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Foreward

These lecture notes are designed for the Linear Ocean Waves course taught at Scripps
Institution of Oceanography, UCSD as part of the core curriculum for first year physical
oceanography students. This course is designed to give a survey of linear ocean waves in-
cluding surface gravity waves, acoustic waves, internal waves, and rotating shallow water
waves with a strong fluid dynamics treatment over the course of about 20 lectures (one quar-
ter). These lecture notes are broken down into two components. The first is wave systems
in homogeneous media (Chapters 2-12). The second component focusses on wave propaga-
tion in inhomogenous media and thus brings in ray theory, WKB, action conservation, etc
(Chapters 13–16).

These lecture notes are derived from when I took this course in Winter quarter of 1994
taught by Rick Salmon. Prof. Salmon distributed photocopies of hand-written lecture notes
and his course was excellent, very thought provoking, and helped us understand the deep
links between many different types of wave systems, in particular in the relationship between
dispersion relations and energy propagation. Many ocean wave texts target one particular
type of ocean wave - say surface gravity waves (the most common). But Prof. Salmon’s
notes spoke broadly across classes of ocean wave systems. Those notes are the foundation
of these lecture notes and I am deeply endebted and grateful to Prof. Salmon. In the
intervening years the notes have been extended and deeply revised, and are still a work
in progress. However, the core theme of the linkage between many different types of wave
systems hopefully remains.

These lecture notes and my thinking on waves is also indebted to many other wonderful
texts on ocean waves, some of which go much further in depth on certain specific topics.
These include:
• Kundu, Cohen, Dowling, Fluid Mechanics
• Mei, CC, The Applied Dynamics of Surface Gravity Waves
• Lighthill, Waves in Fluids
• Whitham, Linear and Nonlinear waves
• Dean and Dalyrmple, Wave Mechanics for Engineers and Scientists
• Chapman and Malanotte-Rizzoli, Waves Lecture Notes in tribute to Myrl Hendershott
• Pedlosky, J. Waves in the Ocean and Atmosphere. Introduction to Wave Dynamics

I hope these notes are useful and do appreciate any feedback.
Falk Feddersen



Chapter 1

Introduction to the Wave Equation(s)

1.1 First Order Linear Wave Equation

First, we consider the first order linear wave equation which forms the backbone of conser-

vation equations in fluid dynamics. Consider on an infinite spaital domain (−∞ < x <∞)

and an infinite time t domain, the linear first order wave equation is,

∂φ

∂t
+ c

∂φ

∂x
= 0 (1.1)

for real, constant c > 0. As (1.1) is first order in time, we need a single initial condition of

φ(x, t = 0) = φ0(x), (1.2)

and because of the infinite domain we don’t specify boundary conditions. The solution can

be written as

φ(x, t) = φ0(x− ct) (1.3)

which implies that the initial condition simply propagates to the right with constant speed

c with permanent form.

Why is this the case? We plug the solution (1.3) back into (1.1), but first: let u = x− ct
so that any function f(x− ct) = f(u) and the derivative of the function with respect to u is

notated as df/du = f ′. Now

∂φ

∂t
=
∂φ0(x− ct)

∂t
=
∂φo(u)

∂t
=

dφ0

du

∂u

∂t
= −cdφ0

du
∂φ

∂x
=
∂φ0(x− ct)

∂x
=
∂φo(u)

∂x
=

dφ0

du

∂u

∂x
=

dφ0

du

Note the difference in the partial and total derivative above. Thus the first-order wave

equation becomes

−cdφ0

du
+ c

dφ0

du
= 0
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1.1.1 Plane wave solution and dispersion relationship

A common practice is to plug in a propagating wave solution such as cos(kx−ωt) or sin(kx−
ωt) into the governing equations and hunting for a solution and dispersion equation. For

linear systems it is often more convenient to use complex notation. For example, let φ have

a wave like solutions where

φ = ei(kx−ωt) (1.4)

where k is a wavenumber with units [rad/m] and a wavelength λ = 2π/k. Similarly the

radian frequency ω has units [rad/s] and is associated with the wave period T = 2π/ω.

Plug the wave solution (1.4) into (1.1) gives us a dispersion relationship

[−iω + ikc]ei(kx−ωt) = 0, =⇒ ω = kc.

Note that this dispersion relationship has ω(k) as a linear function of k. Or that ω/k = c

is a constant and does not depend upon k. The type of waves that propagate by such a

dispersion relationship are called non-dispersive waves. This means that all frequencies or

wavenumbers propagate at the same speed - in this case c.

1.1.2 Linearity and Fourier Solution

Because the first order wave equation is linear, if a(x, t) and b(x, t) are both solutions to (1.1)

on an infinite domain, then any combination of c1a(x, t)+ c2b(x, t) is also a solution. We will

now exploit this to perform Fourier analysis on the first order wave equation. This analyis

will be fairly simple but introduce concepts that will be used throughout these lectures.

First, write φ(x, t) as a Fourier integral, that is

φ(x, t) =

∫ ∞
−∞

φ̂(k, t)eikxdk (1.5)

where φ̂ is the Fourier transform of φ, the integral is over all k. The Fourier transform is

defined as

φ̂(k) =
1

2π

∫ ∞
−∞

φ(x)e−ikx dx (1.6)

and note that φ̂(k) = φ̂(−k)∗, where the ∗ denotes complex conjugation, because φ is real.

Similarly, the intial condition φo(x) is written as

φ0(x) =

∫
φ̂0(k)eikxdk. (1.7)
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Now plug the Fourier-integral representation (1.5) into (1.1) and one gets∫
∂φ̂

∂t
eikxdk +

∫
ikcφ̂eikxdk = 0 (1.8)∫ [

∂φ̂

∂t
+ ikcφ̂

]
︸ ︷︷ ︸

=0

eikxdk = 0 (1.9)

The quantity in brackets is the simple first-order ODE with constant, but complex, coeffi-

cients. Thus φ̂(k) has solutions of the form φ̂(k) = Ce−ikct and with the initial condition

(1.7) at t = 0, it then is clear that the full solution is

φ(x, t) =

∫
φ̂0(k)eik(x−ct)dk

which is back to the old familiar form of φ0(x− ct) a solution which just translates.

This is a fairly simple example of using Fourier analysis and substitution to get solutions

to PDEs. However, this is a mainstay of wave analysis.

1.1.3 Relationship to Conservation Equations

In fluid dynamics, a conserved quantity - for example T with units of [stuff] where stuff

could be ◦C, µg/L, etc. - obeys a conservation equation of the form

∂T

∂t
+∇ · FT = 0 (1.10)

where FT is the vector flux of T . Flux is often written as a velocity × quantity, that is

FT = uT with units [stuff m/s].

In one-dimension, (1.10) becomes

∂T

∂t
+
∂uT

∂x
= 0.

Now if you let u be constant and pull it outside the equation one gets

∂T

∂t
+ u

∂T

∂x
= 0.

which is the 1D wave equation with solutions of propagating waves of permanent form. We

will see again that this 1D wave equation forms a kind of backbone for all sorts of conserved

quantities (energy or wave action) in wave systems.
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1.2 The Real Wave Equation: Second-order wave equa-

tion

Here, we now examine the second order wave equation, which appears many disciplines

such as acoustics, optics, E&M, and geophysics. A variety of ocean waves follow this wave

equation to a greater or lesser degree. The full second order wave equation is

∂2φ

∂t2
− c2∇2φ = 0 (1.11)

where ∇2 is the Laplacian operator operating in one, two, or three dimensions. Here again

c is real and is constant. For analysis purposes, we restrict ourselves to the one-dimensional

wave equation
∂2φ

∂t2
− c2∂

2φ

∂x2
= 0. (1.12)

on an infinite domain (−∞ < x < ∞). How many initial conditions does this equation

require? Two - as it is a second order equation in time. Typically this means prescribing

φ(x, t = 0) = a(x) (1.13)

∂

∂t
φ(x, t = 0) = b(x) (1.14)

If we were not considering an infinite domain, we would also need two boundary conditions.

1.2.1 General Solution

The general solution of (1.11) is

φ(x, t) = f(x− ct) + g(x+ ct) (1.15)

that is two permanent forms propagating right and left. We can show this the same way

as with the first-order wave equation with the variables u = x − ct and v = x + ct, then

f(x− ct) = f(u) and g(x+ ct) = g(v) and

∂2φ

∂t2
− c2∂

2φ

∂x2
= c2 d2f

du2
− c2 df

du
= c2 d2g

dv2
− c2 dg

dv
= 0 (1.16)

As (1.11) is linear, one can also linearly superimpose solutions.

1.2.2 Solution to Initial Value Problem: D’Alembert’s Solution

We have the general solution (1.15) with initial conditions (1.13-1.14). At t = 0,

f(x) + g(x) = a(x) (1.17)

−cf ′(x) + cg′(x) = b(x) = c(g′ − f ′) (1.18)
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where the prime denotes the derivative. The second equation can be integrated to

g(x)− f(x) = c−1

∫ x

x0

b(x̃)dx̃ (1.19)

where x̃ is a dummy variable of integration. Adding and subtracting (1.17) and (1.19) gives

f(x) =
1

2

[
a(x)− c−1

∫ x

x0

b(x̃)dx̃

]
(1.20)

g(x) =
1

2

[
a(x) + c−1

∫ x

x0

b(x̃)dx̃

]
(1.21)

which now determines that full solution

f(x− ct) =
1

2

[
a(x− ct)− c−1

∫ x−ct

x0

b(x̃)dx̃

]
(1.22)

g(x+ ct) =
1

2

[
a(x+ ct) + c−1

∫ x+ct

x0

b(x̃)dx̃

]
(1.23)

and rewritting ∫ x−ct

x0

b(x̃)dx̃ = −
∫ x0

x−ct
b(x̃)dx̃

yields the full solution of

φ(x, t) =
1

2

[
a(x− ct) + a(x+ ct) + c−1

∫ x+ct

x−ct
b(x̃)dx̃

]
(1.24)

1.2.3 Plane wave solutions

Now we try to plug into (1.12) a plane wave propagating in the +x direction of the form

(1.4)

φ = ei(kx−ωt) (1.25)

where ω > 0, resulting in

[−ω2 + c2k2]ei(kx−ωt) =⇒ ω2 = c2k2.

This has analogy to f(x− ct) being a solution. What about

φ = ei(kx+ωt) (1.26)

which results in

[−ω2 + c2k2]ei(kx−ωt) =⇒ ω2 = c2k2.

Analogous to g(x+ct) being a solution. They are the same! Here, the dispersion relationship

is also non-dispersive as |ω|/k = c is a constant. Thus, all frequencies and wavenumbers

propagate at the same speed - and if you know c and k, you also know the frequency.
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1.2.4 Fourier Solution

The tactic here is to reduce the partial differential equation (1.11) to an ordinary differential

equation via Fourier subsitution. We can now write a simple solution to φ(x, t) via Fourier

analysis. Here, for simplicity, we assume that the initial condition for ∂φ/∂t = b(x) = 0.

Repeating the analysis for the first-order wave equation, we write φ(x, t) as a Fourier integral,

φ(x, t) =

∫
φ̂(k, t)eikxdk (1.27)

and similarly the intial condition a(x) is written as

a(x) =

∫
â(k)eikxdk. (1.28)

Now plug the Fourier-integral representation (1.5) into (1.12) and one gets∫
∂2φ̂

∂t2
eikxdk +

∫
c2k2φ̂eikxdk = 0 (1.29)∫ [

∂2φ̂

∂t2
+ c2k2φ̂

]
︸ ︷︷ ︸

=0

eikxdk = 0 (1.30)

The quantity in brackets is the good-old fashioned harmonic oscillator equation. It has

solutions

φ̂(k, t) = A(k)eiωt +B(k)e−imωt (1.31)

where ω2 = c2k2, as the dispersion relationship comes up again! Now since ∂φ/∂t = 0 at

t = 0 this implies that

iω[A(k)−B(k)] = 0 =⇒ A(k) = B(k), (1.32)

thus the full Fourier solution is

φ(x, t) =
1

2

∫
â(k)[eik(x−ct) + eik(x+ct)]dk (1.33)

which is back to the familiar form of f(x− ct) and g(x+ ct) solutions. One can also do this

analysis for a general initial condition, but it is just more algebra.

1.2.5 Boundary Conditions: Standing Waves

Up to now, only infinite spatial domains have been considered and thus all waves are pro-

gressive. Now instead of an infinite domain, consider a finite domain with boundary con-

ditions of φ = 0 are applied at x = 0 and x = L - recall that as wave equation is second
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order in space, two boundary conditions are required. The same initial conditions as above

are used, φ(x, t = 0) = a(x) and ∂φ(x, t = 0)/∂t = 0.

There are formal methods for solving (1.12) on 0 < x < L that involve separation of

variables. Basically, you assume a solution φ(x, t) = T (t)X(x) - which is typically covered

in undergraduate mathematical physics classes. Here, we will use a bit of intuition and

Fourier. From the boundary conditions, one could expect φ ∝ sin(nπx/L) where n is a

positive definite integer because with sin(), φ = 0 at x = 0 and x = L. Propose a solution

of the form

φ(x, t) =
∞∑
n=1

φ̂n(t) sin(nπx/L). (1.34)

Why a sum and not an integral? Because only particular sin() that match the boundary

conditions are allowed. On an infinite domain, we use integrals instead of sums. The initial

conditions must also be similarly written

φ(x, t = 0) = a(x) =
∞∑
n=1

ân sin(nπx/L).

Plugging into the wave-equation (1.12) we get

∞∑
n=1

[
∂2φ̂n
∂t2

+
n2π2c2

L2
φ̂n

]
︸ ︷︷ ︸

=0

sin(nπx/L) = 0

The quantity in brackets is again the harmonic oscillator equation with solution

φ̂n(t) = c1n cos(nπct/L) + c2n sin(nπct/L)

Now recall that ∂φ/∂t = 0 at t = 0 which means that all c2n = 0. Matching the initial

condition implies that c1n = ân and thus the full solution is written as

φ(x, t) =
∞∑
n=1

ân cos(nπct/L) sin(nπx/L). (1.35)

Now, this solution is interesting. It is not obviously in a form of f(x− ct) and g(x+ ct)

as were the earlier solutions on an infinite domain. Such solutions are progressive in that

the waves move. Instead the solution has the form cos(ct) sin(x) - representing harmonic

motions that is standing in space and time. Such waves are known as standing waves.

Think of a guitar string with modes n = 1, n = 2, etc.

How to think about the distinction between progressive and standing? Departing from

exact mathematical solutions and using heuristic thinking, suppose you have a wave train +x
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propagating towards a perfectly reflective wall at x = L. A little later, there will be waves

propagating towards and away from the wall, i.e., φ = cos(x− ct) + cos(x + ct) (supposing

k = 1). Using trigonometric identies1 we can rewrite

φ = cos(x− ct) + cos(x+ ct) = cos(ct) cos(x).

Thus, we see that standing waves are superposition of waves propagating in the ±x direction

at the same frequency and wavenumber. This provides an interpretation of the finite domain

solution. There really are f(x− ct) and g(y + ct) modes propagating within 0 < x < L, but

they are constantly reflecting back and forth.

Many wave types allow for both progressive and standing components. In summary,

progressive waves have a form cos(kx−ωt) or exp(ikx−ωt). Standing waves have a form

akin to cos(kx) sin(ωt).

1cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

8



1.3 Problem Set

1. Imagine you are lowering a thermistor (temperature sensor) to measure the vertical

(z) temperature profile. You don’t have a pressure sensor on the instrument but you

know that the instrument falls at a steady velocity w [m/s]. From the time-series of

temperature that the thermistor measures, how would you estimate the T (z)?

2. Consider the two PDEs

φt + γφxxx = 0 (1.36)

φt + γφxxxx = 0 (1.37)

For each, determine (a) if plane wave solutions (i.e., exp[i(kx−ω(k)t]) are permissible

or if not why not, and (b) if so, what is the dispersion relationsihp ω = ω(k).

3. For a general PDE with
∂nφ

∂tn
+ c

∂mφ

∂xm
= 0,

(a) What property do n and m have to have to allow plane wave solution? (b) What

is the resulting dispersion relationship?

4. Consider the 3D second-order wave equation (1.11) with plane wave solutions∝ exp[i(kx+

ly +mz)]. What is the dispersion relation ω = ω(k, l, z)?

5. For the 1D 2nd-order wave equation on −∞ < x < ∞, consider the initial condition

φ(x, t = 0) = δ(x), where δ(x) is the Dirac delta function, and ∂φ(x, t = 0)/∂t = 0,

what is the solution for φ(x, t)?

6. (EXTRA CREDIT) Similar to above but with initial conditions φ(x, t = 0) = 0 and

∂φ(x, t = 0)/∂t = δ(x), what is the solution for φ(x, t)? There are two approaches

(a) Use the D’Alembert’s solution (1.24).

(b) Use the Fourier approach: Use the fact that

δ(x) =
1

2π

∫ ∞
−∞

eikxdk

and

i. Use the initial conditions to come up with an expression for A(k) and B(k)

in (1.31).

ii. Which are larger in amplitude, longer or shorter wavelengths?
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(c) Can you show that these two solutions are identical?

7. Consider the 2D 2nd-order wave equation

∂2φ

∂t2
− c2

(
∂2φ

∂x2
+
∂2φ

∂x2

)
= 0. (1.38)

in a rectangular domain 0 < x < L and 0 < y < L with boundary condition of φ = 0

on all sides and ∂φ/∂t = 0 at t = 0. Use your intuition and the results from the 1D

section (1.35), what would the form be for a solution for φ(x, y, t)? Plug it into (1.38),

does it work as a solution?
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Chapter 2

Linear Surface Gravity Waves A

2.1 Definitions

Here we define a number of wave parameters and give their units for the surface gravity wave

problem:

• wave amplitude a : units of length (m)

• wave height H = 2a : units of length (m)

• wave radian frequency ω : units of rad/s

• wave frequency f = ω/(2π) : units of 1/s or (Hz)

• wave period T - time between crests: T = 1/f : units of time (s)

• wavelength λ - distance between crests : units of length (m)

• wavenumber k = 2π/λ : units of rad/length (rad/m)

• phase speed c = ω/k = λ/T : units of length per time (m/s)

• group speed cg = ∂ω/∂k : units of length per time (m/s)

• Typically the wave propagates in the horizontal direction +x.

