this case with little further thought.
However, medium nonuniformity also occurs if the waves advance through currents. If
the currents vary only slightly over a wave period or wavelength, then the waves may

be adequately described by slowly varying representation.
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For concreteness, consider a basic flow U(z,y,t), V(z,y,t), W(z,y,2,1),
P(z,y,z,t) with a free surface z = h(z,y,t) flowing over relief z = —D(z,y,t). It
satisfies

U, +UU, +VU,=—P./p
Vi+ UV, +VV,=—-P,/p
Up+V,+W.=0 or (h+ D)+ [Uh+ D)+ [V(h+D)],=0

Since it is to be slowly varying in the sense that € = L,,/L,, < 1, then we require
he, D, etc. to be O(€). This means that W is O(e)U. The pressure is hydrostatic, i.e.
P = pg(h - z).

Nowletu*=U+u, v*=V+uv, w=W4w, p=P+p, n*=h+1n We
have, for example,

Du*
Dt

=—pi/p—= (U+uw) +UU, + Uuy + vU; + vtiy... = =Py /p — pz/p

Using the definitions of U, V, W, P and linearizing by neglecting products of small

terms yields

uy + Uy + uly + Vu, +oU, = —pg/p

and similar equations for v and v. Making the further assumption that U and V are

slowly varying results in

ug + Uug +Vuy = —po/p
v+ Uve + Vo, = —py/p
wy + Uw, +Vw, = —p,/p—yg

(Note that terms like Wu, are dropped because W ~ Uhy or UD, ~ €U.)
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At the free surface Dp*/Dt = 0 at z = n*. Using the same assumptions as above

and noting that P, + UP, + VP, + WP, =0, we arrive at
pe+Ups +Vp, =gpw at z=0

Finally w* = w*D; +v*D, at z = — D, which becomes w = 0 at z = —D. If we assume

a plane wave solution n = ae™*t+#2+i etc then we obtain a dispersion relation of
o = kU + 0V + [g(k* + %)/ tanh D(&? + 2)'/2]"*

which is simply that for surface gravity waves but Doppler shifted by the background

current.
Using this dispersion relation, the ray theory recipe says that we can carry the
slow space and time variation of U and D parametrically to find N = Q(Z, T,y,t) or

- 1/2
i /

c=k- ﬁ(CL‘,? 1)+ [g]lﬂ tanh D(x,y,t)}

We may write this as o = k - [/ + ¢/ where o’ = (¢|k| tanh |[k]|D)!/2 is the frequency seen
g

by an observer moving at U. Then

QJIQJ
>~ Q

- = Od' o
Cy = :U+§:=U+Cg

Cott

Finally then, we find o(z,y,t), E(az,y,t) by solving

-, -~ o 0 - - 1/2
o+ (U+8) Vo=, =k-U, + o l91F| tanh [F| D(z,y, 1)]
— —t - a(_j a — — 1/2
ki +(U+¢,) Vi =—-Q, = —k - . e [g]k| tanh lk|D(m,y,t)]

—

These fix o(z,y,1), E(x,y,t) once we are given o(z,y,0), k(z,y,0). At least
conceptually they are easy to integrate. To find the wave amplitude, we must

formulate and solve an energy equation.

60




3.10 Waves riding on a current

We consider two examples which make use of the above formalism. First, let
D =constant and the current be U = iU(z) 5 iU(z,t). Now
o = Q(k;z) = kU + (gk tanh kD)2 from which

at+(c;+U)0z:0

If a wavemaker always puts waves of constant frequency ¢ into the fluid at z = 0, this
equation says that as we move at ¢/ + U, o does not change. Ultimately this means

that o is constant everywhere (but not o’). Therefore
o = k(z)U(z) + [gk(z) tanh k(z)D]"/?
tells us k(x), in principle.

Consider o,k > 0 and U(z) > 0, i.e. right-going waves and current
U —_—/——

I D\ NN N
A3 "2 VA VAR VA s s

X

f(k) )1/2

(gktanh kD
o—kU

p——— / U=0

) U increases

k

Clearly, there is always a root *. For large U, 0 — kU, i.e. k — o/U. The waves are

longer in a swifter current.
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Consider o,k > 0 and U(z) < 0, i.e. right-going waves in a left-going current.

U X

—

yaN N_NNNAAAN
T [T VAR X

flk)  o+kUl

Ul lul =0
lncreasesK\

)1 /2 }

(gk tanh kD

K

There is a root * for 0 < |U] < ¢, (k). At the upper limit c,(k) = |U|. Waves with

/

, and can stem the current, while those with large & go too slow

smaller £ have larger c
to stem the current and are swept downstream. In reality, the waves break before this
limit. (A second intersection of the two curves generally occurs at large k, but here

¢y < |U}, so such waves would never be realized.)

A second example is that of a shear flow U = JV(z). Waves started from a
wavemnaker at = 0 at an angle 0 to the z-direction refract as they pass through the

current.
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X

We have o = (V(z) + (¢K tanh K D)'/? where K? = k% + (2. As before, with

e—iat+ik1‘+i€y.
)

o+ ¢ Vo=, =0
b+¢, - Vi=-0,=0

where o and { are constant everywhere, but k = k(z). The easiest way to find k(z) is
to realize that o = {V(z) + [g(kQ(r) + 0)Y/2 tanh(k*(z) + 62)1/2D] % fixes k(z). Now

the relation £ = [k*(z) + ¢%]/%sin §(z) = constant tells us 8(z).

For deep water, these are easy to solve:

1/2

o =0V (2) + |g(k*(z) + £2)/?]

leads to
o— LV (z)]*
E*(z) = [ e — {?
and
sinf(z) (kg +03)? (o — €Vp)?

sinfy  (k¥(z) + )12 (0 -V (2))?
Notice that when V(z) — [0 — (g€)}/?]/¢, then k — 0 and the wave no longer

propagates in the z-direction.
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Chapter 4

Internal gravity waves

We have seen that gravity can provide the restoring force which allows waves to
propagate along an interface. We saw that if the interface separates two fluids with
slightly different densities, then a much slower version of surface waves — called internal
waves - is possible. We now turn our attention to a more thorough investigation of
internal gravity waves. In particular, we extend the previous ideas to situations in
which the vertical density stratification varies continuously within the fluid. And, since
internal waves are ubiquitous in the ocean, we will spend some time reviewing their

observed properties, as well.

4.1 The internal wave equation

Suppose we do the following thought experiment. In a continuously stratified fluid, we

raise a parcel of water from its equilibrium position a small amount £.

64




The change in pressure experienced by the parcel is dp = —pogé while the change in
density is dp = dp/c®. At this point, the buoyancy force acting on the parcel (per unit

volume) introduces an acceleration, so that

9(pout = pin) = gl(po + poz€) — (po — pog/c®)] = poi

Rearranging

2
—4gpPoz g
2y =9
étt +§( o C2)

which 1s a simple harmonic oscillator equation with solution e**N* where

_ 2
N?(Z) — 4po- . %
Po ¢

Thus the parcel oscillates about its equilibrium position at a natural frequency
determined by the local density stratification and the fluid’s compressibility. This
frequency is called the buoyancy, Brunt-Vaisala or Vaisala frequency and is often used

to characterize the degree of stratification in the ocean.

For applications to the ocean, the effect of compressibility is typically neglected
because g%/c? is usually small compared to gpg./p, so we will neglect it here. In the
atmosphere, compressibility is often important, so the full definition of N? must be

used. A brief discussion of this case is presented by Gill (1982, pp. 169-175).
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The momentum, mass and continuity equations for a rotating, incompressible

fluid are
A T S
aapt*+v-p*z'[*:0
%”; 0=V =0

One solution to these equations is a motionless, hydrostatic balance, i.e.
ip=0; 0= —py, — gpo(z). Each dynamic variable may then be separated into a

hydrostatic part and a small departure from it

-

U=tg+d; pt=po+p; pt=potp

After substituting these into the full equations, assuming that the departures are very

small perturbations and neglecting the nonlinear terms, we obtain

7 U, v k
0 b Yo _ gk
8t Lo Lo

Pt + wpo, =0
V-u=190

Next we specialize to periodic motion e*** and write out components

—tou— fv = —p,/po
—tov+ fu = —py/po
—iow = —p./po—gp/po

Up + vy +w, = 0

—10p + wpg, = 0
Eliminate p between the vertical momentum equation and the density equation
/)O(N2 - Jz)w = iO’pz
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The horizontal momentum equations may be rewritten

. _I_—iO'px—Ffpy
po o —f?
_ 1 —topy — fpe
po 0% — f2

from which continuity becomes
—ioVEp + (0® = f)pow, =0
where V}; = 0/0z* + 9/9y*. Now eliminate the pressure to obtain
po(N? = o*)Viw = (0 = f)(pow.). = 0

or
1 N? — o2
‘p—o(polul)z - (0_2 _ f2 ) v?‘[w - 0

Now if we had let pg be constant in the momentum equations [so that it is
differentiated only in N%(2)], then we would have obtained

N? — g% _
UQVfngﬂ

s

This last simplification is called the Boussinesq approzimation and it means that

Wyy —

poz/po € w,/w, i.e. po(z) changes over a large vertical scale. It is quite adequate in

the ocean.

At the free surface (very close to z = 0), we have Dp*/Dt = 0. Let p* = py + p,

linearize and apply the result at z = 0:
—op+wpp, =0 at z=0
or —1op—wgpy =0 at z=0
Now use the previous equations to eliminate p
(0 — fFAw, +gV4w=0 at z=0
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At a flat bottom

w=0 at z=-D

So we have to solve

z=-D
\w=0

4.2 Unbounded, rotating, stratified fluid

We suppose for the moment that N?(z) = constant. We also assume that the
coordinates rotate around the z axis at Q so the f = 2Q = constant which is the

f-plane approzimation. The field equation is

N? — 52
Wz — (;T___f—?) (Wee +wyy) =0
Since N, f are constants, exact solutions are

—tot+tkr+ily+imz

w=e
from which
N? — g2
™= (m) (K + )

is the dispersion relation. In k, £, m space, the dispersion relation is a cone if

fA<o?< Ntor f?> g% > N2
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m m/R

kK

All possible wave vectors for waves of frequency o lie on this cone. They may have
any length. Fixing o fixes their direction. If we define 6 as in the sketch, then with
K = (k* 4+ 2 + m?)Y/2 we can write

m=Kcosf ; (k*+¢)Y2= Ksing

and the dispersion relation may be rewritten as

0% = N%sin?0 + f*cos’0

or

o K = N2(k? + 0%) + f2m?

These waves are of the form (%, p, p) = (o, po, po)e_i"t+ig'f. By continuity, V - @
leads to k - iy = 0 which means that the fluid motion occurs in planes normal to the
wave vector. That is, the waves are transverse. Also, Vp ~ Epo which is perpendicular

to u, so the pressure gradient forces are normal to fluid flow and acceleration.

If f =0, then the momentum equation in any direction normal to k

VA
U 1\ ksinB

\
e\

w=usin®
becomes

uy = —gpsinf/pg (
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while
pi + usinfpg, =0
because the pressure gradient forces are along k. This says that only the density
gradient along v matters, from which
Uy + N*sin?0u =0 ; o°= N%sin%4

and motion is along a straight line perpendicular to £.

If N =0, then the momentum equation in any direction normal to &
f
\

u \\ f_L ﬁ K

becomes \f

ut—i—f”><u:0:>17t+fcosé9fc’><fl:0

Thus the motion occurs in inertial circles at 6% = f2 cos?

C
X
-
=i

We can examine the group velocity by defining

N2 _ 0.2
Wi(k,l,m,0) =m? — }'E-f?(k2 +04 =0
Now
ow ow
dWig,m = —a—k—(‘”\, -+ —%da =0
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SO

do o = W/ Ok|sm e
ok T T oW/ dolem
From this

_ do _ kEN? — o2
o0 T kT & K?