• The vertical coordinate is z with z = 0 at the still water surface and increasing upwards.

2.2 Potential Flow

Here we assume that readers have a basic understanding of fluid dynamics and particularly

(irrotational) potential flow. Here we review where irrotational (i.e., zero vorticity) flow
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comes from. Consider first a perfect fluid with gravity but without stratification or rotation.

The governing continuity and momentum equations are

∇ · u = 0 (2.1)

∂u

∂t
+ u · ∇u = ρ−1∇p− gk (2.2)

where p is pressure, ρ is a constant density, and u is the velocity vector field. Taking the

curl of the momentum equation yields (review from fluids)

∂ζ

∂t
+ u · ∇ζ + ζ · ∇u =

Dζ

Dt
+ ζ · ∇u = 0 (2.3)

where ζ is the vector vorticity ζ = ∇× u. So if ζ(x, t) = 0 everywhere at time t = 0, then

ζ(x, t) = 0 for all time. Note that vorticity is also often represented with the symbol ω.

A general vector field can be written as a sum of a potential component and a rotational

component, that is

u = ∇φ+∇× ψ (2.4)

where φ is a velocity potential and ψ is a streamfunction. If ∇× u = 0, then ∇2ψ = 0 and

ψ = 0. Thus the velocity field reduces to u = ∇φ. With the continuity equation ∇ · u = 0,

one gets that

∇2φ = 0 (2.5)

for all x and t. This type of zero-vorticity flow is called irrotational flow or potential flow.

2.3 Statement of the classic problem

The derivation here for linear surface gravity waves follows that of Kundu (Chapter 7), but

is found in many other places as well. Here we set up the classic full surface gravity wave

problem which we assume is a wave that

• plane waves propagating in the +x direction only.

• The sea-surface η is a function of x and time t : η(x, t)

• Waves propagating on a flat bottom of depth h.

Thus water velocity is 2D and is due to a velocity potential φ

u = (u, 0, w) = ∇φ

which with continuity implies that in the interior of the fluid

∇2φ = 0. (2.6)
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Next a set of boundary conditions are required in order to solve (2.6). These classic boundary

conditions are

1. No flow through the bottom: w = ∂φ/∂z = 0 at z = −h.

2. Surface kinematic: particles stay at the surface: Dη/Dt = w at z = η(x, t).

3. Surface dynamic: surface pressure p is constant on the water surface or p = 0 at

z = η(x, t). This couples velocity and η at the sea surface through Bernouilli’s equation

that applies to irrotational flow.

The solution to (2.6) with the boundary conditions is a statement of the exact problem

for irrotational nonlinear surface gravity waves on an arbitrary bottom. As such it includes

a lot of physics including wave steepening, the onset of overturning, reflection, etc. There

are models that solve (2.6) with these boundary conditions exactly. This does not include

dissipative process such as full wave breaking, wave dissipation due to bottom boundary

layers, etc., as friction has been neglected here.

2.4 Simplifying Boundary Conditions: Linear Waves

Boundary conditions #2 and #3 are complex as they are evaluated at a moving surface and

thus they need to be simplified. It is this simplification that leads to solutions for linear

surface gravity waves. This derivation can be done formally for a small non-dimensional pa-

rameter. For deep water this small non-dimensional parameter would be the wave steepness

ak, where a is the wave amplitude and k is the wavenumber. Here, the derivation will be

done loosely and any terms that are quadratic will simply be neglected.

2.4.1 Surface Kinematic Boundary Condition

Lets start with the #2 the surface kinematic boundary condition,

Dη

Dt
=
∂η

∂t
+ u

∂η

∂x
= w

∣∣∣∣
z=η

. (2.7)

Neglecting the quadratic term and writing w = ∂φ/∂z, we get the simplified and linear

equation
∂η

∂t
=
∂φ

∂z

∣∣∣∣
z=η

. (2.8)

However, the right-hand-side of (2.8) is still evaluated at the surface z = η which is not

convenient. This is still not easy to deal with. So a Taylor series expansion is applied to
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∂φ/∂z so that
∂φ

∂z

∣∣∣∣
z=η

=
∂φ

∂z

∣∣∣∣
z=0

+ η
∂2φ

∂z2

∣∣∣∣
z=0

(2.9)

Again, neglecting the quadratic terms in (2.9), we arrive at the fully linearized surface

kinematic boundary condition
∂η

∂t
=
∂φ

∂z

∣∣∣∣
z=0

(2.10)

2.4.2 Surface Dynamic Boundary Condition

The surface dynamic boundary condition stating that pressure is constant (or zero) along

the surface is a nice simple statement. However, the question is how to relate this to the

other variables we are using namely η and φ. In irrotational motion, Bernoulli’s equation

applies
∂φ

∂t
+

1

2
|∇φ|2 +

p

ρ
+ gz = 0

∣∣∣∣
z=η

(2.11)

where ρ is the (constant) water density and g is gravity. Again, quadratic terms will be

neglected and if p = 0 this equation reduces to

∂φ

∂t
+ gη = 0

∣∣∣∣
z=η

(2.12)

This boundary condition appears simple but again the term ∂φ/∂t is applied on a moving

surface η, which is a mathematical pain. Again a Taylor series expansion can be applied

∂φ

∂t

∣∣∣∣
z=η

=
∂φ

∂t

∣∣∣∣
z=0

+ η
∂2φ

∂t∂z

∣∣∣∣
z=0

' ∂φ

∂t

∣∣∣∣
z=0

(2.13)

once quadratic terms are neglected.

2.4.3 Summary of Linearized Surface Gravity Wave Problem

∇2φ = 0 (2.14a)

∂φ

∂z
= 0, at z = −h (2.14b)

∂η

∂t
=
∂φ

∂z
, at z = 0 (2.14c)

∂φ

∂t
= −gη, at z = 0 (2.14d)

Now the question is how to solve these equations and boundary conditions. The answer is

the time-tested one. Plug in a solution, in particular for this case, plug in a propagating

wave
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2.5 Solution to the Linearized Surface Gravity Wave

Problem

Here we start off assuming a solution for the surface of a plane wave with amplitude a

traveling in the +x direction with wavenumber k and radian frequency ω. This solution for

η(x, t) looks like

η = a cos(kx− ωt) (2.15)

Next we assume that φ has the same form in x and t, but is separable in z, that is

φ = f(z) sin(kx− ωt) (2.16)

Thus we can write

∇2φ =

[
d2f

dz2
− k2f

]
sin(. . .) = 0.

The term in [] must be zero identically thus,

d2f

dz2
− k2f = 0,

which as a linear 2nd order constant coefficient ODE has solutions of

f(z) = Aekz +Be−kz

and by applying the bottom boundary condition ∂φ/∂z = df/dz = 0 at z = −h leads to

B = Ae−2kh,

Note that this is the first appearance of kh. However we still need to know what A is. Next

we apply the surface kinematic boundary condition (2.10)

∂η

∂t
=
∂φ

∂z
, at z = 0

which results in

aω sin(. . .) = k(A−B) sin(. . .)

which give A and B. This leads to a expression for φ of

φ =
aω

k

cosh[k(z + h)]

sinh(kh)
sin(kx− ωt) (2.17)

So we almost have a full solution, the only thing missing is that for a given a and a given k,

we don’t know what the radian frequency ω should be. Another way of saying this is that
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we don’t know the dispersion relationship. This is gotten by now using the surface dynamic

boundary condition by plugging (4.14) and (2.15) into (2.12) and one gets[
−aω

2

k

cosh(kh)

sinh(kh
= −ag

]
cos(. . .)

which simplifies to the classic linear surface gravity wave dispersion relationship

ω2 = gk tanh(kh) (2.18)

The pressure under the fluid is can also be solved for now with the linearized Bernoulli’s

equation: p = −ρgz− ρ∂φ/∂t. This leads to a the still (or hydrostatic) pressure (−ρgz) and

wave part of pressure pw = −ρ∂φ/∂t.
The full solution for all variables is

η(x, t) = a cos(kx− ωt) (2.19a)

φ(x, z, t) =
aω

k

cosh[k(z + h)]

sinh(kh)
sin(kx− ωt) (2.19b)

u(x, z, t) = aω
cosh[k(z + h)]

sinh(kh)
cos(kx− ωt) (2.19c)

w(x, z, t) = aω
sinh[k(z + h)]

sinh(kh)
sin(kx− ωt) (2.19d)

pw(x, z, t) =
ρaω2

k

cosh[k(z + h)]

sinh(kh)
cos(kx− ωt) (2.19e)

2.6 Implications of the Dispersion Relationship

The dispersion relationship is

ω2 = gk tanh(kh)

and is super important. To gain better insight into this, one can non-dimensionalize ω by

(g/h)1/2 so that
ω2h

g
= f(kh) = kh tanh(kh), (2.20)

where the nondimensional parameter kh is all important. It can be thought of as a nondi-

mensional depth or as the ratio of water depth to wavelength. To examine the limits of small

and large kh, we first review tanh(x),

tanh(x) =
ex − e−x

ex + e−x
(2.21)

and so for small x, tanh(x) ' x and for large x, tanh(x) ' 1.
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Here we define deep water as that were the water depth h is far larger than the wavelength

of the wave λ, i.e., λ/h� 1 which can be restated as kh� 1. With this tanh(kh) = 1 and

the dispersion relationship can be written as

ω2h

g
= kh,⇒ ω2 = gk (2.22)

with wave phase speed of

c =
ω

k
=

√
g

k
(2.23)

Similarly, shallow water can be defined as where the depth h is much smaller than

a wavelength λ. This means that kh � 1, which implies that tanh(kh) = kh and the

dispersion relationship simplifies to

ω2h

g
= (kh)2,⇒ ω2 = (gh)k2 ⇒ ω = (gh)1/2k (2.24)

and the wave phase speed

c =
ω

k
=
√
gh (2.25)

2.7 Nondimensionalization and Linearization

Here we now examine how good or bad the ad-hoc linearization of the full kinematic boundary

condition (2.7) which led to (2.10) is and what it depends upon using the linear theory

solutions (2.19) for deep water. First clearly the appropriate scale of time t is ω−1 and for

space (x, z) is k−1 (only in deep water). If we now take (2.7), and scale the equation we get

the following (neglected terms are canceled out)

Dη

Dt
=
∂η

∂t
+
�
�
���

u
∂η

∂x
= w

∣∣∣∣∣
z=η

.

aω + a2ωk = aω
∣∣
z=η

aω
[
1 +��

�*(ak) = 1
]
z=η

so we see that the neglected term was order ak relative to the other terms. If we go to the

next step of Taylor series expanding about z = 0 (2.9), we get

∂φ

∂z

∣∣∣∣
z=η

=
∂φ

∂z

∣∣∣∣
z=0

+
�
�
���

η
∂2φ

∂z2

∣∣∣∣∣
z=0

= aω + a2ωk

= aω(1 +��>ak)
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so we see here that the higher order Taylor series term is also order ak relative to the

other terms. This means that we are neglecting terms of order ak relative to the other

terms. What is ak? It is the non-dimensional slope, ie a wave amplitude divided by a

wavelength. What does this mean? It means that in order for linear theory to be valid the

slope ak � 1. Does that seem reasonable to you? Lastly, the full problem equations could’ve

been nondimensionalized from the beginning which judicious choice of velocity, time, and

length-scales and terms collected. In deep water, the wave slope ak would come out. Here

our treatment will be linear, but it is possible to write ε = ak and go on to higher order to

get nonlinear wave solutions.
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2.8 Problem Set

1. In h = 1 m and h = 10 m water depth, what frequency f = ω/(2π) (in Hz) corresponds

to kh = 0.1, kh = 1, and kh = 10 from the full dispersion relationship? Make a 3 by

2 element table.

2. Plot the non-dimensional dispersion relationship ω2h/g versus kh. Then plot the shal-

low water approximation to this (2.24). At what kh is the shallow water approximation

in 20% error?

3. The shallow water approximation to the non-dimensional dispersion relationship (2.24)

is ω2h/g = (kh)2. Derive the next higher order in kh dispersion relationship from the

full dispersion relationship ω2h/g = kh tanh(kh). What is the corresponding phase

speed c?

4. In the shallow water approximation:

(a) Write out the expression for u as a function of a, h, and c.

(b) What non-dimensional parameter comes out of the ratio of u/c?

(c) What limitations on size does this parameter have?

5. In 5-m water depth and a wave of period T = 18 s and wave height H = 2a = 1 m.

(a) Do you think that shallow water approximation is valid? Based on results from

questions above?

(b) What is the magnitude of u?

6. In water depth h, suppose pressure pw (2.19e) and horizontal velocity u (2.19c) are

measured at the same vertical location z. Derive an expression for pw/(ρu).

7. In water depth h, suppose a pressure sensor measures pressure pw (2.19e) at vertical

location zp and a current meter measures u (2.19c) at a different vertical location zu.

In real life, this a often the case.

(a) Given pw(zp, t), give an expression for wave pressure at zu.

(b) Then write an expression for the ratio of (pw)/(ρu) at zu using pw measured at zp

and u measured at zu.
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8. Using the scalings for the linear solutions (2.19a –2.19e), non-dimensionalize the dy-

namic boundary condition (2.11) and the Taylor series expansion (2.12). What nondi-

mensional parameter must be small for the linear approximation to be valid? i.e., to

justify the neglect of |∇φ|2 in (2.11) and the neglect of η∂2φ/∂t∂z in (2.12)?
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Chapter 3

Linear Surface Gravity Waves B,
Energy Conservation, Energy Flux,
and Group Velocity

Here, mean properties of the linear surface gravity wave field will be considered. These

properties include wave energy and wave energy flux. Other mean properties such as wave

mass flux, also known as Stokes drift, and wave momentum fluxes will not be considered

here. Some of these wave properties will be depth averaged and others will not be, so keep

that in mind.

On a practical level it is worth considering the potential challenges in modeling waves

on a global level. Surface gravity waves in the ocean typically have periods between 3–20 s.

The longer waves (say periods longer than 12 s) are classified as swell and shorter waves

(say less than 8 s) classified as sea. For swell in deep water (ω2 = gk), a typical scale for

the wavelength is λ ≈ 100 m. In order to numerically simulate this with the equations of

the previous chapter, one might think you need perhaps 10 grid points to resolve a cos(),

corresponding to a grid spacing of ∆ = 10 m. To do a 1000 km by 1000 km domain (which

is already much smaller than say the North Atlantic), this implies that one would require

1010 grid points. This is huge and beyond the capability of even the fastest supercomputers.

Furthermore, the same argumens apply to the time-scale. So in order to do basin-wide wave

modeling, one needs a different set of equations. These equations are based on wave energy

conservation nad will be derived in basic form here.

There is another reason to consider wave energetics and that is because just as with say

a pendulum, considering energetics leads to greater insight into the system.
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3.1 Wave Energy

Specific energy is the energy per unit volume, and has units J m−3 so that the specific energy

integrated over a volume has units of J. We will use this concept to think of wave energy

as the depth-integrated specific energy. As such it should then have units of J m−2 so that

by averaging wave-energy over an area, one gets Joules (J). We will also think of the wave

energy as a time-averaged or mean quantity, where the time-average is defined as the average

energy of waves over a wave period.

Wave energy E can be though of as the sum of kinetic (KE) and potential (PE) energy,

E = KE + PE. Lets first calculate the potential energy (PE), defined as the excess potential

energy due to the wave field. Thus the instantaneous potential energy is

ρg

[∫ η

−h
z dz −

∫ 0

−h
z dz

]
= ρg

∫ η

0

z dz =
1

2
ρgη2 =

1

2
ρga2 cos2(ωt). (3.1)

Now we time-average (3.1) over a wave period, with the identity that (1/T )
∫ T

0
cos2(ωt)dt =

1/2, we get the mean potential energy PE,

PE =
1

4
ρga2. (3.2)

Next we consider the kinetic energy. The local kinetic energy per unit volume is (1/2)ρ|u|2,

and so depth-integrated this becomes

1

2
ρ

∫ η

−h
|u|2 dz = ρ

∫ η

−h
(u2 + w2) dz. (3.3)

However, here we are interested in the linear kinetic energy, i.e., that kinetic energy which is

appropriate to linear theory. As linear theory is correct to O(ε) where in deep water ε = ak

then kinetic (and potential energy) should be correct to O(ε2). As u2 is already a O(ε2)

quantity, we do not need to vertically integrate all the way to z = η but can stop at z = 0

as this would only add another power of ε to the kinetic energy estimate. That is∫ η

0

(u2 + w2) dz ≈ η(u2 + w2) ≈ O(ε3).

Recall that this is not a formal approach, only a heuristic one. Thus, for linear waves

ρ

∫ η

−h
(u2 + w2) dz ' ρ

∫ 0

−h
(u2 + w2) dz. (3.4)

Using the solutions (2.19c and 2.19d) and depth-integrating and time-averaging over a wave-

period one gets

KE =
1

4
ρga2. (3.5)
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The first thing to note is that the the kinetic and potential energy are the same (KE =

PE), that is the wave energy is equipartioned. This is a fundamental principle in all sorts of

linear wave systems. But that is not a topic for here.

Now consider the total mean wave energy E,

E = KE + PE =
1

2
ρga2 (3.6)

Now if one defines the wave height H = 2a, then the wave energy is written as

E =
1

8
ρgH2. (3.7)

Note this also can be more generally written as

E = ρgη2 (3.8)

where η2 is the variance of the sea-surface elevation. Thus wave energy can be linked to wave

amplitude variance. This also allows wave energy spectra to be calculated from sea surface

elevation spectra.