L e N
v T o1 T o K2

_ o _mo [
o= = om o K?

First notice that

[ k2+€2 N% - o? m? [o? — f?
@ = o o K? o K?

—02(k2+€2+m2)+N2(k2+€2)+f2m2
K20

This means that the group velocity is perpendicular to the phase velocity! Next

observe that

g, = —= [th(N? = 0®) + JOUN?* — ) + km(f* — 0* + N? — N?)]

That is

S E(V? = o) = km(N? = )

-

= GK?

This allows us to visualize the direction of ¢,
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f>N

energy

-

Kk
(phases)

Finally, using the dispersion relation,

&1 = (gt + ;)"

f<N
K
(phases)
energy

— [/C2(N2 _ 02)2 +£2(N2 _0_2)2 +m2(02 _ f2)2]1/2/0_1{2

= [(N?*=0%)?sin?0 + (o2 — 32 cos? 0112 ok

= [(N? - f)?%sin* 0 cos? 0 + (N? — f2)% cos* 0 sin? 01V ok

= [N? — f*|sinfcos /o K

An alternative is to define ¢ as the angle of energy propagation such that

o = N?cos® ¢ + f*sin® ¢

8] = |N? — f?|sin ¢ cos ¢/o K

f>N
Cg
(energy)
¢ phases

¢

f<N

phases

Cg
(energy)

There is really nothing mysterious about ¢gLE,. For deep water waves we had

-
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Cyp = %Ep which states that, in a group, individual crests arise at the trailing end,




propagate through the group faster than the group goes, and die out at the leading
edge. For these internal gravity waves, individual crests arise at one side of the group
and move through it at right angles to the group motion, finally dying out at the other

side. An example is depicted by Gill (1982, pp. 135-6).

Imagine a harmonic source e™?* at the origin of space coordinates and let’s
discuss the wave field for various choices of o, N, f. In the general case, energy is

localized to the cone whose apex angle is ¢ defined by 0% = N? cos? ¢ + f?sin® 4.

(i) Rotation only: N =0, f # 0. We have

o=fsing ; |G|=fcosgp/K
p=0°
\ o= 0 (Steady: Taylor Columns)
ICgl #0
wavenumber = arbitrary horizontal, m =0

—

¢ = 90°
o=f (inertial oscillations)

— |cgl=0
wavenumber = vertical, k == 0

This says that for vertical energy propagation, ¢ = 0°, the flow is steady (¢ = 0) but
the group velocity is nonzero. The wavenumbers are arbitrary but horizontal, i.e.

m = 0. The flow is basically that of Taylor columns which are steady, geostrophic flows
with no vertical variability (9/9z = 0). If the direction of energy propagation is
horizontal, ¢ = 90°, then the frequency must be the inertial frequency (o = f) and the
group velocity is zero. The wavenumber is purely vertical, i.e. k= { = 0. This
corresponds to solutions of the horizontal momentum equations in which p is a

function of z only. The pressure gradient terms disappear leaving

uy— fv = 0

73



'Ut"{“‘fu = 0

which has the solution o = f, u = 7v. Thus, we see that in a rotating homogeneous
fluid, low frequency energy flows vertically in the form of Taylor columns, while inertial

oscillations at different depths are entirely independent.

(ii) Stratification only: f =0, N # 0. We have

o=Ncos¢ ; |]|=Nsing/K

p=0°
o= N (buoyancy oscillations)

Cq =0
g
wavenumber = arbitrary horizontal, m = 0
¢ = 90°
o= 0 (steady)

wavenumber = vertical, k =¢= 0

This says that for vertical energy propagation, ¢ = 0°, the flow oscillates at the
buoyancy frequency (¢ = N) and the group velocity is zero. The wavenumber is
arbitrary and horizontal, i.e. m = 0. These are called buoyancy oscillations. The flow
has Taylor column-like structure, columnar in the vertical, but it is like inertial
oscillations in that energy does not propagate. For horizontal energy propagation,

¢ = 90°, the flow is steady (o = 0) and the group velocity is nonzero. The wavenumber
is vertical. In this case, the momentum equations reduce to 0 = —Vp/po — lAcgp/po
from which p must be zero since it does not vary in time and can be absorbed into pq.
This leads to w = 0 from the density equation, leaving u, + v, = 0 from continuity. So,
each layer in the stratified flow moves independently of all others. Flow in each layer is
nondivergent and buoyancy has no effect. In two dimensions, if v, = 0, (v = 0 say),
then u, =0, i.e. u = u(z). Thus, low frequency energy flows horizontally and, in two

dimensions, is analogous to the Taylor column flows.
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Notice quite generally that effects due to f and effects due to constant N are B

very similar in their mathematical expression.

(iii) Both rotation and constant stratification:
0% = N?cos? ¢ + f?sin® ¢

|G| = IN? — f?|sinpcos ¢p/o K

$=0°
A o= N (buoyancy oscillations)
Cg =0
wavenumber = arbitrary horizontal, m = 0
(columnar structure)
¢ = 90° |
o=f (inertial oscillations) }
Cg=0
wavenumber = vertical, k =¢= 0
(layers uncoupled)

For vertical energy propagation, we recover the buoyancy oscillations while for

—

horizontal energy propagation, we recover the inertial oscillations. Now there are no

zero frequency wave flows that propagate energy. At frequency o, energy is confined to

the cone whose sides lie at ¢ to the vertical.

What happens if the source frequency is outside the range of f to N? In that
case the field equation can be written

o? — N2

w,, + ———
zz 0'2-—f2

(Wee + wyy) =0

and we see that the very nature of the equation has changed from a hyperbolic (or
wave-type) equation to an elliptic (or potential flow type) equation because the sign of
the coefficient has changed. Our free-wave dispersion relation now becomes

o? — N?

m? = —(—
(02—f2

)(k* + %)
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and we see that at least one of the wavenumbers must be complex. This, in turn,
means that the solution is no longer free to propagate, but instead must decay
exponentially in some direction. For example, for waves propagating in the horizontal

(k, £ are real), the oscillations must grow or decay monotonically in the vertical.

4.3 Waveguide modes

We turn our attention to the full problem introduced at the beginning of the chapter.
Instead of an unbounded fluid, there are now surface and bottom boundaries to
contend with.

’/ ©° -12)w_+g (Wt W,y ) =0
z=0

=0

z=-D
\W=0

Initially we restrict ourselves to N? = constant. The signs of

S=otop, ==

= 0% — f2

are crucial and we have several cases to consider.
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2

R2 ‘"i

- N2>f2

®
!

| - O N2<f2

R2 -—-.;E, -*-f —_

©

Evidently the cases 0* > N?, f? and ¢* < N?, f? are identical for either N? > f2 or
N? < f% but the case where o? is intermediate between N? and f* depends strongly

on whether N? > f2? or N? < 2. We will look at cases A and B separately.
Case A: Define R? = (02 — N?)/(0* — f?) and consider R? > 0. We let
w = 8—iat+ikzw(z) {

and w satisfies

Solutions are

w = e ¥ sinh[kRy (2 4+ D))
and they satisfy the top (z = 0) boundary condition only if
Ri(c* — f*)/gk = tanh(kR; D)

This last relation is effectively the dispersion relation; its solution is ¢ = (k) or, as we
have done the problem, &k = k(o). To see what solutions exist, plot the left-hand side

and the right-hand side versus k.

(i




LHS
RHS

This is case A with §? = 02 — f2 > 0. There are two oppositely travelling waves which
we can identify with the usual surface waves existing in the absence of stratification
and rotation.

N=f'=0; R=1; o' fl=02>0

Notice that in case Al (¢ < f%, N?), no waves exist. The plot of the left-hand side

and the right-hand side versus k looks like

RHS

LHS

and there are no solutions to the proposed dispersion relation. What has happened is
that our assumption of free wave propagation in the & direction (real k) has proved

impossible to satisfy.

Case B: Now R? = (N? —o?)/(0? — f%) > 0. We let
w = e—iat+ikxw(z)

and w satisfies
(0* — fHw, — gk*w =0 z=10
Wyr + k2R =0
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Solutions this time are

w= e TR sin[kR(z + D))

with
R(o* — *)/gk = tan(kRD)
. . . . 2 ”
sopsl Lt 2, .2, 3%
Again we look at the dispersion relation %njoéceﬁu Yoy o £V

@) &> @) F<r

!/ —7?’/2 Tr{2 —1r/2 /2 iy

T -

In both cases there is now an infinite set of oppositely travelling modes n = 1,2.... The

case 0 > f? has an additional pair of small-k modes not present in the case o2 < f2.

For large k, the n = 1,2... modes have the approximate dispersion relation
k.RD = +n~, or )
N g2\ /2
k,D ( Z ) = +nr

o2 _ f2
This does not hold for the small £ (n = 0) modes. For them, if kRD < 1, then we

obtain
0.2 - f2
gD

= k2

These we recognize as the old surface modes in shallow water now modified by

rotation. Note that they do not exist when o? < f2.
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Notice that if we require w = w =0 at 2 = 0, i.e. a rigid lid, then the dispersion
relation is sin(kRD) = 0, so that k, RD = +nr becomes exact. But we no longer have

the surface modes k.
Let’s look at the dispersion relations more closely. For the surface modes
o* = k*gD + f?

For the internal modes

(o = fA)(nn/kD)? ~ (N? — o?)

o*[1 + (nw/kD)* =~ N? + f*(nx/kD)?

ol o=VgD k

——

Note that all waves have o > f and that all internal modes have ¢ < N. These two

limits are also points of vanishing ¢, which is easily seen since do/9k — 0 there.

It is useful to examine the kinematics of the internal modes. We have
w = woe " sin[kR(z 4 D))
From continuity (u; + w, = 0)

u = iRwoe ™" cos[kR(z + D))
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Consider the lowest mode n = 1. Then from the dispersion relation k; ~ v/ RD and
w = wq cos(kyx — ot)sinfr(z + D)/D] ; u = —Ruwgsin(kyz — ot) cos[r(z + D)/ D]

after taking the real part. The vertical structure looks like

z z
z=0 ; — z=0 !

=-D > =D 77T
Thus, we see that the particle motions under the crest and trough of a travelling wave

consists of a series of convergences and divergences giving a system of vertical cells.
A 3T
2

X 2/
=T 2

RD

e b TS - )

z=0

il

e e e e i —— s A e - o ]

]Hl?

R T e e ™)

z=-~D

One common consequence of this pattern is the formation of surface slicks or bands of
smooth, unrippled surface water, the bands being aligned parallel to the internal wave

crests. The scenario is as follows. A very thin organic film (one or two molecules thick)
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typically covers the water surface. The periodic convergences and divergences of the

horizontal surface current due to the internal waves produce periodic contractions and
expansions of the surface film. This leads to an increase in the amount of film over the
convergences. The effect of the film in general is to reduce the surface tension, thereby
decreasing the tendency for short surface and capillary waves to form as the wind blows
over the water. Thus, the region over the convergences tends to have less ripples almost
to the point of elimination. These are the surface slicks. Such surface slicks have often

been used to infer the presence of internal waves, especially internal solitary waves.

4.3.1 Evanescent modes

We can reexamine the cases considered above but assuming that the wave decays in

the z direction. For case A, we have
w = e—wt+kzw(z)

(6 — fHw, +gk’'w =0 at z=0
w22+k2R3w:O
w=0 at z=-D

Solutions are
w = e sin[k Ry (2 + D))

Ri(o? = f?)

= —tankR;D
gk
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RHS

LHS

There is an infinite set of evanescent modes although case Al has two more than case

A. Putting on the rigid lid reduces Al to A, i.e. sin(kR;D) = 0.

For case B, we have

w = e—iat+kxw(z)

(6 — fAw, + gk*'w =0 at z=0

Wy — k*R*w =0
w=0 at z=-D

Solutions are
w = e sinh[kR(z + D)]

R(o? — f?)

= —tanh kRD
gk
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o?‘>f2 .0'2<f2

LHS
LHS
RHS RHS
We could have arrived at these same evanescent modes by setting k = —ik’ in the

previous section.

A summary of internal wave properties for all of the various ranges of

parameters can be found in Gill (1982, p. 261).

4.4 Generation at a horizontal boundary

We have discussed the properties of freely propagating internal gravity waves, but we
have not discussed how these waves might be generated in the ocean or the
atmosphere. One way that internal waves are generated is by a mean horizontal flow
passing over some topographic feature which forces the flow to move up and down

slightly. The following example illustrates this mechanism.

For simplicity, we neglect the effects of rotation and consider two-dimensional
flow over a sinusoidally varying horizontal boundary at z = 0. The amplitude of the
variations is assumed small so that the dynamics can be linearized. Of course, an
arbitrarily shaped boundary could be used by first Fourier decomposing it, then

solving for the flow over each individual component, and then summing the results.
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The mean flow has magnitude U in the z direction.

The topography has the form h = hgsin(kz) with amplitude hy. Moving along with

the mean flow, the topography has the form
h = hgsin[k(z + Ut)]
from which we see that the frequency of the resulting motions will be
oc=-Uk

The topography introduces a vertical velocity because the particles near the boundary

must follow, to some extent, the undulations of the boundary. So,

w=U=— = wpe” """ on z=0

Jzx

This says that wg = Ukhg. The field equation for the region above the boundary is

N? — o2

Wez =0
0-2

Wyy —

A solution is

w = woe—iat+ikx+imz

where



after substituting for o*. This solution satisfies the boundary condition at z = 0 and
represents waves with phases propagating downward (because o < 0) which
corresponds to energy propagating upward to z — co. Thus, the radiation condition at
z — oo Is satisfied, i.e. no energy enters the system from external sources. We now

examine two cases.

Suppose o > N? which means k > N/U. This corresponds to short
wavelengths or undulations on the boundary. In this case m? < 0 so that m must be

imaginary. The solution becomes
W = woe—wt+zkx-—mz m2 — ]C2 ; (N/U)2

where the sign of m is chosen to ensure that the solution remains finite. Recall that
PoWs¢ = Pzg from the momentum and continuity equations. This produces
poiomw = —k?p from which

_ —polom  —poiom
p= L2 w= L2

woe—wt-}-tkz-—mz

We see that w and p are out of phase by 7/2. Therefore, the vertical energy flux,

wp = 0, is identically equal to zero, i.e. there is no vertical energy flux. This makes
sense because the solution decays exponentially in the vertical, so the waves cannot
transport any energy away from the boundary. Instead, the oscillations are trapped at
the boundary. If the wavelength is very small (kU 3> N), then stratification has little

effect and the flow is essentially irrotational.

Suppose 02 < N? which means & < N/U. This corresponds to longer

wavelengths or undulations on the boundary. Now m? > 0, so m is real and

m? = (N/U)? — k%. The solution is

w = ,woe—-iat+ikaf:+imz
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The form of this solution says that energy is continually being transported toward

z — 0o. We have pgomw = —k?p, so
—pPodmmn —Podmmn —iot+tkr+imz
P= W = T woe

Now w and p are in phase, so Wp # 0 and there is a net upward flux of energy. This
produces a drag on the mean flow because the energy must come from the mean flow.
The drag per unit surface area is the rate at which horizontal momentum is transferred

vertically

WP —peom wi

. /2
77 1 2772 Nz 2 '

The cutoff wavenumber which separates the two cases, k. = N/U, corresponds
to the wavelength 27/k. which is the horizontal distance traveled by a particle in one
buoyancy period. This says that if the particle encounters multiple crests in the
topography during one buoyancy period, then the fluid will be forced to oscillate at
such a high frequency (greater than N) that no free waves can exist and no net drag
will be produced. If the particle stays within a single undulation, then the flow
adjustments will be slow enough so that free waves will be radiated away producing a

drag on the mean flow.

4.5 Reflection from a solid boundary

Here we consider the reflection of an internal gravity wave from a solid boundary which

is at some angle to the horizontal. To start, consider the two-dimensional solution

—igt+ikr+imz

e which satisfies

2

Wy, — Rwe, =0
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where [t? = (N? —0%)/(0% — f2) and m = +Rk. Lines of constant phase are those for

which

—ot + kz + Rkz = constant

That is

x+ Rz = (0/k)t + constant

z + N2
NEAN
x—Rz=0 NN
M\ phase
.+ N
7 Ve — \ \X(
s .
2 s NN
X < X
a4 \\ \
s >X\/ NN
% AN
v s h AN
s 7L phase
i X+Rz=0

Phases propagate at right angles to ¢ + Rz = constant. We see that energy flows
along z + Rz = constant because

B o 0.2__f2 1/2_ (N2—-f2)COS2(2$ 1/2_
ZI—:ER —i(m) —:t((N2_f2)sin2¢) —:tCOt¢

These lines are the characteristics of the hyperbolic w equation, i.e.

w = f(z + Rz) + g(z — Rz) is the solution.

Now consider reflection from a solid plane wall passing through the origin;
z = az. Remember that, for energy incident along = + Rz = 0, the incident

wavenumber is along the normal to that line.
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x+Rz=0 ’ x—-Rz=0

mi=Rk;

Energy exits along z — Rz = 0, so the reflected wavenumber is normal to that line.
The frequency of the wave is determined solely by the angle to the vertical, and it
cannot change upon reflection. Thus the incident and reflected waves must make equal
angles with the rotation vector or the vertical (gravity) rather than with the normal to

the surface. Therefore, the reflection is not specular.

Consider the details of the situation. The incident wave is Ei and the reflected

i z
wave is k,. x+Rz=0 | x-Rz=0

energy; energy,

k 1’/ (tan 'R —tan 'a)

................................. (tan 'R + tan a)

The projection of incident and reflected wavenumbers along z = az must be equal.
|l;‘ cos(tan™! R —tan™' @) = [I;TI cos(tan™! R + tan™" @)

We can evaluate these by geometry and the law of cosines [cos = (a? + b — ¢?)/2ab)].
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b

After some algebra, the result is

- - /14 aR
Bl o= IR, >
Rl o= R (s
_ . .<1+aR> <R+a>
e = E\ T oR) B

where the signs have been taken from the sketch. This gives the new wavenumbers in
terms of the old ones. Because waves of a given frequency ¢ can only go in the two
directions & tan™! R, reflection occurs not in the normal to the reflecting surface, but
rather in the direction of the stability gradient, i.e. in the z direction, or in the
rotation vector. We have z p

A tan a
tar'a

tari 'R’

-1
tan R

The normal component of velocity must vanish at the wall, so
|Ti| sin(tan™ R™' + tan™' @) = || sin(tan™' R™! — tan™! a)

Again we can use geometry to obtain

] = I3 ()
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Notice that if aR & 1, the reflected velocity is very large. What does this mean?
It means that the bottom coincides with the outgoing characteristic; z = az is the

bottom and z = R™'z is the outgoing characteristic. So, as aR — 1, |,] becomes large

—

k,

and

becomes large, so that the reflected wave is very short. The present analysis
fails because we have neglected the effects of viscosity which would reduce the velocity

to zero at the boundary (no-slip condition), thereby avoiding the infinite |5, |.

We can visualize the reflection from various slopes, always requiring equal

projection of |U;| and |¥,| on the normal to the surface.

backward
reflection

aR=1
backward
reflection

forward reflection
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4.6 Variable buoyancy frequency

We have restricted discussion to the case where the buoyancy frequency is constant,
i.e. constant vertical density gradient dpo/0z. However, the more realistic situation is
when the buoyancy frequency varies with depth. Typical profiles of density and N?(z)

in the ocean are

Lo (2) N (z)

™ ——
10 mins.

_ 1000 +

g

= 4

% 20-30 mins.

Q 2000 +

3000 + |~«— 2.3 hrs.

In most of the ocean N? > f? although there are not many reliable values for the

deepest parts of the ocean. With this sort of profile, we have

_ N3(2) — o*
o2 — f2

R?(z)

and R? may be greater than or less than zero. We can examine the changes in the

solution which result from this vertical dependence by looking for a wave solution like
w = emiotHkT ()
The waveguide internal wave problem becomes
(0* — fAw, —gk?w =0 at z=0
wer + KPRY(2)w =0
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w=0 at z=-D

If R*(z) > 0, then the solution is trigonometric (travelling wave) because w,,/w < 0. If

R?*(z) < 0, then the solution is exponential (evanescent mode) because w,,/w > 0.

Suppose the R%(z) profile looks like

Az
exponential \
Oscillating

exponential /

The system of equations is almost a Sturm-Liouville problem. We won’t go into the

details of Sturm-Liouville theory because it can be found in many textbooks (and you
should be familiar with it). We can summarize some relevant properties which will be

useful for understanding the present problem. The usual Sturm-Liouville problem is

(p:): +(q+ Ar)p =0

am’(/)z + bl,27,b =0 at z= 0, -D

with p,r > 0; ¢ < 0 or ¢ > 0. The parameters p,q,r,a,b are all real. There is a singly

infinite, denumerable set of eigenvalues
M A< <La 400
The eigenfunctions are orthogonal and can be orthonormalized as
0
./—D 1/),'1/)j7‘(2) dz = 5,'3'
where 6;; is the Kronecker delta.
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In terms of the Sturm-Liouville notation, we have
A=k, r=R*2), p=1, ¢=0

Our present problem differs from the standard Sturm-Liouville problem in two ways.
First, the eigenvalue k? appears in the boundary condition at z = 0. Second, R*(z)
may change sign in —D < z < 0. Let’s look at each of these differences. When R*(z)
changes sign in the definition interval, the generalized Sturm-Liouville theory
demonstrates the existence of an infinite, denumerable set of eigenvalues which are real

and have no lower bound to the sequence

—00 <L S (B <R <0< (A2 < (A¥)? < 4 00

where the superscript e represents an evanescent mode, and the superscript w

represents a travelling wave. The situation corresponds to

Az R2(2) k<0 *z w(z) k®>0| Az w(z)

- o -~
\ <0

R

>0 evanescent > travelling
modes < modes

D

Y/ T

Thus, in this case, both evanescent and travelling modes are present simultaneously.

The effect of the appearance of k? in the surface boundary condition manifests
itself as |
[ v B(z) dz =~ (O 0)g /(0" — 1)
This says that the eigenfunctions w; are not orthogonal unless the surface boundary is

the rigid lid, i.e. w;(0) = 0.
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We could have solved the problem using the WKB approach in the case of
slowly varying N?(z), but we don’t have time for that here. We can summarize the
situation for R?(z) as follows. If R?(z) does not change sign in the water column, then
all of the results found for the N? = constant case apply, with the only changes being
in the details of the dispersion relation and in the vertical dependence of the velocity
field. If R*(z) changes sign in the water column, then there is an infinite number of
evanescent modes and travelling waves present simultaneously. If o2 > f2, there are

also two travelling surface waves; if 0% < f2, there are two evanescent surface modes.
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Chapter 5

Shallow water dynamics

We have seen in the previous two chapters that low-frequency waves tend to have
primarily horizontal motions, and their wavelengths tend to be long compared to the
water depth. This allows the vertical acceleration in the vertical momentum equation
to be ignored giving the hydrostatic approximation, which is equivalent to assuming
that the wave frequency is much less than the buoyancy frequency, 0 < N. These
cases may be grouped collectively under the heading of shallow water dynamics. In
this chapter, we will exploit these simplifications in order to study several types of

waves in detail.

5.1 Laplace’s tidal equations

Until now, we have considered the equations of motion in Cartesian coordinates only.
As a preliminary step toward our study of shallow water dynamics, we consider next
the effects of the earth’s curvature by examining the equations of motion in spherical

coordinates.