3.2 A Digression on Fluxes 2.

A local flux is a quantity × velocity, so it should have units of Q m/s. For example,

• temperature flux: Tu

• mass flux: ρu

• volume flux: u

Transport is the flux through an area A. So this has units of Q ×m3s−1 and transport TQ

can be written as

TQ =

∫
(u · n)QdA,

where n is the outward unit normal. An example of volume transport can be the transport

of the Gulf Stream ≈ 100 Sv where a Sv is 106 m3 s−1. Or consider transport from a faucet of

0.1 L/s. A liter is 10−3 m3 so this faucet transport is 10−4 m3 s−1. Thus, a liter jar is filled in

10 s. If the faucet area is 1 cm2, then the water velocity in the faucet is 1 m s−1. A heat flux

example is useful to consider. For example heat content per unit volume is ρcpT , where cp is

the specific heat capacity with units Jm−3. This implies that by integrating over a volume,

one gets the heat content (thermal energy or internal energy) which has units of Joules. So
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the local heat flux is ρcpTu (cp is the specific heat) which then has units of Wm−2. When

integrated over an area, ∫
ρcpT (u · n) dA (3.9)

gives units of Watts (W).

Knowing flux is important for many things practical and engineering. However, one

fundamental property of flux is its role in a tracer conservation equation. A conserved tracer

φ evolves according to
∂φ

∂t
+∇ · Flux = 0, (3.10)

so that the divergence (∇ · ()) of the flux gives the rate of change. This base equation

can describe many things from traffic jams to heat evolution in a pipe to the Navier-Stokes

equations. What happens if the tracer is not conserved?

A key point to the flux is that through the divergence theorem, the volume integral of φ

evolves according to,
d

dt

∫
V

φdV =

∫
∂V

F · n̂dA

where the area-integrated flux F into or out of the volume gives the rate of change. This

concept is useful in many physical problems including those with waves!

Depth-integrated Fluxes

Here, with monochromatic waves propagating in the +x direction, we will typically consider

fluxes (but not always) through the yz plane. This means that the normal to the plane n̂ is

in the +x direction, and that u · n̂ = u, the component of velocity in the +x direction. This

makes the depth integrated flux of quantity Q∫
Qu dz

with units Qm2 s−1.

3.3 Wave Energy Flux and Wave Energy Equation

Now we calculate the wave energy flux. The starting point is the conservation equation for

momentum, which here are the inviscid incompressible Navier-Stokes equations,

∇ · u = 0 (3.11a)

ρ
∂u

∂t
+ ρu · ∇u = ∇p− gρk̂ (3.11b)

24



where k is the unit vertical vector.

Now, as before we consider only the linear terms and thus we neglect the nonlinear

terms (u · ∇u). Then an energy equation is formed by multiplying (3.11b) by ρu. The

first terms becomes (1/2)∂|u|2/∂t after integrating by parts. The pressure terms becomes

u · ∇p = ∇ · (up) − p∇ · u, and because the flow is incompressible (∇ · u = 0) we are left

with

ρ
1

2

∂|u|2

∂t
= −∇ · (up)− gρw. (3.12)

as u · k̂ = w. We can move the gravity term over to the LHS and get,

ρ

(
1

2

∂|u|2

∂t
+ gw

)
= −∇ · (up). (3.13)

which is almost in the form of a conservation equation driven by a flux-divergence (3.10).

Here the LHS can be thought of the time-derivative of the local kinetic and potential energies,

respectively. On the RHS, the quantity up is the local energy flux. Note that this does, sort

of, look like a classic flux (velocity times quantity) with pressure having units of (Nm−2)

which is Jm−3, which is energy per unit volume!

Lets first look at the energy-flux term. The depth-integrated and time-averaged wave

energy flux F in the yz plane (i.e., flux in the +x direction) is

F =

〈∫ 0

−h
pu dz

〉
. (3.14)

The upper limit on the integral for (3.14) is z = 0 and not z = η because this is the linear

energy flux and assumes that η is small. In regards to linear theory, energy and energy flux

are second order quantities, or said mathematically F is an O(ε2) quantity and so terms of

O(ε3) or higher can be ignored. Higher order nonlinear theories can include the neglected

kinetic energy component from z = 0 to z = η.

Now we just need to plug in the solutions and average and we get the wave energy flux.

The pressure is the sum of the hydrostatic component p̄ and the wave component pw (2.19e).

Because u (2.19c) is periodic and p̄ is steady,〈∫ 0

−h
p̄u dz

〉
= 0 (3.15)

leaving

F =

〈∫ 0

−h
pwu dz

〉
Plugging in (2.19c) and (2.19e) and performing the integral results in

F =
1

2
ρga2

[
ω

k

1

2

(
1 +

2kh

sinh(2kh)

)]
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Now the wave energy flux can can be rearranged to look like

F = Ec
1

2

(
1 +

2kh

sinh(2kh)

)
(3.16)

which looks like a quantity (in this case E) times a type of velocity (here c) times a non-

dimensional parameter ? = (1/2)(1 + 2kh/ sinh(2kh)). Lets consider two limits, deep water:

kh→∞ then ?→ 1 and shallow water kh→ 0 gives ? = 1/2.

So perhaps one could redefine the velocity associated with the flux as cg

cg = c
1

2

(
1 +

2kh

sinh(2kh)

)
(3.17)

which we call the group velocity. Then the depth-integrated and time-averaged wave energy

flux is

F = Ecg (3.18)

which is analogous to the flux definition (stuff times velocity) discussed earlier.

Now how is the group velocity related to the dispersion relationship ω2 = gk tanh(kh)?

Well first the wave phase speed is

c =
ω

k
=

[g tanh(kh)]1/2

k1/2
(3.19)

and

∂ω

∂k
=

1

2
[gk tanh(kh)]−1/2 (g tanh(kh) + gk cosh−2(kh)) (3.20)

= c
1

2

[
1 +

2kh

sinh(2kh)

]
. (3.21)

So cg, which is the velocity associated with the wave energy flux, is also

cg =
∂ω

∂k
. (3.22)

This is rather interesting. This implies that wave energy propagates at a speed ∂ω/∂k

different from the speed at which wave crests propagate c = ω/k. Is this a coincidence? This

will be examined in the problem sets and subsequent chapter.

3.3.1 A Wave Energy Conservation Equation

Going back to the local energy equation (3.13)

ρ

(
1

2

∂|u|2

∂t
+ ρgw

)
= −∇ · (up), (3.23)
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we’ve already derived the depth-integrated wave energy flux (3.14)–(3.18) from the RHS of

(3.23). Now, we can re-derive the kinetic and potential energy by depth-integrating the LHS

of (3.23) and noting that for this linearized case w = dz/dt, so that∫ η

−h

∂

∂t

(
1

2
ρ|u|2

)
dz +

∫ η

−h
ρgw (3.24)

=
∂

∂t

(∫ 0

−h

1

2
ρ|u|2 dz +

∫ η

−h
ρgz dz

)
(3.25)

If we again time-average over a wave-period (3.1), the LHS becomes

∂

∂t
(KE + PE) =

∂E

∂t

where wave kinetic, potential, and total energy (KE, PE, and E) are defined in (3.5), (3.2),

and (3.6).

Now, recalling the idea of a flux conservation relationship (3.10), we now have wave

energy E and wave energy flux F . Combining the LHS and RHS of the depth-integrated

(3.23) we get for linear waves,
∂E

∂t
+∇ · (Ecg) = 0, (3.26)

which looks like a version of the 1D wave equation. This equation is valid unless wave energy

is created (by wind generation) or destroyed (by wave breaking or bottom friction). It also

assumes that there are no currents that could refract the wave field.

The statement (3.26) can be more generalized as a wave-action conservation equation.

Such an equation can apply to a variety of linear wave situations from surface gravity waves,

to internal waves, to sound waves. This is a topic that will be addressed in later parts of the

course when we focus on inhomogeneous media. But keep (3.26) in mind as it will appear

in various guises later on.

3.4 Extension to Real Surface Gravity Waves

1. Spectra describes the variance distribution of η in frequency and direction: Sηη(f, θ).

Also could be in wave number component: Sηη(kx, ky) via the dispersion relationship.

A fixed instruments measures in f direction. Satellite might measure in k directly.

2. Curiously wave energy is linearly related to variance (3.8). So for real waves wave

energy can be written as a function of f and θ

E(f, θ) = ρgSηη(f, θ)
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3. Now energy conservation becomes

∂E(f, θ)

∂t
+∇ · [(E(f, θ)cg(f)] = 0,

4. Can add sources and sinks to this:

∂E(f, θ)

∂t
+∇ · (E(f, θ)cg(f) = Swind − Sbreaking + Snl

5. How well does this work? Wave forecasting
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3.5 Problem Set

1. Confirm for yourself that the units of (3.26) work out. What are the units of Ecg?

2. Take a look at the CDIP wave model output. From google earth, figure out what

the approximate distance is from Harvest platform to San Diego. Assume deep-water

kh � 1. If a T = 18 s swell arrives at Harvest at midnight, how long does it take for

the swell to arrive at San Diego (assume no islands). How long for T = 8 s waves?

3. Assume linear monochromatic waves with amplitude a and frequency f are propagating

in the +x direction on bathymetry that varies only in x, i.e., h = h(x). If the waves

field is steady, and there is no wind-wave generation or breaking, then (3.26) reduces

to
d

dx
(Ecg) = 0. (3.27)

Assuming that the dispersion relation and energy conservation hold for variable water

depth,

• In deep water, what is the wave height H dependence on water depth h?

• In shallow-water, what is the wave height H dependence on water depth h?

In both cases one can derive a scaling for H ∼ f(h).

4. Consider the equation for φ(x, t) that obeys the equation

φt + φxxx = 0, −∞ < x < +∞ (3.28)

on the infinite domain. In the Chapter 1 problem set, the dispersion relation ω = ω(k)

for (3.28) was derived.

(a) By multiplying (3.28) by φ, integrate by parts and time-average over the plane

wave solution φ = a cos(kx− ω(k)t) to form an energy equation of the form

∂E

∂t
+
∂F

∂x
= 0

(b) Write the average energy flux F as a velocity times energy. How does this velocity

relate to the dispersion relationship and phase velocity? Does phase and energy

always move in the same direction? Does phase or energy move faster?

5. Consider now the physical variable φ(x, t) obeys the equation

φtt − φxx + φ = 0, −∞ < x < +∞

on the infinite domain. First, derive the dispersion relationship. The, repeat (a) and

(b) for the above question. However, for (a), multiply by φt and integrate by parts.
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Chapter 4

Linear Surface Gravity Waves C,
Dispersion, Group Velocity, and
Energy Propagation

4.1 Group Velocity

In many aspects of wave evolution, the concept of “group velocity” cg plays a central role.

We’ve seen it as the velocity associated with the wave energy flux and thus it is known

as the “speed of energy propagation”, but it is actually more. For example, if a packet of

dispersive waves are created suddenly near x = 0 at time t = 0, the place to look for waves

of wavenumber k at time t is not at x = ct but rather at x = cg(k)t

cg =
∂ω

∂k
. (4.1)

This is called the stationary phase problem. As we saw in the last chapter, this group velocity

cg is associated with the speed of energy propagation. It is also associated with wavenumber

k propagation. Weird. We therefore begin by exploring group velocity in a simple example,

a classic stationary phase problem, and then looking at conservation equations for k and ω.

4.2 Slowly Varying Wavetrain, take one: Two-waves

The intrinsic nature of “group velocity” cg is exhibited in its simplest form by a flow made

up of precisely two equal-amplitude plane waves. We choose deep water (i.e., short) gravity

waves in one space dimension for our example. The dispersion relation is

ω2 = gk

A two-wave solution is

η = A [cos(k1x− ω1t) + cos(k2x− ω2t)] (4.2)
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where ω1 =
√
gk1 and ω2 =

√
gk2. By the cosine angle formula

cosα cos β =
1

2
[cos(α + β) + cos(α− β)] ,

the two wave case (4.2) can be written as

η = [2A cos(∆kx−∆ωt)] cos(k̄x− ω̄t),

where

k̄ =
k1 + k2

2
ω̄ =

ω1 + ω2

2
,

∆k =
k1 − k2

2
∆ω =

ω1 − ω2

2
.

The interesting case is when |∆k| � |k̄|. Then the factor

A(x, t) = 2A cos(∆kx−∆ωt) (4.3)

is interpreted as the “slowly varying” envelope of the carrier wave cos(k̄x− ω̄t) (Figure 4.2).

The envelope has amplitude 2A, wavelength ∆k, and frequency ∆ω. Does one ever see this

on the surface of the ocean? What radio band utilizes this principle to transmit audio?.

envelope
carrier wave

Figure 4.1: Carrier wave and envelope (4.3).

Crests and troughs of the carrier wave move at the phase speed c = ω̄/k̄, but the envelope

moves at speed ∆ω/∆k which as ∆k → 0 has a limit of

cg =
dω

dk
.

Holy smokes! The propagation speed cg of the slowly-varying wave envelope (or wave group)

is the same as the speed associated with the wave energy flux F = cgE in the equation

(4.23),
∂E

∂t
+

∂

∂x
(cgE) = 0, (4.4)

Two different approaches give the same result for cg. Without all the fancy energy flux calcu-

lations of the previous chapter, we could divine that slowly varying wave packets propagate

with cg.
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4.3 Slowly varying wavetrain: Take 2 - Deep Water

Wave Packet

4.3.1 Setup of Wave Packet Initial Condition

Lets consider deep water waves in one space dimension, but allow for an arbitrary initial

condition that has the form of a “packet”. Let η(x, t) be the free surface elevation, and let

the initial condition on η be given as

η(x, 0) = f(x).

We will assume that f(x) is nonzero only around x = 0, i.e., that f(x) is a packet. What

kind of form could this take. A simple form might be

f(x) = exp(−x2/L2
0) cos(k0x), (4.5)

which is made up of a carrier wave cos(k0x) and an envelope A = exp(−x2/L2
0), where L0

is the width of the packet. A case that will be interesting is that where the wave packet

width is much larger than a wave-length, L0 � 2πk−1
0 or L0k0/(2π) � 1. See for example

the example wave packet in Figure 4.3.1. Here, we investigate how such a packet propagates

knowing only the initial condition and the dispersion relationship.

Figure 4.2: Slowly varying wave packet exp(−x2/L2
0) cos(k0x).

Recall that the Fourier representations of η and f are

η(x, t) =

∫ ∞
−∞

η̂(k, t)eikx dk,

f(x) =

∫ ∞
−∞

f̂(k)eikx dk,

where the Fourier transform is

η̂(k, t) =
1

2π

∫ ∞
−∞

η(x, t)e−ikx dx,
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and η̂(k, t) = η̂(−k, t)∗ because η(x, t) is real. In our specific example of (4.5) the Fourier

transform of f(x) is

f̂(k) ∝ exp(−L2
0(k − k0)2), (4.6)

which can be found in many books or internet-searches. Question: Can you derive this?

4.3.2 Full Solution

With the initial condition of a packet f(x) and its Fourier transform (f̂), we can write

a solution for the evolution of the entire wave field η(x, t) with all its wave components

following the analysis of the wave equation in Chapter 1. In analogy with the solution for

the wave equation, the general solution for deep water waves is

η(x, t) =

∫ ∞
−∞

[
â(k)ei(kx−ω(k)t) + b̂(k)ei(kx+ω(k)t)

]
dk, (4.7)

where ω(k) = (gk)1/2 and

η̂(k, t) =
[
â(k)e−iω(k)t + b̂(k)eiω(k)t

]
.

The coefficients â(k) and b̂(k) are chosen to meet the initial conditions. From the initial

condition η(x, 0) = f(x) we obtain

â(k) + b̂(k) = f̂(k).

As in Chapter 1, to determine both â(k) and b̂(k) we obviously need an additional initial

condition as the complete initial conditions for any mechanical system are the position and

velocity of particles.

We take, for our additional initial condition, that the surface be initially at rest,

∂η

∂t
= 0.

As with the wave equation (Chapter 1), this implies

−iωâ(k) + iωb̂(k) = 0,

so that

â(k) = b̂(k) =
f̂(k)

2
.

Thus the exact solution to our problem is

η(x, t) =

∫ ∞
−∞

f̂(k)

2

[
ei(kx−ω(k)t) + ei(kx+ω(k)t)

]
dk, (4.8)
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which could be integrated numerically or otherwise if f̂(k) is known. However, generally the

form (4.8) is not convenient.

Now (4.8) has two very similar terms just propagating in different directions but otherwise

treated in precisely the same way. To avoid unnecessary text, we will temporarily pretend

that only one term is present, i.e.,

η(x, t) =

∫ ∞
−∞

f̂(k)ei(kx−ω(k)t). (4.9)

The combination of both +x and −x solutions is left to the reader.

4.3.3 Approximate Solution for slowly varying packet

Now consider the case of a slowly varying packed with initial condition f(x) given by (4.5)

and its Fourier transform (4.6)

f̂(k) ∝ exp(−L2
0(k − k0)2),

where k0L0 � 1. This means that the packet is broad and slowly varying (see Figure 4.3.1)

or that its Fourier transform f̂(k) is narrow around a peak at k = k0. With this particular

initial condition, we can evaluate the integral (4.8) by Taylor series expanding the dispersion

relationship around k = k0, i.e.,

ω(k) = ω0(k0) + k′ω′(k0) +
1

2
k′2ω′′(k0) + . . .︸ ︷︷ ︸

neglected

where k′ = k − k0 and ω′ = ∂ω/∂k = cg. Next we will only consider terms propagating to

the right. This becomes

η(x, t) =
1

2

∫ ∞
−∞

f̂(k′)[ei(k0x−ω0t) + eik′(x−cgt) + . . .] dk′

≈ 1

2
ei(k0x−ω0t)

∫ ∞
−∞

f̂(k′)eik′(x−cgt) dk′

≈ 1

2
ei(k0x−ω0t)f(x− cgt)

where the last term comes from the properties of Fourier transforms. Which says that the

solution is a fast carrier wave of the form cos(k0x−ω0t) and then an envelope that propagates

with the group velocity, f(x − cgt). What is interesting is that because cg = c/2, the fast

carrier waves propagate through the envelope just as seen in the film “Waves Across the

Pacific”
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4.3.4 Higher Order Solution: What happens next?