96




For rotating, stratified flow on a gravitating sphere, the linearized equations of

motion are

ut——iZQsinOv—}—QQcosOw:——&’;
poa cos 6
. . Ds 2
v+ 20sinf u=—— — Q°asinf cos b
poa

wt—2Qcos()u=—E3——g—'[—)+Q2acos20

Po  Po

pe +wpg, =0

up + (veosb)y +acosf w, =0

The spherical system is sketched as

The coordinates are

¢ = longitude of the considered point P

0 = latitude

u = east-west velocity

v = north-south velocity

w = velocity in radially upward z direction
a = earth’s radius

These equations have already been specialized in the sense that the fluid has been

assumed thin compared to the earth’s radius, i.e. Ar < a, so that a could be

substituted for r in all of the coeflicients.

97




The radial and north-south momentum equations contain the centrifugal forces
of the earth’s rotation as their last terms. These may be written as the gradient of a
centrifugal potential, V(30 cos?§ r2). This reminds us then that the solid earth and
the ocean surface are not spherical surfaces, but rather equipotential surfaces of the
total potential

1
gr+ 5(22 cos? § r?

which is nearly spheroidal. If we worked in spheroidal coordinates, the only nonzero
part of the potential gradient would be the part normal to the (equipotential)
spheroidal surface. This would be a ‘gravity’ which varies by about 0.3%

(= 100 x Q%a/2g) from the poles to the equator. We shall neglect this variation of
gravity with latitude and approximate the spheroidal surfaces with spherical ones.

That is, we shall neglect the small centrifugal potential.

This neglect is valid on the sphere for geophysical flows rotating with the earth

at speed (). However, in the laboratory, for rotation about the z axis, we have
Linz2, 2
Uy — 200 v = —ghg + -2—[Q (z* + 9y,

1
v+ 2Q u = —gh, + 5[&12(:52 + ),

If the fluid has a free surface, then this surface will take the equilibrium shape of a

paraboloid:
2

h=hy+ Q—(:f + 3%)
2g

If the bottom (z = 0) is flat, then we must write the continuity equation as

2

Q
ht+V~ﬁ[h0+—2—E(m2+y2)] =0

In this case, the neglect of the centrifugal terms produces the standard shallow water

equations which we have already seen. However, depending on the rotation rate and
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the size of the laboratory apparatus, the centrifugal terms may not be small, so the
results of the calculation may have large errors. The neglect of the centrifugal terms is
really most useful for local models on the spherical earth, rather than for laboratory

models.

Besides the familiar Coriolis terms, f = 2{)sin§, the momentum equations
contain other Coriolis terms, 2§ cos . These are due to the horizontal components of
the rotation vector. They are inconvenient because they generally make the solution
o

unseparable. If we proceed as before, assuming time dependence of ¢™*?*, and combine

the radial momentum equation with the density equation, we find
(N? — 0®)w + 2Q cos O(iou) = iop./po
which, when combined with the east-west (¢) momentum equation becomes
(N? — oHw + (402 cos® O)w = i0p,/ po + (402% sin 0 cos §)v — 2Qp,/ poa

If N? > 4072, as is usually the case in the ocean, then the first term is much greater
than the second term. We can then neglect the second term, which amounts to
neglecting (29 cos #)w in the east-west momentum equation. If we neglect one
horizontal Coriolis term, we should neglect both because energy is conserved with both
or with neither but not with just one. The neglect of the other Coriolis term in the
radial momentum equation is called the traditional approzimation. In some sense, we
drop the (2§ cos 8) because vertical buoyancy forces are much greater than vertical
Coriolis forces. Again, this approximation may not be acceptable for a laboratory

experiment.

Having neglected the horizontal components of rotation, (20 cos ), we have

Pe

U —20Qsinfv = ————
poa cos ¢
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DPs

v +2Qsinfu = —2-
Poa

w, N
Po Po

prtwpo, = 0

ug + (vcos )y +acos w, = 0
with boundary conditions
Pt +wpo: = pr — gwpo =0 at z=0
w=0 at z=-D
We can separate variables as follows
uw o= e 'U(¢,0)F(2)
vo= eV (4, 0)F(z)
w o= e (¢,0)G(2)
p o= e'P(4,0)H(z)

The equations of motion become

P H
(=ioU —2Qsin§ V)F = — 27
poa cos
P
(—ioV +20sing F = 2o
. Pod
(N2 = e YW@ _ P
Po

UgF' +(Vcos0)pF + acos WG, = 0
—10PH — gpoWG = 0 at z=0

WGE = 0 at z2=-D

where the density equation has been combined with the radial momentum equation.

The separation is completed by choosing
W=—iogP, H=gpF, G,=F/d
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which results in

LioU —20sing v = 3%
acos 6
—toV 4+ 2Qsinf U = ——ﬂ
a
dy,
—ioP + [Us+ (Vcos)g] = 0
acos
2 2
a.+ N~ _ ¢
gdy
1
GZ_ZG = 0 at z=0

The first three equations contain variables which depend on ¢ and 6 only. That is,

they contain all of the horizontal dependence of u,v,w and p. The vertical dependence
is entirely contained in the fourth equation which, along with the boundary conditions,
is an eigenvalue problem in which d;! is the eigenvalue. The eigenfunction determines

the vertical variation of w and, indirectly, of u,v and p.

There is an infinite number of sets of horizontal structure equations, cach set
being identical except that instead of the total water depth D, each system now has an
equivalent depth d,. The lowest equivalent depth dj is effectively the actual (constant)
depth. The higher equivalent depths go like 1/n? and correspond to the n** mode
vertical variations of w. The equations for U,V and P are called Laplace’s Tidal

Equations or LTE.

Notice that the separation of variables fails if the bottom is not flat because we
no longer get an eigenvalue problem in z. But if the bottom is flat to a good
approximation, then LTE give the horizontal variation of both surface and internal
modes providing we interpret d, properly. That is, do gives the surface gravity mode

while d,, give the internal gravity modes.
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For free oscillations, only those d, > 0 have physical significance. But the
eigenvalue problem for G may also have negative d,,. These correspond to modes which

are evanescent in the horizontal. They may be excited in forced solutions of LTE.

5.2 Shallow water equations with rotation

If we neglect the centrifugal acceleration terms, make the traditional approximation
and consider motions with horizontal and vertical scales which are small compared to
the earth’s radius, then the equations of motion may be written in Cartesian

coordinates as

1
w—fv = ——p,
Po
1
v+ fu = —— Py
Po
1
0 = —-—pz——g—p-
Po Po

pt+wpo, = 0

Uy +v, +w, = 0

where the flow has been assumed hydrostatic, i.e. w; has been neglected, and
J =28 sind. Remember also that the density has been separated into a background
part which varies in z only and a perturbation, p* = po(2) + p(z,y, z,t) where p < po.
Then the hydrostatic part has been subtracted and the Bousinesq approximation has
been made allowing the function py(2) to be considered constant everywhere except in
the density equation. The vertical momentum equation and the density equation can
be combined to yield

1

N2w =P
Po
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Consider first the case of a homogeneous fluid in which p = 0. The vertical
momentum equation is the hydrostatic relation p, = —gpo (p is now total pressure),
which when integrated yields

ply — p(2) = —gpo(n — 2)

from which
p(2) = Patm + gpo(n — 2)

We shall assume that the atmospheric pressure is zero, so

p(z) = gpo(n — 2)

We see that the horizontal pressure gradient is independent of z, so the equations of

motion can be written

u — fo=—gns
ve+ fu= —gny
Uy + vy +w, =0
Intégrating continuity from z = —D to z = 7 yields
n
/_D(uz +vy) dz 4 W=y — W]=—p =0
Since u and v are not functions of z, then this becomes
(uz +vy) (7 + D) + wlzy — w|o=—p =0
The top and bottom boundary conditions are

—Djtl at z=1n; w=-uD,—vD, at z=-D

Combining these with continuity yields
ne+ [u(n + D)ls + [o(n + D))y = 0
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If we assume that the surface deviations are much smaller than the water depth, i.e.

n < D, then the final linearized set of equations is
ug = fo=—gn,

v+ fu= —gn,
e+ [uDlz + [vD], =0
These are the linear shallow water equations with rotation. We derived the
nonrotating version with constant depth in the chapter on surface gravity waves.

Notice that, for constant depth D, they have the same form as LTE but written in |

Cartesian coordinates.

Now return to the equations with stratification included. As we did in the

previous section, if the depth is constant, we may separate variables as
v = Ulz,y,t)F(2)
v = V(z,y,t)F(z)
w = W(z,y,t)G(z)

p = P(z,y,t)H(z)

The equations become

1

(U, - fV)F = ——P,H
Po
1

(Vi+ fU)F = ——P,H
Po

N*WG = —lPtHz
Po

U+ V,)F+ WG, = 0

If we choose

H=gpF ; G,=F/d; W=Ph
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then the equations reduce to

U—fV = —gPF,
Vit fU = —gP,
Po+d(U:+V,) = 0
.+ Mo _
gdn
Gz—glzG = 0 at 2=0

G = 0 at z2=-D

The boundary condition at z = 0 comes from p = gpon at z = 0. Differentiating with
respect to time yields dp/dt = gpoOn/0t = gpow or HOP/Ot = gpoW G from which the

boundary condition follows.

As in the previous section on LTE, we have separated the horizontal dependence

into a set of three equations which are identical to the linear shallow water equations
for a flat-bottom ocean. As before, the pressure plays the part of the sea-surface
displacement. The vertical structure is entirely contained in an eigenvalue problem in
which d;! are the eigenvalues. These are again the equivalent depths to be used in the
horizontal structure equations. Note that we have not had to assume a periodic time
dependence here because the hydrostatic approximation has eliminated the vertical
acceleration which previously showed up in the equation for G as the ¢? in the
coefficient. That is, the hydrostatic approximation, in this case, is the same as

assuming o? < N2

The real point here is that, in a flat-bottom ocean, stratification makes possible
an infinite sequence of internal replicas of the barotropic, long, shallow water gravity
waves. The horizontal variations of these internal modes are described by the same

equations that describe the barotropic mode, except that the equivalent depth d,

105




replaces the total depth D. These modes are uncoupled, so we can solve each set of
equations separately and add them to find a more general solution. Without rotation,

the speed of long barotropic waves is (gdo)/? ~ 200 ms™!

in the deep sea. Long
internal gravity waves move at the much slower speed of (gd,)'/? ~ 1/n ms~!. Thus
for comparable frequencies, the internal waves have much shorter wavelengths than the

surface barotropic mode.

It is appropriate at this point to ask “What exactly does d,, represent?” After
all, each d, is much smaller than the vertical scale associated with the vertical mode n.

One way to understand the d, is first to write the buoyancy frequency as
N =(g/h)'/*  where h=—(po,/po)”" = g/N*

which is the density scale height, i.e. the vertical scale over which the background
density varies. This scale height is typically much greater than the ocean depth. For

constant N, the equation for d,, can now be written as

t D ~ d, 1/2
o ((hdn>1/2> B (75)

from which it is clear that the rigid lid approximation applies when d,/h < 1. In this

~1/2

case, the vertical wavenumber for mode n is given by nw/D = (hd,) which leads to

a vertical scale of A\, = QW(hdn)l/Z. Rewritten, this becomes

A2
dn = 472h

which says that d,, is proportional to the square of the vertical scale of mode n divided
by the density scale height. For n > 1, this quantity is typically small, so d, is small as
well. Another way to view this is that the vertical scale of the mode is proportional to

the geometric mean of the density scale height and the equivalent depth, i.e.

Ay o (hd,)1/2.
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The simplicity of these flat-bottom results is not extendable to the case of
variable bottom topography. However, we should keep in mind that, when considering
the flat-bottom ocean, all of the long shallow water barotropic waves which we are
about to study on the f-plane have an infinite number of internal replicas allowed by

stratification.