At the start of the subsection we mentioned the initial condition (4.5) of a wave packet

of width L0. Can we say anything about the width of the packet as time-evolves? Does

it change? Stay the same? Yes one can say something about the packet size evolution.

Imagine first that the system is non-dispersive so that ω′′ and all higher derivatives are equal

to zero. How would the packet width evolve? Well, it would remain constant. Why? Now

we neglected higher order terms in the Taylor series expansion of the dispersion relationship,

such as those of the form (1/2)k′2ω′′(k0). What if ω′′(k0) is not zero? Question: What would

be the effect of this qualitatively on the wave packet? Would it widen or narrow? For extra

credit see the problem set...

4.4 A confined disturbance at long time: Stationary

phase

Previously, we examined the velocity of the envelop of the wave packet whose envelope varied

slowly relative to the carrier wave (k0L0 was large) and showed that the envelope propagated

with cg = dω/dk. In this section, instead we seek to examine the long time evolution of

an arbitrary but confined disturbance. This is a classic problem called stationary phase. It

has application to how wave prediction was performed prior to modern wave models. The

basic setup is this. What if there is a big disturbance far away. At what time will we see

waves of a particular frequency and how big will those waves be? How will the wave height

change even farther away? The method of stationary phase helps provide insight into these

questions.

To begin, we seek an approximation to (4.8) that is valid for large x and t based upon

the assumption that f(x) 6= 0 only within a finite distance of x = 0. But really any initial

disturbance f(x) that is contained or has f(x) = 0 for some |x| will work. For example, this

could be a storm in the Southern Ocean. Or an earthquake radiating seismic energy in the

geophysics world. By requiring that f(x) be confined to some region near x = 0, this forces

the Fourier transform f̂(k) to be smooth. This is in contrast to the slowly varying wave

packet of Section 4.3 where we assumed that f̂(k) was zero in regions where the dispersion

relationship varied significantly. This means that this method can have a broader range of

initial disturbances provided they are confined, but is limited to only long times (and long

distances).
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Figure 4.3: Example evaluation of exp[itφ(k)] near k0 for the stationary phase approximation.

To examine the large x and t behavior of (4.9), we rewrite (4.9) in the form

η(x, t) =

∫ ∞
−∞

f̂(k) exp [itφ(k)] dk, (4.10)

where

φ(k) =
kx

t
− ω(k). (4.11)

Now, let t → ∞ with the ratio x/t fixed (but arbitrary). This obviously means that x gets

really big as well. Within the integral (4.10) for very large, even small changes in φ(k) with

k will cause rapid oscillations in exp[itφ] (Figure 4.3). Thus, with f̂(k) being smooth, these

oscillations will produce canceling contributions to the integral (4.10). This is true except

where φ(k) is constant in k or where dφ/dk = φ′(k) = 0, because if φ′(k) = 0 then changes

in k produce no change in φ(k). This is the concept of stationary phase - that is the phase

φ is relatively constant. With this concept, for a smooth f̂(k) as t → ∞, the dominant

contributions to the integral (4.10) come from all the wavenumbers k0 (Figure 4.3) at which

dφ(k0)

dk
=
x

t
− dω(k0)

dk
= 0. (4.12)

This means that for large t, the location of the k0 component of the wave field (which has

many components) will be at x = cg(k0)t. That is, at this x = cg(k0)t at large time we will

locally see a wave with wavenumber k0. This is consistent with what we knew before with

slowly varying wave trains, but is true for arbitrary disturbances at long time as well.

Therefore, we approximate (4.10) at large t and fixed x/t as

η(x = cg(k0)t, t) ≈
∑
k0

∫ k0+∆k

k0−∆k

f̂(k0)eitφ(k) dk, (4.13)

where the summation is over all k0 that satisfy (4.12). For the deep water dispersion rela-

tionship (ω2 = gk), there will only be one k0 but for other wave systems and corresponding

dispersion relationships, there could be more than one!
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How big is the amplitude of this wave? Now, near k0, we Taylor series expand around

(k − k0) resulting in

φ(k) = φ(k0) + φ′(k0)(k − k0) +
1

2
φ′′(k0)(k − k0)2 + . . . (4.14)

≈
[
k0x

t
− ω(k0)

]
+ 0− 1

2
ω′′(k0)(k − k0)2. (4.15)

Here we assume that ω′′(k0) 6= 0 and stop after that term. (The case where ω′′(k0) = 0 is way

more algebra and will not be considered here.) Note that here we’ve gone to a higher order

expansion including ω′′(k0) whereas in Section 4.3 we only went to ω′. With this expansion

(4.14), the expression (4.13) simplifies to,

η(x = cg(k0)t, t) ≈
∑
k0

f̂(k0)ei(k0x−ω(k0)t)

∫ k0+∆k

k0−∆k

exp

[
− it

2
ω′′(k0)(k − k0)2

]
dk. (4.16)

This is starting to look familiar. There is a carrier wave exp[i(k0x− ω(k0)t)], an amplitude

f̂(k0), and then an integral that depends on the dispersion relationship.

To evaluate the integral in (4.16), change the integration variable to

α = (k − k0)

√
t

2
|ω′′(k0)|,

and the integral in (4.16) becomes

1√
t
2
|ω′′(k0)|

∫ +∆α

−∆α

exp
[
−iα2 sgn (ω′′(k0))

]
dα, (4.17)

where

dα = dk

√
t

2
|ω′′(k0)|.

As t → ∞, dα → ∞ for any dk, and the integration limits in (4.17) may be replaced by

(−∞,∞). This is very satisfying, because ∆k is an arbitrary quantity. It only remains to

evaluate the integral (see Appendix),∫ ∞
−∞

e−iα2 sgn(ω′′(k0)) dα =
√
π exp

(
−iπ

4
sgn[ω′′(k0)]

)
. (4.18)

Combining all results, for large t near x = cg(k0)t,

η(x = cg(k0)t, t) ≈
∑
k0

A(t; k0)ei(k0x−ω(k0)t)e−iπ sgnω′′(k0)/4 (4.19)

where the amplitude A is given by

A(t; k0) =

√
πf̂(k0)√
t
2
|ω′′(k0)|

. (4.20)
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The approximation method used to get (4.19) and (4.20) is called the method of stationary

phase. This version presented is somewhat less rigorous than that given by Lighthill, who

points out that the procedure can also be done as a special case of the method of steepest

descents.

4.4.1 Discussion Points

Going back to our full solution (4.8), we easily see that the second term, whose analysis we

deferred, makes no contribution on x � 0. For x � 0, the first term is negligible, and the

second term makes a contribution analogous to the one we have worked out.

Where has the assumption that f(x) = 0 away from x = 0 actually been used? In the

assumption that f̂(k) is smooth! For if f̂(k) has “infinitely sharp corners”, then even the

rapid oscillations of eitφ may not cause cancellation. The fact that f(x) = 0 for |x| sufficiently

large forces f̂(k) to be smooth in the sense that rapid changes in any function are associated

with “high wavenumber” in its Fourier transform.

We next examine the physical content of (4.19). At large x and t, imagine an observer

with a special preference for the wavenumber k0, who is willing to suffer any inconvenience to

always be where the local wavenumber is k0. This observer must move at the velocity cg(k0),

and for him k0 in (4.19) is truly a constant. However, since cg(k0) = (1/2)c(k0) for surface

waves, crests and troughs will move rightward relative to the observer, no matter what

k0. What about the amplitude of the waves for this observer? From (4.20), the amplitude

decays as t−1/2 but the rate of decay - the “diffusivity” if you will (aside: why is that analogy

appropriate?) - depends upon the dispersion relation and ω′′(k0). For smaller ω′′(k0), the

amplitude decay is less that for larger ω′′(k0).

4.4.2 Development of Energy Conservation Equation

At x = cg(k0)t, the complex amplitude (4.20) is

A(t; k0) =

√
πf̂(k0)√
t
2
|ω′′(k0)|

.

We can now develop a conservation equation for the quantity Q(t),

Q(t) =

∫ x2

x1

|A|2 dx = 2π

∫ x2

x1

f̂(k)f̂ ∗(k)

t|ω′′(k)|
dx. (4.21)

where we assume ω′′(k) > 0. Now, if we specify that x1 and x2 are traveling at the group

velocity, we can use the relationship x = ω′(k)t and thus dx = ω′′(k)t dk to transform (4.21)
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to

Q(t) =

∫ x2

x1

|A|2 dx = 2π

∫ k2

k1

f̂(k)f̂ ∗(k) dk, (4.22)

where k1 and k2 are given by x1 = ω′(k1)t, etc. What this means is that if k1 and k2 are

fixed, then Q(t) (4.22) is a constant! That is the integral of |A|2 (4.21) where the limits

move with the appropriate group velocity. This means that the total |A|2 between any pair

of points moving with the group velocity is conserved. As the separation between the points

grows with t, |A|2 decreases with t−1.

Next, for the case of (4.22), we know that dQ/dt = 0, but we can also calculate dQ/dt

based on (4.21) explicity which becomes using Leibniz rule,

dQ

dt
=

d

dt

∫ x2

x1

|A|2 dx =

∫ x2

x1

∂|A|2

∂t
dx+ |A(x2)|2ω′(k2)− |A(x1)|2ω′(k1) = 0.

As x2 − x1 → 0, we arrive at a conservation equation for |A|2 of

∂|A|2

∂t
+
∂(cg|A|2)

∂x
= 0.

This looks curiously similar to our Energy Conservation equation derived before where E ∝
|A|2. This derivation works for all wave-systems and dispersion relationships but at long-

times and for ω′′ 6= 0. Why is long-time essential here? It means that enough time has

passed such that the arbitrary initial disturbance is now slowly varying. The essence of this

derivation and discussion follows that of Whitham. It is very worthwhile to read Chapter

11.1-11.6 of Whitham.

Appendix: Evaluation of Integral

Some care is required to evaluate (4.18),∫ ∞
−∞

e−iα2 sgn(ω′′(k0)) dα,

because this integral exists only if carefully interpreted. Suppose ω′′(k0) > 0 and replace

(4.18) by ∫ ∞
−∞

e−(i+ε)α2

dα

where ε > 0 is real. Now there is no problem with convergence since∣∣∣e−(i+ε)α2
∣∣∣ = e−εα

2 → 0 as α→ ±∞

Then ∫ ∞
−∞

e−(i+ε)α2

dα =

√
π√

i + ε
→
√
πe−iπ

4 as ε→ 0
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where we select the branch of
√

i + ε with positive real part. Treating the case ω′′(k0) < 0

similarly, we find that∫ ∞
−∞

e−iα2 sgn(ω′′(k0)) =
√
π exp

(
−iπ

4
sgnω′′(k0)

)
.
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Problem Set

1. Consider the 1-9 August storm discussed in Snodgrass et al. (1966), the paper associ-

ated with the movie “Waves Across the Pacific”. In particular see Sections 5a and 5b.

Read enough of the previous sections that you get a sense of what is going on.

(a) In Figure 16, why do the ridges for the 1-9 August storm slope over the farther

away from the storm?

(b) In Figure 21, top panel: Consider the top panel as representing |A|2. Can you

rationalize the attenuation at f = 0.065 Hz (65 mc/s), as being from dispersive

attenuation from stationary phase? Find the distances between the given locations

on the map and use the deep water dispersion relationship.

2. (from Kundu et al., 7.11) The effect of viscosity on the energy of linear deep-water

surface waves can be determined from the wave motion’s velocity components and the

viscous dissipation.

(a) For incompressible flow, the viscous dissipation of energy per unit mass of fluid is

ε = 2νS2
ij, where Sij is the strain-rate tensor and ν is the fluid kinematic viscosity.

Calculate ε from the wave solutions in Lecture 2 for deep water waves.

(b) Vertically integrate the wave ε to calculate

Dw =

∫ 0

−∞
ε(z)dz

Now a wave energy conservation equation that included viscous effects would look

like
∂E

∂t
+

∂

∂x
(Ecg) = −Dw (4.23)

where Dw is a function of the wave energy and other wave properties (period?).

(c) Assuming ∂t = 0, that is a balance between flux divergence and dissipation, write

a closed form solution for wave energy or wave amplitude as a function of x (again

in deep water).

(d) Using ν = 10−6 m2 s−1, determine the distance necessary for a 50% amplitude

reduction for waves with period T = 2 s and T = 20 s.

(e) Thinking about “Waves across the Pacific”: find the distance from New Zealand

to Southern California (or Tutuila to Yakutat in regards to question 1). How much

loss of wave energy (or amplitude) would you expect for the waves of frequency

f = 0.065 Hz?
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3. (EXTRA CREDIT) Let

η(x, t) =

∫ ∞
−∞

f̂(k)e+i[kx−ω(k)t] dk

(a) For the initiation condition (4.5) also shown in Figure 4.3.1,

f(x) = Re
{
e−x

2/L2
0eik0x

}
,

determine the f̂(k) explicitly (and without approximation). Note the approximate

answer is given in (4.6). Regard L0 and k0 as constants.

(b) Consider now that k0L0 � 1 so that the initial condition is a “wave packet”

of length L0, and ω = ω(k) as a general (unspecified) dispersion relationship.

Demonstrate that the solution η(x, t) at time t is a wavepacket of length

L = L0

√
1 +

4(ω′′(k0))2t2

L4
0

Do not assume x or t is large.

(c) Can you give a short explanation that establishes an analogous result qualita-

tively?

42



Chapter 5

Linear Surface Gravity Waves D, Ray
Theory

Up to now, we have only been considering surface gravity wave problems in constant depth.

Because the depth is constant the medium in which the waves are propagating is homo-

geneous. In general, this means that the non-wavenumber parameters of the dispersion

relationship are fixed. For example, in surface gravity waves

ω2 = gk tanh(kh), (5.1)

and thus for homogeneous media g and h are constant in space and time. The same applies

for any other dispersion relationship such as those for internal waves and sound waves.

Of course, no wave propagates in truly homogeneous media, and in general inhomoge-

neous media “waves problems” fall into one of two categories. In the first category, the

wavelength is large compared to the scale of the inhomogeneities in the medium. This

category includes typical scattering and diffraction problems, as well as generation by local-

ized sources. Although there are numerous simple examples, these problems are in general

quite complicated and require methods which are considerably more sophisticated than the

relatively simple plane-wave Fourier analysis we have been using.

In the second category the wavelength is small compared to the scale for variations in

the medium. The “slow” variations in the medium cause slow variations in the wavenumber

and amplitude of the waves. These slow variations of the medium are subject of this chapter.

The theory of “slowly varying waves” is relatively simple, and takes the form of a generalized

theory of plane waves which we call ray theory. Ray theory has two essential parts:

1. Ray equations, which describe the propagation, in space and time, of the slowly varying

wavenumber (i.e. describe refraction)

2. An “energy equation”, which describes the propagation of “wave energy” in space and
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time. We have already seen energy equations for homogeneous media, and it also is

applied to slowly varying inhomogeneous media.

The ray equations can be derived from the simple postulate that the slowly-varying wavenum-

ber and frequency obey the same dispersion relationship as do plane waves in an exactly ho-

mogeneous medium. Interestingly, the ray equations are analogous to Hamilton’s equations

in mechanics (see the Appendix, Chapter 20),

Ray theory can be considered as the first term in a formal asymptotic expansion in which

the “small parameter” is the ratio of the wavelength to the lengthscale of the medium. This

asymptotic analysis is often done with WBK theory. (For a general introduction see Bender

& Orszag, Advanced Mathematical Methods, chapter 10.) However, the full WKB theory is

usually not required, and we will not use it here, but it is useful in sorting out paradoxes

that can develop at the ray theory level of approximation.

5.1 Slowly varying wavetrain: Take 4, Homogeneous

Media

Here we start with the assumption of a slowly varying wavetrain and postulating that the

plane wave dispersion relation is satisfied locally. We will look at a slowly varying plane-

wavetrain in homogeneous media. This is another way of looking at the results of Chapter 4.

Here we explicity define what is meant by slowly varying. By “slowly varying” we mean that

the wavenumber and frequency change only gradually over many oscillations. These slow

variations can come about either because the slowly-varying initial condition and dispersion

(as in the examples in Chapter 4), or because the medium itself exhibits a slow variation (in

fluid depth, for example - to be considered in the next section.

We suppose that the general wave in a slowly-varying medium can be written in the form

η(x, t) = A(x, t)eiθ(x,t) (5.2)

where A is the wave envelope and θ is the phase. Now define the local wavenumber and

frequency, respectively, as

k ≡ ∂θ

∂x
(5.3)

ω ≡ −∂θ
∂t
. (5.4)

Note that, in the special case of a plane wave, θ = kx− ωt and k, ω are constants. Directly

from the definitions (5.3-5.4), it follows that

∂k

∂t
+
∂ω

∂x
= 0 (5.5)
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This is often interpreted as a “conservation equation for wave crests”. (Why? What form

does this equation hold? ) This can be easily extended to multiple space dimensionsl with

k = ∇θ or ki = ∂θ/∂xi. However, here we keep things in one-dimension to simplify.

More generally, the wave (5.2) is “locally sinusoidal” if the local wavenumber k varies

slowly over a wavelength (λ = 2πk−1). The length-scale of k variation (Lk) will be given by

∂k/∂x ≈ (k/Lk) or Lk = (k−1∂k/∂x)−1. Thus, for the medium to be slowly varying, the

ratio of the wavelenght λ = 2π/k to Lk must be small or

λ

Lk
� 1,

λ

Lk
=

1

kLk
=

1

k2

∂k

∂x
� 1.

Similar approach applies to wave frequency resulting in the requirement that

1

ω2

∂ω

∂t
� 1.

The same argument can be made for the amplitude of the wave envelope A(x, t). Spatially

A(x, t) must vary slowly so that over a wavelength, the wave envelope does not seem to vary.