5.3 Reflection at a solid wall

We consider first several types of waves which can exist in the absence of rotation.

Therefore, we take f = 0 and the equations are

.

Ut = =gz
Vi = — gy
M+ D(uz +v,) =0
Free wave solutions have the form 5 = e~t+* s+ which leads to
gk g¢
u==n ; v=-=rn
o o
Substitution into continuity gives the dispersion relation
o? = gD(k* + ¢*) = gDK*
These are nothing more than surface gravity waves in shallow water which are
nondispersive with
c=0/K =(gD)* i |g| = do/d|F| = (gD)"?
Suppose the wave is incident upon a solid wall at z = 0. &
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k|

The velocity normal to the wall must vanish, i.e. u =0 at £ = 0. The total solution

may be constructed by adding a reflected wave with the same amplitude and no phase
shift

n = ae——iat+ika:+i£y + ae—iat—ikz-\\-ily

The angle of reflection, o = tan™!(¢/k), is equal to the angle of incidence, i.e. the

reflection is specular.

5.4 Seiches in a box

Now consider a domain bounded by four solid walls.

O Ty Ty rreenrrrvred i » X
. X=a
We assume a periodic time dependence of e~*t so that the equations become

—0U = —¢gn, ; —10V = —gny
—ton + D(uz + vy) =0

(Note that 7 is now different from the full 7 because of the removal of the time

dependence. We should write the new variables with a hat or something, like 7, but
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this gets cumbersome. So, we rely on our memory to reconstruct the full variables —
not a good practice for any formal problem solving.) We can eliminate v and v to find
an equation for the surface elevation

2

V2r]+;—Dn=O

If n = e'**+% then we recover the previous solutions. However, in the box domain, the
velocity normal to each boundary must vanish. From the momentum equations, this
requires

ne =0 at 2=0,a
ny =0 at y=0,b

The solution is then

nrx mny
n = cos <—> cos ( ) n,m=20,1....
a b

When substituted into the equation for n, we get

2 2
o =gD (%—}—Z—Zz—) 72
These are the normal, or free modes, of the nonrotating basin. They are

standing waves with n,m zero crossings in 7 across the basin. Suppose the basin is
forced by an external force, say the wind, and then the wind suddenly stops. During
the time the wind is blowing, water is piled up at one extremity of the basin, thus
creating a pressure gradient. When the wind stops, there is nothing to balance the
pressure gradient, so the water begins to flow down it. There is no friction, so the water
overshoots its equilibrium position of a flat surface, and begins to pile up on the other
side of the basin. This process continues indefinitely (or until friction damps out the

motions in a real fluid). These oscillations are called seiches (pronounced ‘say shez’).
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The gravest mode m =0, n=1; 7= cos(mz/a) has the lowest frequency
0% = gD7?/a? and has a period of T = 21/ = 2a/(gD)'?, i.e. the period is the time
required for a wave to cross the basin (0 to a) and go back again. It has one nodal line
at = a/2. All other modes have one or more nodal lines and their frequencies are

greater than that of the gravest mode.

Quite generally, for a basin of arbitrary shape, the Neumann problem for the

Helmholtz equation
Vi +(c*/gDyy=0 ; 9n/On=0 at boundaries

results in a sequence of free periods o2, o2, o2... having a positive lowest member and

no upper limit.

5.5 Propagation over a step

Consider a free wave encountering a step change in depth.

x=0
f D, D,
D
1 incident
reflected
transmitted

Xx=0
This can be thought of as a shelf of infinite width. At the step, there are two new

waves which can be generated. One is a reflected wave and one is a transmitted wave.
In a sense, the step acts as a permeable or leaky wall rather than a solid wall. There
are no variations along the step in the y direction, so we may assume that all three

waves have the same alongstep wavenumber, as well as the same frequency. Thus, 7
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must go like e™**** so the solutions on each side of the step are
z<0 n= e—iot—-iéy(ATe-—iklz)

z>0 n = e—iat—iéy(AIenikgm + AReikg:z:)

where the amplitudes A; g are unknown. To find the unknown amplitudes, we must
require that the solution is consistent across the step. Without proof, this can be
accomplished by matching the sea-surface displacement () and the across-step

transport (uD) on each side of the step. Thus, at z = 0, we require
Ar+ Ap = Ar

Dako(—Ar + Ar) = Diki(—Ar)

Before proceeding, we should note that this matching of transport completely
ignores the fact that flow should not occur through the vertical section of the step. In
fact, the present solution necessarily imposes a flow through the vertical part unless
the horizontal velocity goes to zero at # = 0 (because there is no vertical variation, so
if the velocity is nonzero at the surface, then it is nonzero at depth). This apparent
inconsistency can be resolved by considering the full equations without the shallow
water approximation. The complete solution is quite complicated near the step, but
the shallow water solution is recovered far away from the step (Bartholomeusz, 1958).
The present solution also conserves energy, which was enough to convince Lamb (1832)
that the results were correct. There are problems, however, in which the simple

matching of pressure and transport leads to erroneous results.

To continue, the matching allows the reflected and transmitted amplitudes to be

written in terms of the incident amplitude

AT _— 2A[/(1 —{- lel/DQk’z)
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AR = A[(l - D]kl/DQkQ)/(l + lel/D2k2)

Notice that, if Dy — 0, then Ap = A; which is reasonable. But Ar = 2A7 which
appears incorrect. This occurs because the shallow side of the step does not vanish
unless the depth is identically zero. Otherwise, the transmitted amplitude simply gets
larger. If Dy = D,, then A7 = A; and Ap = 0, both of which are sensible. If we define

the total wavenumbers as
Kp=Kp=(ki+ " =0/(gDy)"?

Kr = (ki + )'* = o/(gDy)!/*
then,
! = Krsinay = Kgpsinag
ar = QR

so the reflection is specular. Since

¢ = K;sinay = Kysinar

sin oy sin ar

(gD2)/? — (gDy)'/?

sina;  sinarp

cr cr
which is Snell’s law. Because Dy < Dy, then sin oy < sina; so waves are refracted

towards normal incidence (a7 = 0).

Now suppose that the incident wave arrives from the shallow side of the step.
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In this case, the reflected and transmitted amplitudes are still given by the above
formulas and Snell’s law still holds. As o increases, ap increases even faster since

ar > «ar. Eventually, a critical angle of incidence, of, is reached where ar = 90°.

!
For a; = of,

o Dé/z o

(= ]X[Sina] = (gD2)1/2 D}ﬂ = (gD1)1/2 = ]XT

so ky = 0. For af > of,

0> K = (k2 + £2)/?

so k¥ < 0, i.e. the transmitted wave decays exponentially away from the step. There is

total internal reflection.

113




5.6 Edge waves and coastal seiches

We can use these ideas to examine waves which might occur along a continental shelf.
We idealize the shallow shelf as a flat-bottom region of width L. The continental slope
is reduced to a step change in depth dropping down to a flat-bottom deep ocean. This

is the classic step shelf.
x=0 (shelf) X = L (deep sea)
D, |

D,

We anticipate from the foregoing that two kinds of solutions exist. They are (A)
waves trapped on the shelf by critical internal reflection at the shelf edge, and (B)
waves arriving from the deep sea, traversing the shelf, being reflected at the coast and

finally returning to the deep sea. Ray paths for the two cases are

x=0 X =L

In each region, the elevation satisfies
Vi 4 (o?/9D)n =0

We will analyze the two cases separately.
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Case A: Here we write

n = Acoskx O<z< L
n = Be t2@-1) z>1L

which satisfies u = 0 at © = 0 and assumes internal reflection at the shelf edge. The

cross-shelf structure looks like

Thus, we must have
K =0"lgDy = 5 k=0 —0%/gD,
Notice that both k; and k, are real provided
0?/gDy > €% > o2 /gD,
1.e. provided D, < D,.
Matching n and uD (really Dn,) at z = L yields
Acosk,L =B

*‘Dl klAsin le == —ngQB

from which

tan le = k‘gDQ/IClDl

which, along with the definitions of k; and ks, is effectively a relation between o and ¢,

i.e. a dispersion relation.
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The details of solving for the free waves gets a bit obscure and is usually done

numerically with a root solving procedure. The solutions consist of an infinite set of

waves modes which can occur between the lines o = (¢D;)"/?¢ and o = (¢D;)"/?¢.

AC

Each mode has its own ‘dispersion relation’. For large ¢, k; ~ (n7 + 7/2)/L, i.e. the
elevation profile looks like that sketched above with n zero crossings on the shelf
followed by exponential decay into the deep sea. These modes are entirely analogous to
waveguide modes. The shelf break acts as a wall in some sense. If we fix the frequency,
then only a finite number of propagating modes (i.e. propagating in the y direction)

exist. These refractively trapped modes are called edge waves.

Case B: Here we write

n = Acoskz 0<z< L
77 — Beikg(m‘—L) + Ce—ikz(x—L)

which satisfies w = 0 at z = 0 and allows for incident (C) and reflected (B) deep ocean

waves. The cross-shelf structure looks like
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Now we must have
B =0gD, — 0 ; k2 =0?/gD, -0
and ¢* < 0?/gD,. Matching n and uD at = = L yields
AcoskyL = B+ C
—DikyAsin ki L = iDyky(B — O)

from which

A=
CiDQkQ COSs k]L — lel sin le

Once again obtaining solutions is a bit obscure. Notice that the wave amplitudes do
not drop out as they did for the edge waves. This is because the present solution relies
on an incident wave which essentially forces the response over the shelf. There is no
restriction on o, £ except that ¢* < 0*/gD,. Thus, an entire continuum of solutions

exists as indicated in the above dispersion diagram.

We can get a sense of the effect of the shelf by considering the case of £ = 0.

Then Diki = 0(D1/g)!? and Dyky = 0(Dy/g)'/?. The magnitude of A/C becomes

2(Dy/g)"/?
[(Dg/g) cos?ky L + (Dy/g) sin® ky L)1/2

The extrema occur where 9|A/C|/0o = 0 which happens when either cos kL = 0 or

|A/C| =

sink; L = 0. But, since D, > D, the maximum occurs when cos ky L = 0 or

_ (9D1)1/2
o= -——]:—-—-—(mr + 7/2)
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These are the so-called quarter-wave resonances or, in the present context, coastal
seiches. They are like box seiches in that they are standing waves in the cross-shelf

direction, but they have a node in elevation at the shelf break.

If they were forced by a wind stress, however, they would damp out rather quickly
because of the loss of energy to the deep ocean. They are, therefore, sometimes called

leaky edge waves.

5.7 Sverdrup and Poincaré waves

We now return to the equations of motion with rotation. We assume that the rotation

rate is constant, i.e. an f-plane. Taking the time dependence again to be e~¥*, we find

Y .
U = ;2—_—}75(‘](‘771/ — 20'771:)

0_2___gf2 (f’?z + iany)

o — f2
gD

V277 +

n=0
which is analogous to the previous equations for the non-rotating case.

In the infinite domain, a plane wave has the form 7 = ¢**+% which gives the

dispersion relation
o = gD(k* + %) + f?
These are long gravity waves modified by rotation, and are sometimes called Sverdrup

waves. If we orient the axes so that the z direction is along the total wavenumber, then
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¢ =0 and k = |k|. This leads to

u=—1 ok) v:———gﬁ——ik
a.2_f2( )’ 0,2_f2( f)

from which we see that u/v = io/ f. The particle motions are no longer along the
wavenumber vector, but are ellipses rotating in the clockwise direction in the northern
hemisphere. The ratio of major to minor axes is o/ f.

No Rotation — Rotation ———
K, c, Cq k, c, Cq

Rotation makes the waves dispersive with

_9D, . _gb

Cox ;o
g o gy o

The group velocity is again parallel to the wavenumber vector.

These plane waves propagate in the unbounded fluid only when o > f, that is f
is the lowest frequency possible for them to exist. The group velocity rises from zero at
o = f towards an upper limit given by the non-rotating, shallow water dispersion
relation. If o <« f, then we can neglect o with respect to f. The time variation is so
small that the system is quasi-steady. If /9t ~ 0, then the equations of motion
become

—fv=—gns ; fu=—gn,

which represents steady, geostrophic motion. If ¢ = f, then from ¢? — fZ = 0 it follows

that £ =0 and ¢ = 0, so we have
uy—fo=0; v+ fu=0
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which has solutions
u = cos(ot) = cos(ft) ; v =sin(ot) = sin(ft)

These are inertial oscillations which are perfect circles always remaining in the same

place.

Consider now the reflection of a Sverdrup wave from a solid wall. As in the

non-rotating case, we require that the velocity normal to the wall vanish. For a wall at

z =0, then v = 0 there. This leads to
-0, + f, =0 at =0

The solution is found by adding an incident and a reflected wave, although now they

may have different amplitudes. We write
N = aieikx+ily + are—ilcx+ily
which satisfies the boundary condition provided that

—io(tka; —ika,) + f(ila; + ila,) = 0

from which ,k ; ’{j
ok —ift & 4 -

LY L e —S——77

Ty, hould ok - ifL

If f =0, then a, = a;, the reflected wave has equal amplitude to that of the incident
wave and there is no phase shift. With rotation, the angle of incidence tan™'(¢/k) still
equals the angle of reflection, but the reflected amplitude differs from the incident
amplitude by a multiplicative constant with unit magnitude. This means that there is
a phase shift upon reflection. So the waves are standing in the direction normal to the
wall, reflected with a phase shift, and they are travelling along the wall. They
constitute a continuum in the sense that they may occur at any frequency and
wavenumber combination as long as o > f, i.e. the single boundary does not discretize

them into modes. These waves are often called Peoincaré waves.
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5.8 Kelvin waves

A solid wall makes possible a rather special wave which is trapped at the wall and can
propagate with o > f or o < f. This is called a Kelvin wave and is basically a gravity
wave modified by rotation. It has the peculiar property that the velocity normal to the
wall is identically zero everywhere, not just at the wall. Let’s consider the wall at ¢ = 0

as before. The Kelvin wave has u = 0 which reduces the equations of motion to

—fo=—gns ; v =—gn
ne+ Dv, =0
The velocity along the wall, v, is in geostrophic balance while the y momentum
equation gives the acceleration along the wall. Physically, this means that the pressure
gradient along the wall created by the sea-level fluctuation produces an acceleration

along the wall, but the pressure gradient normal to the wall adjusts itself at every

instant so as to be in geostrophic balance with the velocity along the wall.

Assuming the standard time dependence of e™“*, the Kelvin wave moves along

the coast satisfying
2

o
Nyy + g—DW =0
Choosing
1= a(z)e
where a(z) is still of unknown form, the dispersion relation is
o? = gDe?
which is identical to the gravity wave dispersion relation in the absence of rotation!
The function a(z) is found by combining the two momentum equations to find
=107 + fny =0
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Notice that this is identical to the statement that v = 0 which we previously satisfied
at the wall, but is now satisfied everywhere. From this we obtain an expression for
a(z), namely

a(z) = ageltele
The full solution is

—iat+ilyef£z/a e-iat:l:iay/(gD)lﬂi:far:/(gD)l/2

= ape = o

If the wave is on the = > 0 side of the boundary, then we must require that the solution
remain finite as £ — oco. This means that limy_.o 7 — 0 which means that ¢ < 0. That
is, the wave must travel in the —y direction in this case. If the wave were on the z < 0
side of the wall, then we would require that £ > 0 so the wave would travel in the +z
direction. Thus, the wave always travels with the wall on its right in the northern
hemisphere (f > 0; everything is reversed if f < 0). The wave amplitude decreases
exponentially moving away from the wall, so the wave is trapped along the wall by

rotation. A faithful drawing of a Kelvin wave may be found in Gill (1982, p.380).

5.9 Waveguide modes

Consider an infinitely long channel in the z direction with sides at y = 0, y = a.
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We seek to determine the kinds of waves which may propagate subject to v = 0 at

y = 0,a. We must solve
o — f2

v2
n+ 7D

n=10
w0y + fn: =0 at y=0,a

Look for solutions of the form

- mmy . mm
n = ek <cos + a,, sin y)
a a

This satisfies the field equation if

The boundary conditions are

. mnw . mmy mmy , mny . m~w
10— | —sin + a,, cos +:fk( cos + a,, sin
a a a a a

y):() at y=20,a

from which

k
amz-——f-—a m=1,2..
omnm

There is no m = 0 mode because it does not satisfy the boundary condition at y = a.

Notice that as m increases, k decreases and finally becomes imaginary. Only for

o? _ 72 2 1/2
gD ﬁ)

m=1,2...< (

123




may these waves propagate along the channel and then only if 2 > f%. They
propagate in either direction. If 0% < f% or m > Mmaz, then these waves decay
exponentially along the channel. They are then meaningless in the infinite channel case
but may represent realistic motion if the channel is walled off at some point. These are

Poincaré channel modes.
Regular Kelvin waves are also possible. As earlier, we may have

n = e-iottioz/(gD) /2~ fy/(gD)!/?

that is, a Kelvin wave moving east along y = 0. We may now also have

n = e—iot=i0z/(gD)" 12+ f(y—a)/(gD)!/?

that is, a Kelvin wave moving west along y = a. If only one wave is excited, then the
surface elevation looks like a regular gravity wave progressing up or down the channel
except that the crest-trough amplitude decays to the left of the direction of
propagation. Because of the non-trigonometric cross-channel variations, the
superposition of two Kelvin waves travelling in opposite directions does not lead to a
standing wave, but rather to motion in which the wave crests appear to rotate about

amphidromic points where the rise and fall vanishes.

Amphidromic
Point

These points are separated by r/k = 7(gD)/?/q; the crests rotate once about each

amphidrome in a period 27 /0.
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5.10 Kelvin wave reflection

The case of a channel closed at one end is interesting, for we see how Kelvin waves are

reflected.

The idea is to have an incident plus an outgoing Kelvin wave. Nowhere is u = 0 for
such a combination although v = 0 everywhere. We now include an infinite series of
Poincaré waves, for which v = 0 at y = 0,a and choose them so that their v at z = 0
just cancels that of the Kelvin waves. Without doing the analysis, we may see one
result. All Poincaré waves are needed to make v = 0 at z = 0. Now if ¢ < f2, then all
Poincaré waves decay exponentially as £ — —oo so that, far from z = 0, the solution is
only the incident Kelvin wave going east along y = 0 plus the reflected Kelvin wave

going west along y = a. But if 02 > f? sufficiently so that

o? — f2q? 1/2
mm,w:( gD ;‘5) >1

then one or more Poincaré waves vary trigonometrically with « and the reflected wave
is not a simple Kelvin wave. Clearly if 02 > f? at all, then if the channel is sufficiently

wide, this will be the case. In other words, perfect reflection of a Kelvin wave occurs if

2 _ g2 2
o — T
ffor

gD a?

It always occurs if o2 < f2. If 02 > f?, it occurs if the channel is sufficiently narrow or

sufficiently deep.
In the case of 0% < f2, or 02 > f? but a is.small, the solution looks like
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and the Kelvin wave ‘turns the corner’. This suggests that in a long thin basin, one
free mode is obtained simply be having an integral number of Kelvin wavelengths
around the circumference. However, all of the foregoing assumes basins with flat
bottoms and perpendicular walls at the edges. Bottom topography and/or sloping
edges introduce yet other modes. The problem of finding the seiches of a rotating basin
1s not solvable in closed form for most basins because the boundary condition @ - # = 0

does not admit separable solutions.

Despite these difficulties, the above ideas have been applied to the problem of
ocean tides, particularly in long thin marginal seas (e.g. Hendershott and Speranza,
1971). Two such basins are the Adriatic Sea and the Gulf of California. In the
Adriatic Sea, the M, tide has a typical cotidal form which has been known since the
beginning of the century. Hendershott modelled the M; tide with two Kelvin waves
travelling in opposite directions along the basin meridional coastlines. To close the
problem at the Northern border, Hendershott allowed for an infinite series of Poincaré
waves just as described above. The Gulf of California is similar to the Adriatic Sea in
shape and bottom topography. However, the Gulf of California has no amphidromic
point! Why? The difference is due to bottom friction. In the Adriatic Sea, the bottom
friction is small, so the reflected Kelvin wave at the northern boundary has an
amplitude nearly equal to the incident Kelvin wave. This allows the existence of an
amphidromic point. The bottom friction in the Gulf of California is much larger due to

the shallow, broad shelf at the northern end. The effect is to damp out the reflected
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Kelvin wave so that its amplitude is much smaller than the incident amplitude. When
these two waves are superimposed, the amphidromic point is shifted toward the side
with the reflected Kelvin wave (west in this case). If the bottom friction is strong
enough, the amphidromic point will be located outside the basin, becoming a virtual

amphidromic point.

5.11 Rossby and planetary waves

These waves were first discovered by Hough (1897, 1898) who solved LTE on a
spherical earth for a shallow ocean by expanding the solution in powers of sinf. He
found two classes of solutions. The first corresponds to the long gravity waves modified
by rotation (Sverdrup waves) which we have already seen. The second class of
solutions was found when the second order term in the expansion, sin’ §, was retained.
That is, these waves appeared when the variation of rotation with latitude was
allowed. In 1939, Rossby rediscovered Hough'’s second class of solutions by allowing the
rotation rate to vary with latitude, but in Cartesian coordinates. This means that he
considered the so-called 8-plane approximation (rather than the f-plane) in which the

Coriolis parameter varies linearly in the north-south direction

f=fo+ By

Otherwise, the equations of motion remain the same. Also, we typically treat f as a

constant everywhere except where it is differentiated with respect to y.

Before launching into the new wave types, consider momentarily the shallow

water equations with variable depth

ug — fo=—gne ; vk fu=—gn
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Ny + (UD)I + (UD)y =0

We can form a vorticity equation by differentiating the z momentum equation with
respect to y and subtracting this from the derivative of the y momentum equation with
respect to z.
[ f
| (v —uy); = —Pv + hl VD + B
Take, for example, D = e=BY// ie. depth decreasing toward the north. Then the

vorticity equation becomes

f

(ve —uy)e = —fv — Bv + Z—jm

This immediately shows that a variable relief which decreases toward the north has the
same dynamical effect on the motion as the variation of rotation with latitude. Thus,
the type of planetary motions we shall now study will have an analogous counterpart
in the absence of 3 but with y-dependent relief. Furthermore, if the topography varies
in a different direction so as to dominate the Bv effects, then the following discussions
could be applied to that situation (with minor modifications) by defining a new

‘effective northward’ direction. This is an important idea to which we will return later.

We first consider the problem solved by Rossby of motion in a shallow,
horizontally nondivergent ocean.
= fo=—gn. 5 v+ fu=—gn
U + vy, =0

The vorticity equation is

(ve—uy)e + Pv=0
The local rate of change of the relative vorticity balances the change in planetary
vorticity. Since the flow is nondivergent, we can introduce a streamfunction

U= =1, 5 v=1,
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and we obtain
Vb, + ftpr = 0
This has a plane wave solution of

Q/) — e~—wt+th+1£y

with the dispersion relation
_ Bk
k242

o
This can be rewritten as

(k+B8/20)* + £¢ = (B/20)*
which is easy to plot on the (k,¢) plane.