Stated mathematically, this implies that,

1

kA

∂A

∂x
� 1. (5.6)

Now if A, k, ω change slowly enough so that conditions are “locally sinusoidal”, we expect

that, to first order, ω, k satisfy the dispersion relation for plane waves in each locality. We

therefore assume

ω(x, t) = Ω (k(x, t)) (5.7)

where

ω = Ω(k)

is the dispersion relation for plane waves in homogeneous media. (Aside: Why change the

notation? ) This assumption is the basis for all results to follow. (We use the notation Ω to

emphasize explicit functional dependence.) For surface gravity waves, Ω(k) =
√
gk tanh(kh).

By (5.5) and (5.7)

∂k

∂t
+
∂ω

∂x
=
∂k

∂t
+

dΩ

dk

∂k

∂x
= 0 (5.8)

⇐⇒
(
∂

∂t
+ cg

∂

∂x

)
k = 0 (5.9)
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This states that an observer moving at the group velocity would always see the same local

wavenumber, as shown previously in a variety of special cases also based on slowly-varying

principles,

∂ω

∂t
=

dΩ

dk

∂k

∂t
= −dΩ

dk

∂ω

∂x
(5.10)

⇐⇒
(
∂

∂t
+ cg

∂

∂x

)
ω = 0 (5.11)

Thus the local frequency also propagates at the group velocity cg. Again, we see that

cg = ∂ω/∂k is the crucial parameter for how many wave properties propagate.

5.2 Inhomogeneous slowly-varying media

Up to know in our discussion of surface gravity waves, the water depth h has remained a

constant. That is, any parameters in the dispersion relationship

ω(x, t) = Ω (k(x, t);h, g) (5.12)

aside from k are spatially and temporally constant. In most cases it makes sense that g is

constant but does it really make sense that h is constant? In deep water, ω = (gk)1/2 and

so any depth variation is irrelevant. But what about shallow water where ω = (gh(x))1/2k?

Or more generally when

ω(x, t) = Ω (k(x, t);h(x), g) . (5.13)

This type of situation here the dispersion relationship parameters vary in space or time is

called inhomogeneous media. You have already encountered this in your previous studies.

Think about your Physics-Optics course where light going from air to glass (e.g., a prism)

refracts (or bends) because the index of refraction (speed of light) varies. This is wave

propagation across inhomogeneous media.

Now, in general, the spatial or temporal variation in the media must also be slow to

apply this “locally sinusoidal” concept. Is this true for light refracting on a prism? This

means that the same constraint applied to the wave envelope A (5.6) and wavenumber k also

applies to the dispersion relationship parameters. For shallow water waves, this means that,

1

kh

∂h

∂x
� 1.

How would this affect the conservation equations for k (5.9)?

Equations (5.9) and (5.11) require modification if the medium itself varies (slowly) in

space or time. Let the dispersion relation ω = Ω(k;h) contain the parameter h which is a

46



property of the medium (like the fluid depth). If h(x, t) slowly varies, then the dispersion

relationship has two ways that it can depend on the spatial variable,

ω(x, t) = Ω (k(x, t), h(x, t)) (5.14)

and (5.9) and (5.11) are replaced by(
∂

∂t
+ cg

∂

∂x

)
k = −∂Ω

∂h

∂h

∂x
(5.15)(

∂

∂t
+ cg

∂

∂x

)
ω =

∂Ω

∂h

∂h

∂t
(5.16)

Equation (5.15) is equivalent to the two equations, which are called the Ray Equations.

dx

dt
=
∂Ω

∂k
(5.17)

dk

dt
= −∂Ω

∂x
(5.18)

where the derivatives must be carefully interpreted as

∂Ω

∂k
≡ ∂Ω

∂k

∣∣∣∣
h

≡ cg(k, h) and
∂Ω

∂x
≡ ∂Ω

∂x

∣∣∣∣
k

=
∂Ω

∂h

∂h

∂x

It is best to regard the ray equations as equations for the changes in x and k seen by an

observer traveling along the ray. The first equation merely states that the observer moves

at the group velocity. The second equation describes the change in k that the observer sees.

This change in k is caused solely by changes in the medium and is called refraction.

Equation (5.16), which can now be written

dω

dt
=
∂Ω

∂t

∣∣∣∣
k,x

(5.19)

need not actually be solved. Instead we can use (5.14) to find ω(x, t), once k(x, t) has been

found from (5.18). To find k(x, t) using (5.18), one can imagine a continuous infinity of

observers distributed along the x-axis. The observers move as specified by (5.18) and the

changes the see map out k(x, t).

Aside on relationship to Hamiltonian Mechanics

It is useful to realize that the ray equations are exact analogues of Hamilton’s equations for

classical mechanics,
dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
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The analogy is between

x←→ q

k ←→ p

Ω(x, k)←→ H(q, p)

ω ←→ energy

More on this in the Appendix (Chapter 20).

5.2.1 Wave energy conservation

We have already derived wave energy conservation laws before for homogeneous media.

This was done by taking momentum equations, multiplying by u, integrating by parts, and

eventually averaging over a wave period. Thus, the wave energy E, in addition to k and

ω, are wave averaged quantities. For example, E does not explicit fluctuate with the fast

time and space scales of ω. The wave energy E can be thought of as related to the slowly

varying wave envelope squared E ∝ A2. In most wave systems that are slowly varying and

some other caveats (no wave current interaction), the wave energy followed a wave energy

conservation equation where
∂E

∂t
+∇ · (cgE) = 0 (5.20)

where the wave energy flux is F = cgE.

For slowly varying inhomogeneous media (5.20) also applies because locally the wave is

sinusoidal and E and F were locally defined. The spatial derivatives are over the slowly

varying spatial scale and not the fast scale associated with k.

There are some situations where ray theory with wave energy conservation break down.

These situations can be handled with an asymptotic theory like WKB (see Chapter 17). It

turns out, however, that (5.20) is valid for inhomogeneous media with no time variations.

Time variations in the medium require further generalizations. Rigorous derivations require

asymptotic methods like the WKB approximation. The best general heuristic derivation

makes use of the concept of a “wave packet”. For the moment we accept (5.15–5.20), and

proceed to some examples.

5.3 Ray Theory For Shallow Water Waves, Example in

one dimension

As an example of the use of the slowly varying theory, consider a plane wave approaching

a gradual change in depth from a constant-depth region to the left: The wavelength is long
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compared to the depth but short compared to the width of the region where the depth is

varying. Thus slowly varying theory applies. At t = 0, the wave-train (of frequency ω0 and

wavenumber k0) has just reached x = 0. The dispersion relationship which holds locally is

ω = (gh(x))1/2k.

L

h0

h1

x

z!0; k0 !

t = 0

Thus, the full set of ray equations are,

ω = (gh(x))1/2k (5.21)

cg =
∂ω

∂k
(5.22)

dx

dt
= cg (5.23)(

∂

∂t
+ cg

∂

∂x

)
k = −1

2

(g
h

)1/2

k
dh

dx
(5.24)(

∂

∂t
+ cg

∂

∂x

)
ω = 0 (5.25)

∂E

∂t
+

∂

∂x
(cgE) = 0 (5.26)

When the wave has passed completely through the transition region, the wave field properties

can be deduced as follows: By (5.25), ω is constant everywhere. Thus by (5.21)√
gh(x)k(x) =

√
gh0k0

or

k(x) =

(
h0

h(x)

)1
2

k0

and the waves shorten as they pass throuh the slope region. This could also be arrived at

by (5.24 as well. The energy density is found from (5.26) to be

cg(x)E(x) = cg(0)E0 =⇒ E(x) =

(
h0

h(x)

)1/2

E0
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so that the wave energy increases into shallow water as the energy flux is conserved. As

E ∝ a2 or H2 the wave height increases into shallower water. This process is called shoaling.

5.3.1 Arrival time

As dx/dt = (gh(x))1/2, then

dt =
dx

(gh(x))1/2

and so the leading edge of the wave-train reaches the new depth (after passing through a

horizontal distance L) in time

ta =

∫ L

0

dx

(gh(x))1/2
,

where ta is the time a crest arrives at L. Since these waves are nondispersive, ta is the same

for all k.

5.4 Extension of the Ray theory to two (or more) space

dimensions

The previous example was just in one direction, but of course ray theory works in two-

dimensions (2D) and is much more interesting as it gives rise to wave refraction. First we

will derive the ray equations in 2D and then give an example.

Again assume

η(x, t) = A(x, t)eiθ(x,t)

where now x = (x1, x2) and define

ki ≡
∂θ

∂xi
and ω ≡ −∂θ

∂t

Again we suppose that the plane wave dispersion relationship is locally correct, i.e.

ω(x, t) = Ω ((k(x, t), h(x, t))

and find that
∂ki
∂t

+
∂Ω

∂kj

∂kj
∂xi

+
∂Ω

∂h

∂h

∂xi
= 0

where the “summation convention” is being used. But

∂kj
∂xi

=
∂ki
∂xj
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by definition (Question: do you see why?). Thus(
∂

∂t
+ Cgj

∂

∂xj

)
ki = −∂Ω

∂h

∂h

∂xi
(5.27)

and similarly (
∂

∂t
+ Cgj

∂

∂xj

)
ω = +

∂Ω

∂h

∂h

∂t
(5.28)

The energy equations becomes

∂E

∂t
+

∂

∂xj
(CgjE) = 0 (5.29)

(5.30)

provided ∂h/∂t = 0. However, in many cases the medium does not vary in time. Equations

(5.27–5.28) may best be solved as follows: Let xi be the location of an observer moving at

the group velocity. Then

dxi
dt

=
∂Ω

∂ki
(5.31)

and

dki
dt

= −dΩ

dh

dh

dxi
(5.32)

where
d

dt
=

∂

∂t
+ Cg · ∇.

Equations (5.31–5.32) are a complete set of 6 equations in 6 unknowns k,x which may be

solved given an initial wavenumber k and location x. (There is no need to use (5.28) except

as a check, although it can be substituted for one equation of (5.31–5.32).) The resulting

trajectory in x-space is called a ray. If the medium is homogeneous, then by (5.32), k is

constant along the ray.

The most common application of the ray-tracing equations (5.31-5.32) is to time-invariant

media in which waves of some fixed frequency have reached a steady state
(
∂ki
∂t

= ∂E
∂t

= 0
)
.

The raws are traced using (5.31) and (5.32), then the energy equation is applied. The energy

equation (5.29) in steady state has the form

∇ · (CgE) = 0 (6)

which can be solved by the “ray tube” method. A ray tube is defined as a volume whose

sides are tangent to Cg.
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A1

A2

n̂ 1

n̂ 2

Integration of (6) over a slice of the ray tube gives∫ ∫
A1

E1Cg1 · n̂1 dA1 =

∫ ∫
A2

E2Cg2 · n̂2 dA2

which approximates to

E1Cg1 · n̂1A1 = E2Cg2 · n̂2A2

for a thin enough tube. What happens if rays converge
or diverge? Then the areas (A1 and A2) change which
has implications for the wave energy.

5.5 Ray Tracing of Shallow Water Waves Example in

two dimensions:

The dispersion relationship is now

ω2 = (gh(x))(k2 + l2)

where (k, l) are the (x, y) components of wavenumber, respectively.

5.5.1 Obliquely incident ray moving into shallower water

Ray

W
av
ec
re
st

~k 0 = (k 0, l 0)

x

y

Reconsider the previous example of a shoaling gravity wave but now for the case of an

obliquely incident plane wave. with k = (k, l) the wavevector, the ray tracing equations

become

ω =
√
gh(x)(k2 + l2) = Ω(k, h) (5.33)

dx

dt
=
∂Ω

∂k
= cgx (5.34)

dy

dt
=
∂Ω

∂l
= cgy (5.35)

dk

dt
= −∂Ω

∂h

∂h

∂x
(5.36)

dl

dt
= 0 (5.37)

dω

dt
= 0 (5.38)
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By (5.38), ω is constant along each ray. Thus,

gh0(k2
0 + l20) = gh(x)(k2 + l2) (5.39)

and by (5.37) implies that the alongshore wavenumber l is also conserved

l(x) = l0.

Thus (5.39) implies

k2(x) =
h0

h(x)
(k2

0 + l20)− l20 (5.40)

The slope of the rays dy/dx are given by (5.34) and (5.35)

dy

dx
=

∂Ω
∂l
∂Ω
∂k

=
l

k
(5.41)

where the last result dy/dx = l/k is true only for non-dispersive systems. This non-dispersive

result says that rays are tangent to the local wavenumber k. Equation (5.41) implies

sin2 θ =
(dy)2

(dx)2 + (dy)2
=

l2

l2 + k2
=
ghl2

ω2
=

ghl20
gh0(k2

0 + l20)
(5.42)

This implies that with phase velocity c(x) =
√
gh(x)

sin θ(x)

c(x)
= constant (5.43)

or
d

dx

(
sin θ(x)

c(x)

)
= 0 (5.44)

which is the continuous version of Snell’s law. Thus, if h → 0 then c → 0 and sin θ → 0,

and the rays become parallel to the x-axis.

It is useful to compare the continuous version of Snell’s law (5.43) with that for discon-

tinuous media such as light passing from air to glass or sound from air to water (recall the

acoustics chapter 6 problem set). As you have already derived, for two media with phase

speeds c1 and c2, the statement of Snell’s law is

sin θ1

c1

=
sin θ2

c2

(5.45)

which is essentially identical to (5.43). This is one reason why ray theory has it’s name

and why it is also called Geometric Optics in analogy to light propagation. In fact, light

propagation through continuously varying media will also follow this continuous ray theory.
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5.5.2 Obliquely incident ray moving into deeper water: Caustics

If dh/dx > 0 the situation is different. Recall from (5.40) that

k2(x) =
h0

h(x)
(k2

0 + l20)− l20,

and as l20 > 0 and h(x) > h0 then eventually at some depth hc the cross-shore wavenumber

k = 0, implying that the waves are propagating alongshore. This critical depth hc can be

found by setting k = 0 in (5.40) and solving for the appropriate depth,

hc =
(k2

0 + l20)

l20
h0,

also where (sin θ = 1) (or θ = π/2) and the rays become parallel to the y-axis.

θ

H = H c
dH

dx
> 0

x

y

Since k < 0 for h > h0 the waves evidently do not pass the line h = hc, which is called a

caustic. Note that hc =∞ if l0 = 0 so that normally incident waves would not be turned.

To determine E(x), consider two parallel rays and let A(x) be the distance between the

two rays measured parallel to the y-axis. By the ray tube method

E(x)
∂Ω

∂k
A(x) = independent of x

But on plane parallel contours, i.e., h(x), then the distance between two rays in the y

direction must also independent of x, i.e., dA/dx = 0. Thus

E(x)
∂Ω

∂k
(x) = const (5.46)

=⇒ E(x) = E(0)

√
h0

h(x)

cos θ0

cos θ
(5.47)
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As waves propagate into shallower depth, h→ 0, then E(x)→ (h0/h)1/2 cos θ0 and energy

increases with h−1/2. However, for waves propagating into deeper water for increasing h, E

becomes infinite at the caustic h = hc because cos θ = 0. The convergence of ray paths has

squeezed a finite energy into an infinitesimal space.

Clearly the ray theory breaks down at the caustic, but it can be modified to make a

useful prediction of the rest of the pattern. If no energy can pass h = hc, then the energy

flux past any x must vanish in the steady state. We therefore postulate a reflected wave

with wavevector (−k, l) whose rays also satisfy (5.33–5.38), but look like mirror images of

the incident rays.

H = H c

inc ident ray

reflected ray

inc ident wavecrest

reflected wavecrest

Now since kincident = (k, l) while kreflected = (−k, l), the resultant pattern is a standing

wave in the x-direction and a progressive wave in the y-direction. The infinite E at the caustic

remains an objectionable flaw of the ray theory, however. The next chapter re-considers this

example using WKB theory and asymptotic matching. The results will show that the ray

theory is essentially correct, and the breakdown at the caustic will be eliminated.
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5.6 Homework

1. Show that for a slowly-varying medium, ∇× k = 0.

2. For the image below qualititatively explain what the underlying depth contours must

be and why the wave crests are bending as they do. Draw the ray lines. Where is wave

energy more and less concentrated.

56



Chapter 6

A perfect fluid and acoustic waves

6.1 A perfect fluid (inviscid and compresible)

6.1.1 Equations

Note that here we neglect rotation. The conservation of mass and momentum equations for

an inviscid and compressible (i.e., perfect) fluid in a gravity field are.

Dρ

Dt
+ ρ∇ · u = 0 (6.1)

ρ
Du

Dt
= −∇p− ρgk̂. (6.2)

where velocity u ≡ (u, v, w) and k̂ is the unit upward vector. To close these two equations,

we now need something that relates the pressure p and density ρ, such as an equation of

state. This is relatively complex and requires a detailed examination of thermodynamics.

Suffice to say that it is different for a gas and a liquid. In physical oceanography where

things are assumed incompressible, an equation of state is often written as

ρ = ρ(p, T ) (6.3)

where T is the temperature of the fluid. Here are assuming that there is no salinity, which

can be added to (6.3). This equation of state gives density ρ as a function of pressure p. We

would like pressure as a function of density and other things. How to invert this relationship?

6.1.2 Basic Thermodynamics of a Perfect Fluid

In thermodynamics the change in internal energy E (units Joules) is written as

dE = −p dV + T dS
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where S is the entropy. Rewritten per unit mass this equation becomes

de = −p dα + T ds (6.4)

where α = (1/ρ) and s is the specific entropy. Now assuming that the processes that we are

examining are reversible. That is entropy does not increase. Why is this reasonable based on

the momentum equations? For an reversible process, the specific entropy does not change

ds = 0, and so (6.4) can be re-written as

p = −∂e(ρ, s)
∂α

= ρ2∂e(ρ, s)

∂ρ
= F (ρ, s) (6.5)

where p = F (ρ, s) is an inverted form of the equation of state. That is an inversion of (6.3).