AL

— 5= 2%
K, C B
3 L
¥
. - -

The allowed loci of wavenumbers (k,£) form circles in the (k,£) plane with the center
at (—3/20,0) and with radius 3/20. If £ =0, then ¢ = —8/k and ¢ = o/k = — B/ k>
The phase speed ¢ always has a westward component for whatever value of ¢ we

choose. In general

9 - __B
Tk k2 + 02
_c __PE__

“=7 0k + 2)

These waves are called Rossby waves.
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The physical mechanism which makes Rossby waves propagate westward is most

easily seen for nearly zonal waves 0/Jy < 0/dz. Then the vorticity equation is simply
(v.'L')t + /B'U = O

North-south motions v result in changes in the local vorticity. When the north-south
motion is periodic in z, then the aditional north-south motion generated by the
vorticity resulting from the initial pattern combines with this pattern to shift it

westward.

’ T/\ /\\//— = X V(x, 0) = sin(kx)

N
vy T_\ RN N . Qv 1) =TJ‘I9VdX
S NZ ot

x v(x,t) =v(x, 0) + At %tx

(
(

The group velocity components are

do B 20k B(=K%sin’y 4+ K?cos?y)
Tk T KT KT K*
_ Beos(2y)
B K?
_ 0o 2Bkl —Psin(2y)
‘=% T kT T Ke

so the total group velocity vector is

—

¢, = %[2 cos(27) — 7 sin(2v)]

The situation is as depicted in the dispersion diagram. That is,

4 A, 20 -
|[WCl(2cos§ — ysiné) = FWC

. 20
“= K2
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directed along WC towards C'. We then have an easy way to visualize the flow of
energy and phase. A westward going wave transmits energy eastward. As the phase

propagates more northwest, energy propagates more southeast.

It is interesting to note that, for these nondivergent waves, the velocity vector is
normal to the wavenumber. This can be easily seen from continuity, since u, + v, =0
which, for a plane wave sloution, can be written (Ek + jf) -t = 0. Thus, in a westward
propagating wave,

v=1r =1kt ; u=—,=—tlp =0

This is quite different from the usual case of nonrotating, divergent gravity waves.

A second type of planetary wave was first studied by Bjerknes (1937). In this
case, the horizontal accelerations are negligible, but the flow is divergent. Thus, we
allow for a surface elevation in continuity, but the horizontal velocities are in

geostrophic balance.
—fo=—gn. ; fu=—gn
N+ D(uz +vy) =0

Combining these into a single equation yields

gBD
nt_—}—{'nz'“o

This is a simple first order wave equation which has the general solution

n=F(z+ E%Qt) where F'is any function. Thus, a sea-surface elevation of any shape
will propagate unaltered in this dynamical system. Looking for a plane wave solution
of the form

— e-—iat+ikx+i£y

we find the dispersion relation

98D
o= — k
fr -
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The phase speed is again westward

c=—gBD/f*

and the group velocity is
- A »0o gﬂD -
Cqg = 1Cgzp = la—k = —~7—2
These waves are divergent, nondispersive planetary waves in contrast to the previous
Rossby waves which are nondivergent but dispersive. The north-south wavenumber is

arbitrary and the dispersion relation on the (k,£) plane is

p | W4

|

|

P L
k=91

OB |

|

Y
>

The locus of acceptable wavenumbers forms a straight line.

The physical mechanism which causes these waves to propagate westward is
now very different from that for Rossby waves. Remember that the flow is totally

geostrophic but divergent. Consider a region of high pressure

Convergence: Divergence:
Pressurerises | A B | Pressure drops
atA atB

The flow at A converges because the transport (geostrophic) between a pair of isobars
south of H is greater than that between the same pair north of H because f varies. By

continuity, pressure must rise at A. Similarly, the-flow at B diverges and the pressure
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there drops. The initial pattern of isobars is then shifted westward and the pressure
high moves toward A. The same is true for a pressure low as you can verify for

yourselves.

Now consider the general system of which the two previous wave types were

limiting cases.

us— fo=—gne ; v+ fu=—gn,

77t+D(“x+vy):0

In the usual way, we assume time dependence of e and combine the equations to

form a single equation for v in this case.

: 2 _ 2
Vzv—{—z—évr—l—uvzo
o gD

Notice that the first two terms are the same as those in the nondivergent Rossby wave
balance. Now f is not really constant, but we consider it fixed in order to look for

plane wave solutions v = e***+%_ The dispersion relation is
(k+B/20)" + * = (B/20)" + (o* = f*)/gD

which can be drawn on the (k,¢) plane as
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geostrophic
s divergent
long waves
P 0 k
ageostrophic
nondivergent
short waves

B \2 o221 I :
r=|\zz) +—5] =CC «<COifo<f
Notice the following limits [( 20') gD ]

a) 0 < f and k,£ small. The dispersion relation becomes

_gBD

Bklo+ f*/gD ~0 =0 = 72

k

This is the limit of geostrophic, divergent long waves.

b) o <« f and k large, ¢ arbitrary. The dispersion relation becomes

Bk

(k2+€2)+ﬂk‘/0"’.‘.’0:>0':—m

This is the limit of ageostrophic, nondivergent short Rossby waves.
Notice that for the waves to exist, the radius of the circle must be positive
(B/20)* + (o* = f*)/gD >0
In the Rossby wave limit o < f, the above relationship is
o< B(gD)V?)2f m0.2f
that is,

dr f

" By
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which is about 3 days for a barotropic wave (8 = 2.3 x 107* m~! s~1) but many days
for a baroclinic wave with D = d,,, the equivalent depth. If instead we let ¢ — oo, we
obtain

o = f2 4 gD(k* + (2
which is simply the shallow water gravity waves modified by rotation, with o > f.

The following sketch shows the two dispersion relations together, for the first and

second class waves. o Gravity wave cone
o= 12+ gD (k2+.42)
f
1Bl
! 20 s
//
Vd
<k :
7
7
rd
_____ — = k
o 4
(2“ ) Rossby wave cone
o= —BX
k202 L —f

gD
The top of the Rossby wave cone is defined by r = 0 which occurs at a small fraction
of f, so there is a frequency interval between f and B(gd,)'/?/2f separating the two
classes of solutions. This gap suggests that velocity spectra should show a valley
between these two frequencies with a high frequency boundary at f and a low
frequency boundary at B(gd,)/?/2f. Such an energy gap is indeed observed, but
remember that the linearized dynamics on the 3-plane are very simplified and the

dynamics of the low frequency motions may need a more complete treatment.

The dispersion relation is usually written (for o < f) as

_ — Pk
" T W+ E+ gD

135




The length scale
a, = (gD)'*/ f

is called the Rossby radius. There is not one Rossby radius, but an infinite number
because of the infinite sequence of internal modes, each with a different equivalent
depth and, therefore, a baroclinic Rossby radius. Waves which are longer than the
Rossby radius are long, divergent Rossby waves. Waves that are shorter than the
Rossby radius are short, nondivergent Rossby waves. The barotropic Rossby radius has
D =~ dy (ocean depth) and is thus of the order of the earth’s radius. Barotropic Rossby
waves are therefore, relatively high frequency (typically a few cycles per month) and
are able to traverse major ocean basins in days to weeks. Baroclinic Rossby radii are of
the order of 100 km or less in mid-latitudes, and the baroclinic Rossby waves are
relatively low frequency waves. It would take them years to cross ocean basins. Notice,
however, that going towards the equator f — 0 and the baroclinic Rossby waves speed
up to the point where they could traverse major ocean basins in a season. But then we
must relax the mid-latitude B-plane dynamics and study the problem with the

appropriate equatorial dynamics (which we will do shortly).

5.12 Rossby wave reflection

Consider the reflection of a Rossby wave from a straight wall making some arbitrary

angle p with the z axis.

136




. normal
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X

~.k—i’ci

If there is a reflected wave, then both incident and reflected waves must have the same
wavenumber component along the wall. This can be seen by considering the case of
1t = 90°. (The computation can be done for any wall angle by choosing coordinates

parallel and perpendicular to the wall.) The incident wave is

1/)2' — Aiei(k;:p+£;y—a;t)

while the reflected wave is

¢r — Arei(kr:v-i—f,-y-—art)

At z = 0 the total streamfunction (t; + 1, ) must be constant so that u = —0v/dy = 0.

Without loss of generality, we can take the constant to be zero. Thus
Aiei(&y——a,‘t) + Arei(fry——art) =0

For this to be true for all time and for all y, then o; =0, = o and {; = ¢, = {.

We can use the sketch of the dispersion relation to visualize the reflection

properties.
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The projection of k; on the wall must equal the projection of k,. This fixes the point
R for the reflected k,. Construct the line CW’ parallel to OW. Then angle ICW’
equals angle W/CR, that is the group velocity (and consequently the energy flux) of
the incident wave is reflected with the same angle to the wall. From the

streamfunction argument, it also follows that

The amplitude of the reflected wave is equal to the amplitude of the incident wave
with a phase shift of 180°. Because the reflection is specular for the group velocity and
energy flux, the components of the energy flux normal to the wall are equal and
opposite. From the dispersion relation, knowing o and ¢, we can solve for k. There are
two roots and only one is appropriate to energy going towards the wall: that gives k;.
The other solution must give k,. The change in k due to reflection is (we are in the

limit o < f for which o2 is neglected compared to f?)

o ﬂZ . f2 1/2
ky — k; = 2[402—@ +gD)

Thus, we see that the long waves are reflected as shorter waves from a western

boundary while short waves are reflected as longer ones from an eastern boundary. To
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see this remarkable property of Rossby waves better, consider the following two
limiting cases.

a) Wave with £ = 0, propagating energy westward and reflected at a western wall

¥

Ke

This will be reflected as a much shorter wave propagating energy eastward.

b) Wave with £ = 0, propagating energy eastward and reflected from an eastern wall.

=44

This will be reflected by the eastern wall as a longer wave propagating energy
westward. Thus, if we generate waves of equal wavelengths in the middle of the ocean
moving east and west, we will get short waves back from the west and long waves back

from the east.

5.13 Western boundary current formation

We now discuss briefly the interpretation of the formation of a western boundary
current based on Rossby wave ideas which was originally put forth by Pedlosky. Each
of the dynamically different steady circulation models of the ocean general circulation
share the common feature of westward intensification despite other noticeable

differences. A simple physical explanation can be found considering time dependent

139



dynamics and the character of Rossby waves. As we have seen, energy in the short
waves will be transmitted eastward while energy in the long waves will propagate
westward. Suppose that at some time, energy of varying length scales is input to the
ocean by the wind stress. The small scale components will move to the eastern
boundary where they will be reflected as long wave components, with waves extending
into the gyre interior. On the other side, the long scale components will propagate
energy toward the western boundary where they will be reflected as short scale
motions. The western boundary thus acts as a source of energy in the short scales,

concentrated in a width of the order of the western boundary layer. (See Pedlosky,

1979, pp. 278-281 for more details.)

5.14 Equatorial waves

All of the planetary waves which we have studied are valid on a mid-latitude §-plane
in which the variation in rotation is small compared to the basic rotation, i.e. By < fo.
The dynamics change considerably if we go to the equatorial region where f; — 0.

Then we can approximate f by Sy and ignore f;. The equations of motions become
U= Pyv =—gnz 5 v+ Byu= —gn,

nt+D(ux +Uy) =0
This is called the equatorial §-plane because we have approximated the sphere by a
plane tangent to the equator. If we assume time dependence of e~*** and solve for v as
we did for the mid-latitude planetary waves, we obtain

- 2 92,2
o gD
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This equation does not have constant coefficients, so we cannot assume a plane wave

solution. Instead, we take a plane wave only in the east-west (z) direction
tkz

v = v(y)e

The equation for v becomes

with boundary conditions of

lm v =190
y—++o00

to preserve internal consistency in the equatorial approximation, since we cannot move

to regions where f; becomes large.

The equation for v looks very much like Hermite’s equation
Yee+ (k= €)Y =0 with k=2m+1, m=0,1,2..