With entropy constant (isentropic process), we then have

Ds

Dt
= 0 (6.6)

and thus

Dp

Dt
=
∂F

∂ρ

Dρ

Dt
+
∂F

∂s�
�
��7

0
Ds

Dt
(6.7)

which simplifies to an equation relating pressure evolution to density evolution,

Dp

Dt
= c2 Dρ

Dt
(6.8)

where

c2 ≡ ∂p

∂ρ

∣∣∣∣
s

. (6.9)

Note, c has units of m s−1, Now it is worth noting that we started with mass and momentum

conservation equation (6.1,6.2) and now have now added a third constraint that is based

on an internal energy conservation plus constant entropy (reversible or isentropic process)

argument. The constant entropy was applied twice first to get (6.5) and second to get (6.8).

6.1.3 Simplest solution: the state of rest

It is always of interest to look at the simplest solution, which is a state of rest. This implies:

∂/∂t = 0 and u = 0. Thus,

0 = −∂p
∂z
− ρg (6.10)

p = F (ρ, s) (6.11)

Which is two equations for 3 unknowns (p, ρ, s). To technically get a unique solution

one needs to specify an entropy profile. Such a solution may not be stable! However, this

is esoteric compressible fluids and thermodynamics that is not very applicable to almost

incompressible situations to the ocean and to the systems we study here.
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6.2 Linearized dynamics of a perfect fluid

Now we will study linearized dynamics around the state of rest, where we assume there is a

base (rest) and stable solution where u0 = 0, p = p0(z), ρ = ρ0(z) and s = s0 around which

we will linearize.

Consider small perturbations around this rest state,

u = 0 + u′ (6.12)

p = p0(z) + p′ (6.13)

ρ = ρ0(z) + ρ′, (6.14)

where primed quantities are small. Note, below we are simply linearizing dimensional equa-

tions by throwing out terms quadratic in primed variables. Strictly speaking, one must

linearize non-dimensional equations by perturbation expansion of a small parameter. Nev-

ertheless, the linearized equations are

∂

∂t
(ρou

′) = −∇p′ − ρ′gk̂ (6.15)

∂ρ′

∂t
= ∇ · (ρ0u

′) = 0 (6.16)

∂p′

∂t
+ w′

dp0

dz
= c2

[
∂ρ′

∂t
+ w′

dρ0

dz

]
(6.17)

Now using the fact that dp0/ dz = −gρ0 we can group the terms proportional to w′ as

w′
[
c2 dρ0

dz
+ gρ0

]
= c2ρ0

g
w′
[
g

ρ0

dρ0

dz
− g2

c2

]
So now the linearized pressure equation becomes,

∂p′

∂t
= c2

[
∂ρ′

∂t
− ρ0w

′

g
N2

]
, (6.18)

N2 ≡ −g
ρ0

dρ0

dz
− g2

c2
(6.19)

where c2 = c2(ρ0, s0) was defined in (6.9) above.

For those of you with previous Geophysical Fluid Dynamics experience, the quantity N2

(6.19) may look familiar but also different that how it normally appears N2 = (−g/ρ0)dρ0
dz

.

We will explore in the next chapter. We will spend a fair amount of time with these linearized

equations exploring both sound waves and internal gravity waves in the ocean but under

different sets of assumptions.
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6.3 Simplest waves: sound waves with negligible grav-

ity

First, consider the case of no gravity g = 0. If gravity is negligible, then it follows from

(6.19) that stratification N2 = 0 is a reasonable assumption. Then p0 is constant from (6.10)

The linearized equations then become

∂

∂t
(ρ0u

′) = −∇p′ (6.20)

∂ρ′

∂t
+∇ · (ρ0u

′) = 0 (6.21)

∂p′

∂t
= c2∂ρ

′

∂t
(6.22)

Substituting (6.22) into (6.21), leads to

∂p′

∂t
+ c2∇ · (ρ0u

′) = 0 (6.23)

and the taking a time derivative of (6.23) and subsituting (6.20) yields

∂2p′

∂t2
= c2∇2p′ (6.24)

This is again the 2nd-order wave equation or more commonly the wave equation we examined

in Chapter 1.

Now suppose c2 is a constant, we already know from Chapter 1 what the solution is and

how to solve it. Again for review, consider one dimension:

p′tt = c2p′xx ⇐⇒
(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c ∂

∂x

)
p′ = 0

=⇒ p′ = f(x+ ct) + g(x− ct).

In three dimensions this means (by rotational symmetry) that the solution looks like

p′ = f(lx+my + nz + ct) + g(lx+my + nz − ct).

where l2 +m2 + n2 = 1.

6.3.1 Plane waves

Motivated by our knowledge of Fourier decomposition, lets now plug in a plane wave solution

p′ = p̂ei(kx+ly+mz−ωt)
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into (6.24) and with substitution implies,

ω2 = c2(k2 + l2 +m2) (dispersion relation)

ω > 0 wave propagates in the direction of k

ω < 0 wave propagates opposite the direction of k

where k, l, and m are the wavenumbers in the direction of the vector wavenumber k. The

phase speed c of these acoustic waves is given by

c2 =
ω2

|k|2
≡ ω2

(k2 + l2 +m2)

So it is not a coincidence that we used the symbol c for ∂p/∂ρ|s earlier (6.9).

Now plugging in the plane wave solution for each of the mass, momentum and pressure

evolution equations we get,

∂ρ′

∂t
+ ρ0∇ · u′ = 0

ρ0
∂u′

∂t
= −∇p′

∂p′

∂t
= c2∂ρ

′

∂t

=⇒

−iωρ̂+ iρ0k · û = 0

−iρ0ωû = −ikp̂

−iωp̂ = −iωc2ρ̂

which reduces to

û =
k

ρ0ω
p̂ (6.25)

ρ̂ =
1

c2
p̂ (6.26)

(6.27)

This means that

1. Similar to surface gravity wave, once we have a solution for pressure p′ and we know

k, we know velocity u′ and density ρ′ fluctuations.

2. Velocity u′ is in the direction of k and so is perpendicular to wave crests.

3. All variables are in phase. This is in contrast with surface gravity waves where η and

w were π/4 out of phase.

6.3.2 Neglecting gravity justified?

Is gravity really negligible? By examining the sizes of the neglected terms in (6.18) above,

we can conclude : yes, provided that the vertical wavenumber m satisfies that

m� g

c2
, and m� Ñ2

g
, (6.28)
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where Ñ2 = −(g/ρ0)dρ0/dz, or equivalently that

wavelength� c2

g
,

g

Ñ2

It can be shown that these two inequalities are the general condition that sound waves and

internal gravity waves decouple. (see Lighthill) and this will come up again. In the problem

set, we will explore this inequality further.

6.3.3 Plane waves: Reflection off of a solid boundary

Consider a plane wave in two dimensions incident upon a solid boundary at z = 0 with angle

θI . This means we have an incident wave of the form

p′I = p̂Ie
i(kx+mz−ωt) (6.29)

where k/m = tan θI . The boundary condition at the solid boundary is u · n = 0 or in this

case simply w = 0. From the momentum equation, if w = 0 at z = 0, then ∂p/∂z = 0 at

z = 0. To satisfy this boundary condition, we must add a reflected wave of the form

p′R = p̂Re
i(kx−mz−ωt) (6.30)

as at z = 0,

(p′R + p′I)z = m(p̂R − p̂I)ei(kx−ωt) = 0,

thus, p̂R = p̂I and the solution is

p′ = p′I + p′R = 2p̂ei(kx−ωt) cos(mz) (6.31)

Satisfying the boundary condition. As the reflected wave has the same |k| but opposite

signed vertical wavenumber m, we see that θR = −θI. This property applies to reflection off

of any solid surface and is called specular reflection.

p̂Ie
i(kIx+mIz−ωI t) p̂Re

i(kRx+mRz−ωRt)

θI θR

solid boundary

Figure 6.1: Reflection of a sound wave on a solid boundary.
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6.4 Problem Set

1. Consider the assumption/simplification regarding acoustic waves being reversible, which

implies constant entropy Ds/Dt = 0. What approximation was applied to arrive at

the perfect fluid momentum equation that is consistent with the constant entropy

assumption?

2. Consider a plane sound wave in the atmosphere is incident upon a resting flat ocean

surface at z = 0 (Figure. 6.2. The angle of incidence is θI . Compute the direction and

pressure amplitudes of the reflected and transmitted waves. Treat the two fluids as

having constant densities of ρa and ρw for air and water and and sound speeds ca and

cw. Neglect gravity. HINT: pressure and normal velocity must be continous at z = 0.

3. Using these results, calculate the air to water transmitted pressure and angle for an

incident acoustic wave of θ = 10◦. Use ρa = 1 kgm−3, ρw = 103 kgm−3, ca = 350 m s−1,

and cw = 1500 m s−1.

4. Is there a critical angle where air-to-water transmission stops and is reflected?

5. Repeat question 3 from the ocean to the atmosphere. What conclusions can you draw

for sound transmission between the ocean and atmosphere?

6. What frequency range to marine mammals typically use?

7. Show that the effect of gravity in sound waves can be neglected if the inequalities (6.28)

are true using the plane wave solution in (6.18).

8. For a typical marine mammal frequency range, is the neglect of gravity valid? Use

c = 1.5 km/sec N2 = (3× 10−3sec−1)2
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p̂Ie
i(kIx+mIz−ωI t) p̂Re

i(kRx+mRz−ωRt)

p̂T e
i(kT x+mT z−ωT t)

θI θR

θT

ρ1

ρ2

Figure 6.2: Sound wave relection and transmission at a air/water boundary.
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Chapter 7

Energy conservation in perfect fluid
and acoustic waves

7.1 Energy conservation in a perfect fluid

As with surface gravity waves, we now seek an energy conservation equation for both the

“perfect” fluid and for linearized sound waves. First we consider a perfect fluid. Let us now

consider a fluid enclosed by a boundary. What is the expected energy per unit volume?

schematically energy is partitioned into three components,

kinetic + gravitational potential + internal
ρ1

2
u · u + ρgz + ρe(ρ, s).

The internal energy comes from both the compressibility of the fluid and the heat content.

Recall from thermodynamics and the previous lecture that the internal energy of a fluid has

dE = −p dV + T dS and per unit mass (with units of J kg−1) is de = p dα + T dη where

α = ρ−1. Because e is per unit mass, we need to multiply by ρ so that all terms have units

J m−3.

Now integrating over a fluid volume we get the total energy ETOT (units J),

ETOT =

∫ ∫ ∫
ρ

[
1

2
u · u + gz + e(ρ, s)

]
dV

and taking a time-derivative to get an energy conservation equation

dETOT

dt
=

∫ ∫ ∫
ρ
D

Dt

[ ]
dV = ? (7.1)

To evaluate this we begin by forming a kinetic energy term from the momentum equation
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(6.2)

ρ
D

Dt

(
1

2
u · u

)
= −u · ∇p− ρgw

= −∇ · (up) + p(∇ · u)− ρgw

= −∇ · (up)− p

ρ

Dρ

Dt
− ρgw

Here, we used the perfect fluid conservation of mass equation (6.1),

Dρ

Dt
+ ρ∇ · u = 0

to transform p(∇ · u) = −(p/ρ)Dρ/Dt. Now recall from the equation of state for pressure

(6.5) - assuming constant entropy - that

p = ρ2∂e(ρ, s)

∂ρ
, (7.2)

and so we can re-write the middle term as

= −∇ · (up)− ρ∂e
∂ρ

(ρ, s)
Dρ

Dt
− ρgw

= −∇ · (up)− ρDe(ρ, s)

Dt
− ρgw

where the last step is because

∂e

∂ρ
(ρ, s)

Dρ

Dt
=

De(ρ, s)

Dt
.

The potential energy term −ρgw can also be rewritten as −ρgDz/Dt (Why?). Thus, we can

now write the kinetic energy evolution equation as

ρ

(
D

Dt

(
1

2
u · u

)
+

D(gz)

Dt
+

De(ρ, s)

Dt
+

)
= −u · ∇p. (7.3)

or

ρ
D

Dt

(
1

2
u · u + gz + e(ρ, s)

)
= −u · ∇p. (7.4)

This (7.4) means that the material derivative of the specific (per unit volume) total energy

(J m−3) changes from the local work (−u · ∇p) done upon it. By volume integrating (7.4),

we can now rewrite the total energy evolution on the volume as

dETOT

dt
= −

∫ ∫ ∫
∇ · (up) dV =

∫ ∫
p(u · n) dA (7.5)

such that the total energy of the perfect fluid is changed by the work done on the fluid at the

boundaries. If no work is done on the fluid, energy can still move from kinetic to potential

to internal and back reversibly because in this system we have assumed constant entropy.

Question: For a perfect fluid enclosed in a solid boundary, what is the time evolution of

ETOT?
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7.2 Energy conservation in full linearized equations with-

out gravity and constant background density

Now let us examine the linearized equation with no gravity (g = 0) and constant background

density dρ0/ dz = 0 (or N2 = 0). This means there is no potential energy.

ρ0
∂u′

∂t
= −∇p′ momentum

∂ρ′

∂t
+ ρ0∇ · u′ = 0 continuity

∂p′

∂t
= c2∂ρ

′

∂t

Forming an energy equation by multiplying linearized momentum by u′ gives

ρ0
∂

∂t

(
1

2
u′ · u′

)
= −u′ · ∇p′

= −∇ · (u′p′) + p′(∇ · u′)

= −∇ · (u′p′) + p′
[
− 1

ρ0

∂ρ′

∂t

]
= −∇ · (u′p′)− p′

ρ0

[
1

c2

∂p′

∂t

]
= −∇ · (u′p′)− ∂

∂t

[
1

2ρ0c2
p′2
]

Thus the specific energy conservation equation becomes,

∂

∂t

[
1

2
ρ0u · u +

1

2ρ0c2
p′2
]

= −∇ · (u′p′)

which is similar to the full energy conservation equation derived in the previous section.

Specifically, we can align these terms by showing that the form of the energy conserved

by the linearized equations “makes sense”. Obviously, for the kinetic energy, 1
2
ρ0u

′ · u′ is

a logical approximation to 1
2
ρu · u. For the internal energy term, it appears the linearized

pressure squared term,
1

2ρ0c2
(p′)2

is an approximation to internal energy ρe(ρ, s).

We can explain this as follows. The change in the internal energy per unit mass caused

by the fluctuating pressure p′ is

de = −p′ dα
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Now recall α = (ρ0 + ρ′)−1 where ρ0 is a constant and all density fluctuations (and thus α

fluctuations) are in ρ′. Then

dα =− (ρo + ρ′)−2 dρ′

=− ρ−2
o dρ′

Thus, using the fact that dp′ = c2 dρ′, we get

de = −p′ dα =
p′

ρ2
0

dρ′ =
p′

ρ2
0c

2
dp′

= d

(
1

2ρ2
0c

2
(p′)2

)
,

in agreement with the previous section. This reasoning not generally applicable, but it works

for these simplified conditions: reversible, g = 0, and N2 = 0.

7.3 Energy and energy flux in sound waves

We have already considered plane wave solutions of the linearized equations (see Chap-

ter 6.3.1),

u′ = Re(ûeiθ) and p′ = Re(p̂eiθ) , θ ≡ k · x− ωt

with

û =
k

ρ0ω
p̂

where p̂ and û are real numbers.

As shown above, these solutions of the linearized equations obey the linearized energy

conservation law
∂

∂t
E = −∇ · F

where E is the specific energy and F is the (sound) wave energy flux,

E =
1

2
ρ0u

′ · u′ + 1

ρ0c2

(p′)2

2
(7.6)

F = u′p′ (7.7)

Let 〈〉 denote the average over a wavelength or period and averaging over a wave period we

find that

〈E〉 =
1

2

1

ρ0c2
p̂2. (7.8)
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The average acoustic energy flux is

〈F〉 = 〈u′p′〉 =

〈(
k

ρ0ω
p̂ cos θ

)
(p̂ cos θ)

〉
=

k

ρ0ω

1

2
p̂2 (7.9)

Thus 〈F〉 points in the direction of wave propagation. Question: Can one write the average

energy flux 〈F〉 as a product of a velocity times 〈E〉? What would that velocity be?
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7.4 Problem Set

1. Using the definition of the material derivative D/Dt rationalize how w can be written

as Dz/Dt in

2. For a perfect fluid enclosed in a solid, non-moving, and adiabatic boundary, if at t = 0

ETOT = E0, what is the time-evolution evolution of ETOT?

3. In the average acoustic energy density equation (7.8), what is the ratio of kinetic to

internal energy? First, apply intuitive reasoning and then demonstrate the answer

from time-averaging (7.6) with the plane wave solution.

4. Using the acoustic energy flux (7.9), rewrite it so that 〈F〉 = velocity × 〈E〉. What is

the corresponding velocity? How does it relate to other wave energy equation systems

you have studied?

70



Chapter 8

The Boussinesq Approximation

8.1 Physical interpretation of the Väisälä frequency N

In the previous lecture on acoustic waves, we derived a quantity that was called N2 and was

given by (6.19),

N2 ≡ −g
ρ0

dρ0

dz
− g2

c2
.

The quantity N is called the Väisälä frequency. It is also often called the buoyancy frequency.

It plays an important role in much of waves and turbulence in stratified fluids. Here, its

meaning will be examined and then we will look at approximations to it.

But first we re-derive the Väisälä (or buoyancy) frequency in another context. A particle

displaced a vertical distance δz from its rest state at z0 of p0 and ρ0 experiences a density

change of

δρpart =
1

c2
δppart = −ρ0g

c2
δz (8.1)

provided that the pressure of the water particle remains the same as the surrounding fluid.

The displaced particle experiences a buoyancy force per unit volume of

ρpart
dwpart

dt
− (ρpart − ρ)g = 0

where ρpart = (ρ0 − ρ0g/c
2)δz from (8.1). For small displacements, the density of the sur-

rounding fluid

ρ = ρ0 +
dρ0

dz
δz, (8.2)

as our base solution had ρ0 = ρ0(z). Thus, with wpart = d/dt(δz) a harmonic oscillator
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equation can be written for δz,

ρpart
d2

dt2
δz = −(ρpart − ρ)g

≈
[(

ρ0(z)g

c2
δz

)
−
(

dρ0

dz
δz

)]
g

=

[
g2ρ0(z)

c2
− gdρ0(z)

dz

]
δz

Thus this harmonic oscillator equation can be written as

d2

dt2
δz = −N2δz (8.3)

where the Väisälä frequency squared is defined as earlier (6.19)

N2 =

[
− g

ρ0

dρ0

dz
− g2

c2

]
The solution to (8.3) is e±iNt. If N2 < 0, then the fluid is unstable as the particle displaces

exponentially. If N2 > 0, the displaced particle tends to return to its initial location, and

oscillates about it at frequency N . The significance of N2 < 0 could also be anticipated from

the fact that N2 < 0 makes the linearized energy a non-definite quadratic form.

In section 7.2, we examined energy conservation for the linearized terms without gravity.

Here, this can now be revisited. Now, revert to the notation w′ = d
dt
δz and such that

equation (8.3) is rewritten to

dw′

dt
= −N2δz

which implies that by multiplying by w′

w′
dw′

dt
= −N2δz′

dδz

dt
(8.4)

thus
d

dt

(
1

2
(w′)2 +

N2

2
(δz)2

)
= 0 (8.5)

The second term is now the linearized potential energy to go with the linearized kinetic and

internal energy derived in section 7.2.

8.2 Separation of Density: Boussinesq Approximation

The density of seawater is never far from 1 gm/cm3 or 103 kg m−3. This observation is the

basis of the Boussinesq approximation which will simplify the equations of the perfect fluid,

making the resulting fluid incompressible, and filter out sound waves.
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Consider the at rest solution and write the fluid density as,

ρ(x, y, z, t) = ρ00 + ρ∗(z)︸ ︷︷ ︸
ρ0(z)

+ρ′(x, y, z, t)

and

p(x, y, z, t) = p0(z) + p′(x, y, z, t)

As before, the vertical momentum equation reduces to the hydrostatic balance

dp0(z)

dz
= −ρ0(z)g.

In the Boussinesq approximation, one assumes that

|ρ∗(z)| , |ρ′| � ρ00

Typical sizes are

ρ00 ∼ 1030 ρ∗ ∼ 20 ρ′ ∼ 3 kg m−3

Note ρ∗ chiefly represents density variation caused by pressure changes

|ρ∗| ∼ ∆p

c2
=
ρ00gd

c2

where d is a scale depth. Thus, |ρ∗| � ρ00 if d� c2

g
≡ scale depth . Note that ρ∗

could also incorporate the average temperature and salinity changes in the vertical.

Note that as defined here, ρ′ = ρ′(x, y, z, t) can have horizontal, vertical, and temporal

fluctuations that are linked to temperature or salinity variations. Thus

|ρ′| ∼ (observed range of density variation)− (the part accounted for by pressure)

∼
(
−∂ρ0

∂z
d

)
−
(
∂ρ

∂p

∣∣∣∣
s

∂p

∂z
d

)
∼
(
−∂ρ0

∂z
+

1

c2
(−ρ00g)

)
d

∼ ρ00

g

[
−g
ρ00

∂ρ0

∂z
− g2

c2

]
d =

ρ00

g
N2d

Thus |ρ′| � ρ00 if d� g

N2
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8.3 Application to the Perfect Fluid Equations

Exact momentum

ρ00

[
1 +

ρ∗

ρ00

+
ρ′

ρ00

]
Du

Dt
= −∇p′ − ρ′gk̂

becomes
Du

Dt
= −∇

(
p′

ρ00

)
− ρ′g

ρ00

k̂ (8.6)

Exact continuity is

∂ρ′

∂t
+ u · ∇(ρ∗ + ρ′) + (ρ00 + ρ∗ + ρ′)∇ · u = 0

and after dividing by ρ00 one gets

1

ρ00

∂ρ′

∂t
+ u · ∇

(
ρ∗ + ρ′

ρ00

)
+

(
1 +

ρ∗ + ρ′

ρ00

)
∇ · u = 0

which reduces to the continuity equation for an incompressible fluid

∇ · u = 0 (8.7)

The exact thermodynamic equation

Dρ

Dt
=

1

c2

Dp

Dt
(8.8)

becomes
Dρ′

Dt
− wρ00

g
N2 =

1

c2

Dp′

Dt
. (8.9)

In the type of motion we consider next, the pressure gradient force is of the same size as

the buoyancy force. Thus p′ ≈ ρ′gd, where d is the vertical displacement. Thus,

Dρ′

Dt
� 1

c2

Dp′

Dt

if d � c2/g, a constraint we have seen before and is also almost completely valid in the

ocean. Then the thermodynamics equation becomes something else: essentially a perturba-

tion density conservation equation,

Dρ′

Dt
− wρ00

g
N2 = 0 (8.10)

This is analogous to a tracer conservation equation.
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8.4 Almost Primitive Equations

The 3 equations that result from the Boussinesq approximation are given here again as a

group

Du

Dt
= − 1

ρ00

∇p′ − ρ′g

ρ00

k̂ (8.11)

∇ · u = 0 (8.12)

Dρ′

Dt
− wρ00

g
N2 = 0 (8.13)

where now the buoyancy frequency for an incompressible Boussinesq fluid is now written as

N2(z) = − g

ρ0

dρ0(z)

dz
. (8.14)

which is the typical form of N2 that we are familiar with - in contrast with (6.19), and is

due to the application of the Boussinesq approximation.

Note that these equations are not hydrostatic. But they are incompressible ∇ · u = 0.

These equations (8.11) with the hydrostatic assumption are often called the primitive equa-

tions. QUESTION: What is the hydrostatic assumption and how would (8.11) be rewritten?

These equation can be written to a even simpler form if we define buoyancy b as

b ≡ −ρ
′g

ρ00

(8.15)

and define a density-normalized pressure as φ = p/ρ00 then,

Du

Dt
= −∇φ+ bk̂

∇ · u = 0

Db

Dt
+ wN2 = 0

(8.16)

Note, we are neglecting rotation here and the term f k̂×u (where f is the Coriolis parameter)

can be added to LHS of the momentum equation. We will do that later. Note that previously

the mass and internal energy equations were linked in that both involved Dρ/Dt. Now with

the Boussinesq approximation, density ρ or buoyancy b = −gρ′/ρ00 are tracers that are

advected around the ocean. Their dynamical influence comes in only in the gravity term

of the momentum equations. In this sense density or buoyancy are active tracers. These

equations (8.16) give rise to a range of solutions including internal gravity waves which will

be discussed in the next chapter.
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8.4.1 Equation of State: density and temperature

Furthermore, on ocean applications with salinity and temperature, we now see a more tradi-

tional form of the equation of state where density variations ρ′ are due to temperature T ′ and

salinity variations. Here we will consider a fluid where density depends only on temperature,

ρ = ρ(T ). (8.17)

As it is only the small density fluctuations ρ′ that are dynamically significant, we only need

to relate ρ′ to T ′.

ρ′ = ρ− ρ0 =
dρ0(T0)

dT
T ′ (8.18)

ρ′ = −αT ′ (8.19)

α = −dρ0(T0)

dT
(8.20)

where the compressibility effects of pressure on density are ignored Why?

Note, with this equation of state, we can see that buoyancy b is a bit like temperature

T . Can you rewrite the equations (8.16) in the form using T ′ instead?

8.5 Acoustic and Internal Gravity Wave Decomposi-

tion

For acoustic waves in the ocean we neglected the effect of gravity. With the Boussinesq

approximation, we end up with a compressible fluid where density variations only influence

momentum through the gravity term. The general linearized perfect fluid equations are:

∂u′

∂t
= − 1

ρ00

∇p′−ρ
′g

ρ00

k̂

∂ρ′

∂t
+ ρ00∇ · (u′) = 0

∂ρ′

∂t
−wρ00N

2

g
=

1

c2

∂p′

∂t

Terms in blue appear only in the equations for internal gravity waves, and terms in red appear

only in the equations for sound waves. The terms in black are in both sets of equations.

Each of the two subsets of equations are valid for the type of motion to which they apply,

provided that

d� c2

g
, and d� g

N2
.

This is confirmed by Lighthill (chap 3) using the straightforward (but very algebraic) ap-

proach of linearizing the full equations and showing that the sound and gravity waves are

decoupled if these inequalities apply.
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8.6 The Boussinesq approximation: Take 2

The formalism of the Boussinesq approximation can seem a bit bewildering. Why is this

being done? What is it good for? Without the benefit of knowing everything that this

enables in terms of Geophysical Fluid Dynamics, it is hard to get the point. Here, a take 2

explanation is given.

Recall the mass, momentum, and pressure equations of a perfect fluid (6.1, 6.2, 6.8) are

Dρ

Dt
+ ρ∇ · u = 0

ρ
Du

Dt
= −∇p− ρgk̂

Dp

Dt
= c2 Dρ

Dt
.

These 3 equations are nice because it is 3 equations with 3 unknowns. Although not a

mathematical proof, it is satisfying that one can utilize these equations for useful means.

However, these are complicated nonlinear equations even if c2 is a constant.

For sound waves, we assumed that gravity was negligible (g = 0) and c2 was constant,

and then linearized about a state of rest, which threw out all other nonlinearity yielding a

nice set of equations (6.20–6.22),

∂

∂t
(ρ0u

′) = −∇p′

∂ρ′

∂t
+∇(ρ0u

′) = 0

∂p′

∂t
= c2∂ρ

′

∂t

These equations could be relatively straightforwardly solved.

Now for other GFD type motions, one could simply assert that the ocean (or atmosphere

or Saturn’s atmosphere or a star’s plasma) is incompressible, i.e., ∇ · u = 0. This is a

gigantic simplification and often is simply asserted. It is often practically true but remember

the ocean (and atmosphere) has increased near-bed density in the abyss due to compression

effects.

With ∇ · u = 0, this now becomes the statement of mass conservation. We are now left

with momentum conservation

ρ
Du

Dt
= −∇p− ρgk̂ (8.21)

which is still pretty damn nonlinear - in some places cubic, that is ρuux. This is very difficult

to deal with both analytically and numerically. And it can obscure the physics. It could be

re-written as
Du

Dt
= −ρ−1∇p− gk̂ (8.22)
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which is the same thing.

Aside: Now, consider for a second uniform density ρ = ρ0. Is it weird that there are two

equations for two unknowns (u and p) but only an evolution equation for u? How is one

supposed to solve for p? Hmmmm.

Now back to (8.21), we want to get rid of some nonlinearity, particularly off of the density.

If we say, gosh I believe that for many GFD flows of interest, density effects will only come

in with gravity and not in the momentum equation. The fluctuations of density are small.

So ρDu/Dt ≈ ρ0Du/Dt and then we divide through by ρ0 to get

Du

Dt
= −ρ−1

0 ∇p−
ρg

ρ0

k̂

Now variations in density only affect the gravity terms and density is linear! This is much

much easier to deal and is in practice used in all of non-acoustic oceanic GFD.

8.7 Problem Set

1. Why is it ok to ignore the effects of varying pressure on density in (8.17) and (8.18)?

2. Assuming that density is a linear function of temperature and that, like density, tem-

perature T = T̄ (z) + T ′(x, y, z, t), rewrite the equations (8.16) using T ′ and T̄ instead

of b and N2 as the density-related variable.

3. For an ocean where density only depends on temperature, imagine you did a CTD cast

and get a T (z) profile. How would you estimate N2(z)?

4. If the ocean density depends on salinity AND temperature what else would you have

to do or add to these equations? Assume salinity S = S̄(z) + S ′(x, y, z, t). Recall

that in the ocean temperature monotonically decreases with depth but salinity doesn’t

always.

5. What is the hydrostatic assumption and how would the momentum equation in (8.11)

be rewritten under the hydrostatic assumption. Hint, you have to write the horizontal

and vertical equations momentum equations separately.

Note: it can be fun to play with an equation of state and helpful for question #1. A

modern MATLAB toolbox for this at http://www.teos-10.org/software.htm
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Chapter 9

Linear Internal Waves

Here we now derive linear internal waves in a Boussinesq fluid with a steady (not time

varying) stratification represented by bouyancy frequency N2(z) = −(g/ρ0)dρ/dz and no

rotation f = 0.

9.1 Linearized Equations

Starting with (8.16), the linearized Boussinesq equations are:

∂u

∂t
= −∇φ+ bk̂ (9.1)

∇ · u = 0 (9.2)

∂b

∂t
+ wN2 = 0 (9.3)

where recall the stratification is represented by the buoyancy frequency squared (6.19)

N2(z) = − g

ρ0

dρ0(z)

dz
.

and b = −gρ′/ρ0. Recall also that we can think of buoyancy b as a kind of “temperature”.

9.2 Linear Vertical Velocity Equation

To get to simple internal waves, we derive an equation for the vertical velocity from the

linearized equations by looking for oscillating solutions, i.e., proportional to e−iωt, for steady

but potentially vertically-varying N2(z). Let us first assume that all variables are propor-
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tional to e−iωt, i.e., u(x, y, z, t) = û(x, y, z)eiωt. Then we get

−iω(û, v̂) = −(φ̂x, φ̂y) (9.4)

−iωŵ = −φ̂z + b̂ (9.5)

ûx + v̂y + ŵz = 0 (9.6)

−iωb̂+ ŵN2 = 0 (9.7)

Substituting (9.4) into (9.6) gives

φ̂xx + φ̂yy = −iωŵz.

Combining (9.5) and (9.7) gives

i[N2 − ω2]ŵ = −ωφ̂z.

Eliminating φ̂ between these last two equations gives

(N2 − ω2)(ŵxx + ŵyy) = ω2ŵzz (9.8)

Recall, this holds also for vertically varying stratification N2 = N2(z).

Effect of Earth’s Rotation

At this point, we have neglected the effect of Earth’s rotation in the momentum equation. It

is straightforward to add f k̂× u to the momentum equation and it only takes a little more

algebra but one gets a slightly modified version of (9.8)

(N2 − ω2)(ŵxx + ŵyy) = (ω2 − f 2)ŵzz (9.9)

This can be rewritten as

ŵzz −
(N2 − ω2)

(ω2 − f 2)
(ŵxx + ŵyy) = 0 (9.10)

which reduces back to the form (9.8) if rotation is neglected f = 0.

9.3 Plane Internal Waves: constant stratification N 2

If N2 = constant, we can plug in a plane wave solution. Here we are only going to work in

two-dimensions such that the vector wavenumber k = (k,m). All of this can be generalized

to 3D with k = (k, l,m). Plugging in a 2D plane wave solution

ŵ = w̃ei(kx+mz)
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into (9.8) with ∂y = 0, we obtain the dispersion relation

(N2 − ω2)(k2) = ω2m2 (9.11)

or rearranged to be in the familiar form of ω(k,m) = . . .,

ω2 = N2 k2

(k2 +m2)
= N2 k

2

|k|2
(9.12)

or

ω2 = N2 cos2 θ (9.13)

where θ is the angle of the wave with the horizontal, i.e., tan θ = m/k. This means that the

frequency ω does not depend on the wavelength of the wave, but only on the angle at which

it propagates in the stratified fluid. Questions:

• What are the limitations on ω in order to have waves?

• Are these waves dispersive or non-dispersive?

9.3.1 Simple Internal Wave Kinematics

What do these waves look like? First

∇ · u = 0 =⇒ k · û = 0 (9.14)

Thus the fluid velocity u is perpendicular to the direction of wave propagation k. In sound

waves and surface gravity waves, u is parallel to k. This means that θ can be thought of as

the angle of the direction of velocity and the vertical.

Thus, in a rotated coordinate system in the direction of k, the u components are u =

(u‖, u⊥, ), where u‖ = 0. However, the pressure gradient term is in the direction of k, that is

parallel to k, i.e.,

∇φ = ikφ̃ei(kx+mz−ωt)

The momentum equation in the direction of k is thus

∂‖φ̃ = b̃ sin θ

that is pressure perturbations balance buoyancy (density) flucturations.

In the direction perpendicular to k, the the momentum equation in the upward direction

is
∂u⊥
∂t

= b cos θ
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or

iωũ⊥ = b̃ cos θ

Next because w = u · k̂ and θ is defined as cos θ = k/(k2 + m2), then w = u⊥ cos θ. The

buoyancy equation is then
∂b

∂t
+N2u⊥ cos θ = 0

So part of buoyancy fluctuations goes to balance pressure fluctuations and part of buoy-

ancy flucturations goes to balancing velocity fluctuations. Thus, for these linear internal

waves, pressure and velocity are not directly coupled - only indirectly through the buoyancy

fluctuations.

9.4 Internal Wave Phase and Group Velocity

From other wave systems we have learned that the energy propagates with a velocity asso-

ciated with cg = ∂ω/∂k For the dispersion relationship (9.12),

ω = N
k

(k2 +m2)1/2
=
Nk

|k|

the phase velocity c = ω/k is

c =
ω

|k|
k

|k|
=

ω

|k|2
(k,m) =

Nk

|k|3
(k,m) (9.15)

For the group velocity, we can now calculate

cg =

(
∂ω

∂k
,
∂ω

∂m

)
= N

(
1

(k2 +m2)1/2
− −k2

(k2 +m2)3/2
,

−km
(k2 +m2)3/2

)
= N

(
(k2 +m2

(k2 +m2)3/2
− −k2

(k2 +m2)3/2
,

−km
(k2 +m2)3/2

)
= N

(
(m2

(k2 +m2)3/2
,

−km
(k2 +m2)3/2

)

cg =
Nm

|k|3
(m,−k). (9.16)

This is pretty interesting. The first thing to note is that c·cg = 0 (verify it!) which implies

that cg is perpendicular to the phase velocity. Second. The direction of cg is reflected about

the x direction as it is the vertical (z) component that changes sign between c ∝ (k,m) and

cg ∝ (m,−k). Furthermore, the ratio of group to phase speed |cg|/|c| = m/k is a function

of the angle θ as tan θ = m/k.
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Table 9.1: Summary of internal wave phase (c) and group (cg) velocity directions depending
on k and m (for positive ω).

k m c cg
+ + right, up right, down
+ - right, down right, up
- + left, up left down
- - left, down left, up

9.5 Limiting forms ω → N

If ω → N , then cos θ → 1, the wavenumber k is in the horizontal direction and the vertical

wavenumber m→ 0, i.e., k = (k, 0). Thus, the fluid velocity is in the vertical direction. This

is expected given how we derived the buoyancy frequency earlier. The resulting solution is

one of vertical columns oscillating in time at the buoyancy frequency. Note that in this case,

pressure fluctuations are zero, u⊥ = w and w and b are out of phase.