We make the change of variables y = £(gD)/*/5Y? and we obtain

(gD)'2 (o* o Bk 2| _
055+[—7—<§5~k—7>~§]v—0

The solutions are
vy, = TP IDI g 131y [ (g DY)
with a dispersion relation of

%(%-H—%):Qm—i—l

The H,, are the Hermite polynomials

Ho=1; Hy =2 ; Hy=—-2+4+4£ ..

S~
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and the solution decays exponentially as y — oo as we required. Thus, various v,,

look like

A Vo A V4
A Vo V3

To explore the possible wave solutions, we make the following transformations
o =wfP(gD) k= AgY?/(gD)!

where w is the dimensionless frequency and ) is the dimensionless east-west

wavenumber. The dispersion relation becomes
W= A - Aw=2m+1

This is a cubic in w. For given wavenumbers m and k, three frequencies are generally
specified. To see their connection with previous work, consider the following limiting

cases.

a) Limit of short waves A — *oo with high frequency w — co. Then \/w is constant

and the dispersion relation is

W= +2m+1
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which asymptotically tends to w = +A. In dimensional form, the two asymptotes
correspond to o = #(gD)'/?k. These are high-frequency, short, shallow water gravity
waves which exist for ¢ — co. They are trapped at the equator and move eastward

and westward.

b) Limit of short waves A — foco with low frequency w — 0. The dispersion relation

becomes

w=-1/A

which, in dimensional form, is
o=-—0/k

This is the Rossby wave limiting case of the dispersion relation for short planetary

waves which are trapped at the equator and move energy eastward.

¢) Limit of long waves A — 0 with low frequency w — 0. The dispersion relation

becomes
—-A
YT am 1
which, in dimensional form, is
_ —(gD)'"*k
T 2m+1

These are Rossby wave modes with long wavelengths which asymptotically approach
the previous Rossby wave limiting case as the wavelength decreases. The above cases
are the limiting forms of the three roots for m > 1 which exist for the general

dispersion relation. The solutions are two oppositely travelling shallow water gravity

waves plus a westward (phase) planetary wave solution.

d) For the case m = 0, we have the Yanai or mixed gravity-Rossby wave solution. We

can write the dispersion relation as

A+w)A=(w-1w)]=0
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Note that w = —X does not solve the original momentum equations, so we must take

A=w-—1/w
which, in dimensional form, is

__ p

(gD g

If o — 0, then o >~ —f3/k and we have the Rossby wave properties dominating. If
o — o0, then o = (¢D)V?k and we have the gravity wave properties dominating.
Thus, the Yanai wave is of gravity type when propagating (phase) eastward and of

planetary type when propagating westward.

e) The case m = —1 is an equatorially trapped Kelvin wave. In fact, the solution to
the original system can be found when v = 0 everywhere or by deriving an equation for

u rather than v and solving it. The equations are
wu = gne ;o Pyu=—gn,

—10n + Du, =0

The physical balance in the momentum equations is geostrophic in the north-south
direction and local acceleration versus pressure gradient in the east-west direction.
These are the balances typical of Kelvin waves. Assuming the plane wave form in z,

i.e. e** we find a solution of the form

n= e—ﬂky2/2ae—iat+ika:

Notice that these waves exist only if k& > 0 to satisfy the requirement of decaying away
from the equator. They are trapped at the equator and move only eastward.

Substituting the solution into the continuity equation gives a dispersion relation of

o = (¢D)"/*k
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which is simply the gravity wave dispersion relation which we also found for Kelvin
waves on an f-plane. In a configuration with north-south boundaries, these eastward

propagating Kelvin waves, trapped at the equator, can clese the circulation as shown

| f

L Equatori=a||y Trapped A

in the following sketch.

r ot
Kelvin Waves \V

Thus, conceptually, Kelvin waves which approach the equator from mid-latitudes

become equatorially trapped Kelvin waves which propagate to the eastern boundary.
There they change again to mid-latitude Kelvin waves propagating northward along

the boundary.

We can summarize all the equatorially trapped wave solutions in the following

dispersion diagram:.

AC
Gravity Waves

Y

Rossby Waves ~g>"




We know that trapping means that a wave decays exponentially away from
some boundary. We have seen that this corresponds to the total reflection of wave rays
as well. Therefore, it is useful to examine these equatorial waves with the ray method
which we discussed earlier in the course. We force a plane wave solution to satisfy the

equation for v

v = Uo(y)e—zat+zkx+t£(y)y

Then the dispersion relation becomes (provided vy varies slowly so that Voyy 15 always

small)
02 k? ﬂk ﬂ?'?/2
gD o gD

Cly) =
Now the ray path is defined by

dy .{:( o? X _é___ ﬁ2y2>1/2

dz ~ k

gDFk? ok gDk?

We can define the angle that the ray makes at the equator (y = 0) by

w0y _(o 8 12
k ~ \gDk2 ok

tan 6y =
Then, we can integrate along the ray path by using

/F——db‘z—ijl—ﬁ :/da: = %sin‘l% = z + const
a* — b2y
to find

(9D)/?k

y = —ﬂ tan @, sin (

This says that rays are sinusoids moving around the equator

ch -+ const)
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They go back and forth between the two latitudes +67, being continuously refracted

by the varying f = By, which models the curvature of the earth.

We can find the trapping latitudes £67 where the rays are totally reflected.

They are simply the maxima of y

(gD)'k
B

If £ — 0, that is the waves squash together propagating only north and south, then the

+0r =+

tan 8,

ray path degenerates into the straight line

—o/f<y<o/B

which says that, since 0 = +f8y = £ f, the waves must remain within their inertial
latitudes. There the rays must turn back toward the equator. If £ # 0, then the
turning latitude moves equatorward, at least when k/o is not important. The inertial
latitudes thus act as a natural waveguide for waves of a given frequency. Poleward of
the inertial latitudes, gravity waves cannot propagate. Equatorward, they may. It is
important to remember that the inertial latitudes are not solid barriers, however. The
wave structure decays exponentially poleward with a scale which is determined by the
particular wave. Furthermore, the decay scale is very different for the barotropic waves

versus their baroclinic counterparts. An analysis of the Hermite functions shows that
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the barotropic wave decays on a scale of the order of the earth’s radius, thus violating

our original assumption of the S-plane. The baroclinic waves decay much faster, on the

order of about 5% of the earth’s radius.
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Chapter 6

Topographic effects

So far, we have largely ignored the effects of bottom topography. It was pointed out in
the last chapter that bottom relief appears in the shallow water vorticity equation in
the same form as the 3 term and, therefore, might be expected to have similar effects.
We also introduced topography as a sudden change in depth and derived edge-wave
and Poincaré-wave solutions. In this chapter, we shall be more systematic and study
several types of waves which rely on variable bottom topography for their existence.
Perhaps more importantly, we shall consider the intimate relation between variable

bottom topography and stratification.

6.1 Topographic Rossby waves

We consider first a problem which was worked out by Rhines (1970) to show the

combined effects of topography and stratification. We start with the linear,
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hydrostatic, Boussinesq equations

ut_fv = TP
Po
1
v+ fu = ——p,
Po
1
0 = ——pz——gﬁ
Po Po

pr+wpe, = 0

Up + v, +w, = 0

where p is the perturbation density and po is considered constant except in the density

equation. The perturbation density can be eliminated to obtain

1
U == — ————
poN? P
where N2 = —gpq,/po. Expressions for the velocity can be written as

0? o 1 f
(-a? + f )u — _';(—)pxt - '/');py
0? 5 1 f
(5;2' + o= PR + pRL

These expressions may be combined with continuity to yield

0* 2
Pxx+Pyy+(&'2'+f2) (12\)/,2> J =0
Z1t

If we assume time dependence of e~*°*, then this becomes

pa\:t +pyy + (f2 - 02) (jl\)/;)z =0

Now consider motions confined to a channel along the z axis.
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The bottom slopes gradually across the channel with bottom slope . The normal
velocity must vanish at the sidewalls and at the bottom, while a rigid lid is assumed at

the surface. The boundary conditions are

v=0 = wp,+ fp.=0 at y=0,L

w=0 = p,=0 at z=0 /

w=av = io(f*—-oc)p,=aNiop,+ fp;) at z=-—-H+ay

To proceed, we scale the variables as follows: z,y by L; z by H; and w = o/ f. We also

assume N is constant. The problem then becomes

(1 —w?)

7 P = 0

Pez + Pyy +

wpy +p; =0 at y=0,1
p,=0 at 2z=0
w(l —wh)p, = 65 (iwp, + p,) at z=—146y

where 6§ = oL/ H is the scaled bottom slope and S = NH/fL is the Burger number
which is a measure of the importance of stratification relative to the spatial scales of

motion. The Burger number appears in virtually all cases involving both topography

— |
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and stratification. Large S means strong stratification and/or large aspect ratio H/L

of the motion. Small S means weak stratification and/or nearly horizontal motions.

For the present case, we consider low frequency motions (w < 1) over a gently
sloping bottom (6§ < 1). This allows us to write the field equation and boundary
conditions as

1
Pre + Dyy + S,‘é’pzz =0
Pz=0 at y=0,1
p-=0 at 2=0

iwp, = 6S%p, at z=—1

The last boundary condition is appropriate because the fractional depth change across
the channel is small. A solution to this problem which is freely propagating in the z
direction is

k

p = ¢*sin(nry) cosh 2

where p? = S%(n?7? + k?) gives the vertical decay scale. Thus, strong stratification

and/or short spatial scales leads to strong bottom trapping.

Az

Y

Sk small

Sk large

/Z/'—‘- _H+OY

The dispersion relation is obtained by applying the bottom boundary condition

. —bkS?
~ ptanh g
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Notice that the waves disappear if the bottom slope vanishes § — 0 indicating the
necessity of variable topography. The phase speed is always directed so that the waves
move with the shallow water on their right in the northern hemisphere. So, for a
bottom which shoals toward the north (+y), the waves propagate westward (—z). This
is like the 8-plane with nearly the same dispersion relation. If the bottom shoals
toward the south (—y), § < 0, then the waves travel eastward (+z). Thus, the effective

north direction is the direction of shoaling.

The limit of weak stratification, S — 0, leads to 4 — 0 and
-6k

= nip? Ny

or in dimensional form
—akf
Hl(nm/L)? + k2]

This is the dispersion relation for Topographic Rossby waves, so named because of the

g =

obvious similarity to planetary Rossby waves. The vertical structure, in this case,

disappears as g — 0.

6.2 Bottom-trapped waves

The waves of the previous section were indeed bottom trapped by strong stratification,
but the discussion was limited to low frequencies over a gently sloping bottom. Here
we relax these restrictions by considering waves along a sloping bottom in a
semi-infinite fluid. The motions are still assumed to be subinertial, o < f, but the
frequency may approach f. This problem is also due to Rhines (1970). The field

equation for pressure is
(f2—a?)

NZ - Pzz = 0

Poz + Pyy +
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where N is constant. The bottom is along z = az where w = au.

The boundary condition along the bottom is
io(f* — o*)p: = aN*(iop: — fpy)

We scale z by R = N/(f* = ¢?)"/? so that 2’ = 2R, and we assume a plane wave in the

y direction, €Y. The problem becomes

DPze — €2p + Doty = 0

1
P = Ra(p, — Ffp) at z' = Raz

Thus, with stratification, Ra is the effective bottom slope. Now

Na _ No/f S

M= o = ot ~ TP

where S = Na/f and w = o/f. Strong stratification appears as an effectively steep
bottom and vice versa. As S — oo, the bottom appears to the motions as a vertical
wall. Similarly, as w — 1, the bottom appears as a vertical wall. The Burger number
here can be thought of in the same way as in the last section except that H/L is
replaced by the bottom slope o because there are no distinct vertical and horizontal

scales.
The angle of the bottom with respect to the horizontal is
0 =tan"! Ra
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