We can think about now the phase velocity c and the group velocity cg when ω → N .

As k = (k, 0) (i.e., m = 0), then

c =
N

k
(1, 0)

and

cg =
Nm

k3
(0,−1) = 0

So the energy propagation speed is minimum as the phase speed is maximum! Note that

this is the same physics as just adiabatically lifting a parcel of fluid up in a stratified water

column and letting it go! (Section 8.1). Internal waves are crazy.

9.6 More fun linear internal wave facts

9.6.1 Nonlinearity in internal waves

The nonlinear term in the momentum equation was ignored because we assumed small am-

plitude waves. This linearization was not a formal one by expanding out a small parameter,

but a hand-waving one. But with the solution, lets examine the nonlinear terms u · ∇u.

Recalling that u = (u‖, u⊥) = (0, u⊥, the nonlinear term can be written in component form

‖ direction, u‖∂‖u‖ + u⊥∂⊥u‖ = 0 + u⊥ × 0 = 0 (9.17)

⊥ direction, u‖∂‖u⊥ + u⊥∂⊥u⊥ = 0× ∂‖u⊥ + u⊥ × 0 = 0 (9.18)

So the crazy thing is that the nonlinear terms are zero identically! What does this mean?

Are there large amplitude limitations on these waves or not?
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9.6.2 Vorticity in internal waves

We can also calculate vorticity in the u = (u‖, u⊥) reference frame. Vorticity ζ is written as

ζ = ∂⊥u‖ − ∂‖u⊥ = 0− i|k|û⊥ei(...) 6= 0.

What does this mean? Not strictly potential flow.

9.7 Aside: Interpreting vector phase velocity

Earlier, it was asserted that the vector phase velocity c = ω/k, which implies vector division.

This was written as

c =
ω

k
=

ω

|k|
k

|k|
so that c and k are in the same direction.

9.7.1 Bad

Some folks have thought to write c as (in components)

c = (ω/k, ω/l, ω/m) (9.19)

This implies then that

|c| = ω

(
1

k2
+

1

l2
+

1

m2

)1/2

but experience tells us that

|c| = ω

|k|
=

ω

(k2 + l2 +m2)1/2
(9.20)

and so clearly something is wrong with (9.19). However, you will find this expression in some

folks’ lectures!

9.7.2 Why

A wave has a vector form argument that goes into the cos of

θ = k · x− ωt

which when thinking of a phase speed gets rewritten as

θ = k · (x− ct)
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Thus instead of vector division think of it as a dot product

ω = k · c

Using the definition of c above (9.20) one gets

k · c = k · ω
|k|

k

|k|
=
ω(k · k)

|k|2
= ω.

Thus this definition of vector division or phase velocity is the right one.
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9.8 Problems

Non-rotating fluid: Internal Waves

1. What are the limitations on ω in order to have waves? What happens if ω > N?

2. Are linear internal waves dispersive or non-dispersive? why?

3. If a wave is propagating in the (x, y, z) plane, what is the non-rotating dispersion

relationship ω(k, l,m)?

4. For non-rotatiing plane internal waves, at what angle of propagation θ are |c| and |cg|
the same?

5. Assuming a deep ocean constant N = 0.002 rad s−1, what is the angle relative to the

horizontal made by an internal wave with periods:

(a) 2 h period

(b) semi-diurnal internal wave period of 12 h?

(c) diurnal internal wave period 24 h.

6. Consider an non-rotating ocean of infinite depth with a constant buoyancy frequency

N and a constant (steady and depth-uniform) horizontal velocity U . It is convenient

to use z = 0 as the location of the mean sea bed. Now consider that the sea-bed is

rippled such that zb = h0 cos(k0x) or Re [h0 exp(ik0x)], where the amplitude h0 is small.

You could also think of this as a mountain range in atmospheric flow. I think using

the 2nd form is easier.

(a) Transfer the problem into a coordinate system moving with the mean flow U ,

i.e., x̃ = x+ Ut such that

zb = h0 cos(k0x̃− ωt),

What is ω?

(b) What is the appropriate vertical velocity boundary condition at z = zb?

(c) If h0 is small, how can this be linearized? Remember surface gravity waves!

(d) What is the internal wave vertical wavenumberm induced by this bathymetry/topography?

Both magnitude and sign? How does it depend on N , U , and k0?

(e) What limitation is there on U given k0 and N in order to generate waves?

(f) What is the vertical direction of cg?
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(g) Using the boundary condition for w0, write out the plane wave solution for u, w,

φ, and b?

Internal Waves in a rotating fluid: Useful to consult MCH notes

1. From the linearized Boussinesq equation (top 7.1) but now adding in rotation on an

f -plane so that you have (−fv,+fu) in the momentum equation. Now, don’t assume

solutions of eiωt but instead manipulate the equations to get a “wave-like” equation for

w that looks like
∂2

∂t2
(
∇2w

)
+ f 2∂

2w

∂z2
+N2∇2

hw = 0 (9.21)

where ∇h is the horizontal Laplacian operator.

2. Plugging in a plane wave solution ei(kx+ly+mz−ωt) What is the resulting dispersion re-

lationship?

3. What additional limitation does this imply for ω?
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Chapter 10

Linear Internal Waves: Energy
Conservation

10.1 Local Energy Conservation

REDO THIS PART STARTING FROM PRIMITIVE EQUATIONS! Earlier, we derived an

energy conservation equation for the linearized perfect fluid in the Boussinesq approximation

which is
∂

∂t

(
1

2
u · u +

1

2
N2(∆z)2

)
= −∇ · (uφ) (10.1)

For the linearized Boussinesq equations, the potential energy term can be transformed from

1

2
N2(∆z)2 → b2

2N2(z)
.

How does this work? Consider a fluid at z = z0 with buoyancy b0(z0) that is displaced a

distance ∆z from its rest position. This fluid has a buoyancy (i.e., temperature) departure

from its new surroundings is

b ≡ b0(z0)− b0(z0 + ∆z) ≈ −db0

dz
∆z = −N2∆z

Thus,
b2

2N2
=

1

2N2
(−N2∆z)2 =

N2

2
(∆z)2

Therefore, energy conservation can be rewritten in the convenient form of

∂

∂t

(
1

2
u · u +

b2

2N2(z)

)
= −∇ · (uφ) (10.2)

Question: Why is it convenient?
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10.2 Linear Internal Wave Kinematics

Now assume N2 is constant and compute the energy flux in the plane wave. We already

know that this energy flux must be perpendicular to the direction of wave propagation.

Again assume that l = 0, we take

u⊥ = Re
{
û⊥e

i(kx+mz−ωt)}
b = Re

{
b̂ei(kx+mz−ωt)

}
φ = Re

{
φ̂ei(kx+mz−ωt)

}

Plugging this into the momentum and buoyancy equation yields,

−iωû⊥ = b̂ cos θ

0 = −i|k|φ̂+ b̂ sin θ

−iωb̂+N2 cos θû⊥ = 0

which gives

û⊥ =
ib̂ cos θ

ω
(10.3)

φ̂ = − ib̂

(k2 +m2)
1
2

sin θ. (10.4)

Note that both of these depend upon b̂.

10.3 Average Internal Wave Kinetic and Potential En-

ergy

With the local kinetic energy density ke = (1/2)ρ0u ·u, the average kinetic energy density is

〈ke〉 = (1/2)ρ0〈u · u〉 =
1

2
ρ0〈u2

⊥〉 =
1

4
ρ0|û⊥|2. (10.5)

using the standard relationship that 〈a2〉 = (1/2)|â|2. Similarly the average potential energy

〈pe〉 is

〈pe〉 = ρ0

〈
1

2

b2

N2

〉
= ρ0

|b̂|2

4N2
.
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Now using the relation above

|û⊥|2 =
|b̂|2 cos2 θ

ω2

then the kinetic energy can be re-written as

〈ke〉 =
1

4
ρ0
|b̂|2 cos2 θ

ω2
(10.6)

and by the dispersion relation ω2 = N2 cos2 θ, it can be shown that the mean kinetic and

potential energy are equal. Therefore the total mean energy density E is

E = 〈ke〉+ 〈pe〉 = ρ0
1

2

|b̂|2

N2

This has analogies to the energy of a surface gravity wave E = (1/2)ρ0ga
2. Consider

that in the internal wave isopycnals (isotherms) displace an amplitude aIW then by the

relationship at top
b2

2N2
=
N2

2
(∆z)2

then
|b̂|2

N2
=
N2

2
(aIW)2

so that

E = ρ0
N2

2
(aIW)2

which is similar to the form for surface gravity waves. Note that E has units of J m−3 in

contrast to surface gravity wave E which has units of J m−2. (Recall why this is!)

10.4 Internal Wave Energy Flux

We now calculate the mean internal wave energy flux

F = ρ0〈uφ〉 = ρ0(〈u‖φ〉, 〈u⊥φ〉)) = (0, 〈u⊥φ〉) (10.7)

because u‖ = 0. Thus, the mean energy flux is in the direction ⊥ to k. We can evaluate this

component with (10.3) and (10.4) as

F⊥ = −ρ0
1

2

|b̂|2

ω(k2 +m2)1/2
sin θ cos θ. (10.8)

Thus if the internal wave is propagating upward (θ > 0), the energy flux is in the downward

perpendicular direction. Similarly if the wave is propagating downward (θ < 0) then F⊥ > 0.

This follows what we learned in the last lecture about cg being perpendicular to k, and

opposite signed around the vertical.
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The energy flux propagates at the speed

F⊥
E

=
−ρ0

1
2

|b̂|2
ω(k2+m2)1/2

sin θ cos θ

ρ0
1
2
|b̂|2
N2

=
N2 sin θ cos θ

ω(k2 +m2)
1
2

(10.9)

which is the magnitude of the group velocity |cg| where cg is defined in (9.16). In full vector

form F = Ecg where

cg =
∂ω

∂k
.

It is left to the problems to demonstrate this.
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10.5 Problems

1. Units of internal wave energy flux.

(a) What are the units of F⊥?

(b) What are the units of
∫ 0

−h F · k̂ dz, where k̂ is the unit vector in the horizontal

direction?

2. For a linear internal wave propagating in the +x direction (θ = 0). What is the

magnitude and direction of the wave energy flux? Can you reason this from the physical

definition of energy flux 〈uφ〉?

3. For a linear internal wave propagating in the +z direction (θ = π/2). What is the

magnitude and direction of the wave energy flux? Why? Can you reason this from the

physical definition of energy flux 〈uφ〉?

4. From the expression for F = (F‖, F⊥) and E , demonstrate that the cg that satisfies

F = Ecg also satisfies cg = ∂ω/∂k.

5. For question #6 in Chapter 9, calculate the vertical energy flux radiating away from

the wave bottom bathymetry.

6. For Chapter 9 Problem Set, part II: you derived the internal wave dispersion relation

on an f -plane. Continuing on with the rotating internal wave case propagating in

the x-z plane, i.e., k = (k, 0,m) or the y-direction wavenumber l = 0, with velocity

components (u, v, w)

(a) Derive relationships between û, b̂, φ̂, ŵ and v̂ - note that with rotation v is not

zero - following Section 9.2.

(b) At the latitude of San Diego CA for a semi-diurnal IW propagating at θ = 45◦ to

the horizontal, what is the ratio of v̂/û?

(c) Does including rotation affect the Boussinesq fluid energy equation (see Chapter 8

and Eqs. 10.1 and 10.2)? Reason why or why not.

(d) Following Section 10.4, calculate the internal wave energy flux, with rotation

included.

(e) What group velocity does this energy flux imply? Is it consistent with the dis-

persion relationship you derived in Chapter 9 Problem Set, part II?
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Chapter 11

Linear Internal Waves: Normal Modes

11.1 Internal Wave Reflection from a flat bottom

So what happens when internal waves propagate into a flat horizontal boundary? We’ve

seen for acoustic waves that their reflection is specular, where the angle of incidence and

reflection are the same.

At a flat horizontal boundary at z = 0, the boundary conditions w = 0 must be satisfied.

As with acoustic waves, we write the incident and reflected IW vertical velocity as w =

wI + wR, where

wI = ŵIe
i(kIx+mIz+ωI t) (11.1)

wR = ŵRe
i(kRx+mRz+ωRt). (11.2)

In order for wI + wR = 0 at z = 0, the following conditions must be met: (1) ωR = ωI , (2)

kR = kI , and (3) ŵI = ŵR. This leaves us only to figure out the reflected vertical wavenumber

mR. Well as with acoustic waves, we use the dispersion relationship ω2 = N2 cos2 θ, where

θ is the angle of k to the horizontal. As incident and reflected k and ω are the same, this

implies that mR = −mI . This implies that θR = θI and that internal wave reflection off of

a flat horizontal boundary is also specular.

Note, unlike acoustic waves, specular reflection only occurs for horizontal flat boundaries.

For sloping boundaries things are different, which will be discussed later (Chapter 12).
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11.2 Vertical velocity equation and boundary condi-

tions

From the problem set in Chapter 7, you derived a “wave-like” equation for the vertical

velocity. That equation for the case of no-rotation is

∂

∂t

(
∇2w

)
+N2(z)∇2

hw = 0 (11.3)

where ∇h is the horizontal Laplacian operator.

Up to now, we did not really consider boundary conditions. We just allowed for plane

wave solutions that extended out to infinity in all directions. Well, the ocean has boundaries.

Lets say that the vertical velocity w = 0 at the surface z = 0 and at the bed z = −h. This

implies that the upper surface of the ocean is a rigid surface. Do you think this is ok?

How do we solve (11.3) and get a dispersion relationship? Assume the vertical velocity

equation (11.3) has a solution that looks like

w(x, z, t) = ŵ(z)ei(kx−ωt) ,

and plug into (11.3) and one gets for (−h < z < 0),

ŵzz +
(N2(z)− ω2)

ω2
k2ŵ = 0 (11.4)

which, is essentially a restatement of (9.8). We could also write this in the form

ŵzz +R2ŵ = 0

where

R2 =
(N2(z)− ω2)

ω2
k2.

11.3 Constant stratification N 2

11.3.1 Solution for vertical velocity

Let us now continue to examine the case of constant stratification N2. This makes (11.4) a

constant coefficient 2nd order ODE harmonic oscillator ODE. With the boundary conditions

(ŵ = 0, at z = 0,−h), it is straightforward to see that the solution for ŵ goes like

ŵ = sin

[
nπ

h
(z + h)

]
(11.5)
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where n is an integer n = 1, 2, 3, . . .. The ŵ solution (11.5) matches the boundary conditions.

It also matches the ODE (11.4) when

(N2 − ω2)k2 = m2ω2

m2 ≡ n2π2

h2

which is the dispersion relation for internal waves with vertical wavenumber m. Another way

of saying this is that with the boundary conditions (11.4) becomes an eigenvalue problem

for the vertical wavenumber m which only have solutions for particular m satisfying m2 =

n2π2/h2. Or, restated, solutions of (11.4) with the boundary conditions exist only for ω and

k satisfying

ω2 =
N2k2

k2 + n2π2

h2

, n = 1, 2, 3, . . . (11.6)

These ŵ(z) solutions are shown in Fig. 11.1 and a relevant property of theirs is that they

have n− 1 zero-crossings.

w

z

n = 1

w

z

n = 2

w

z

n = 3

Figure 11.1: Modal structure of vertical velocity w as a function of depth for (left) n = 1 to
(right) n = 3.

Restating, the solutions for ŵ are

ŵ(z) = A sin
(nπ
h

(z + h)
)

Where A is an arbitrary constant. Thus the corresponding solution to our equations of

motion is

w(x, z, t) = sin
(nπ
h

(z + h)
) [
Aei(kx−ω(k,n)t) +Bei(kx+ω(k,n)t)

]
(11.7)

where ω(k, n) is the positive root of (11.6). Since our equations are linear, the principle of

superposition applies. Thus

w(x, z, t) =

∫ ∞
−∞

dk
∞∑
n=1

{
Anke

−iωnkt +Bnke
iωnkt

}
ϕnk(x, z) (11.8)

is also a solution, where

ϕnk ≡ sin
(nπ
H

(z +H)
)
eikx , ωnk ≡ ω(k, n) (11.9)

and each mode n propagates at it’s own frequency and speed.

95



11.3.2 Remarks:

1. Recall the dispersion relation for internal waves in an unbounded fluid (still assuming

N2 =constant),

ω2 =
N2k2

k2 +m2
(11.10)

By comparing (11.6) and (11.10), we see that the presence of boundaries quantizes m,

which then takes only the values m = nπ/h. This is a typical property of eigenvalue

problems, such as the vibrating string of length L (Chapter 1).

2. With m = nπ/h and z′ ≡ z + h, the basic solution

w = A sin(mz′)ei(kx−ωt)

is a standing wave in the vertical and (as before) can be viewed as the sum of progressive

plane waves,

w =
A

2i

[
ei(kx+mz′−ωt) − ei(kx−mz′−ωt)

]
propagating in the directions (k,±m) with amplitudes and phases arranged to produce

perfect cancellation at the boundaries z = (0, h). So we see again that the principle

applies of a standing wave being the sum of opposing propagating progressive waves.

3. The {ϕnk} is a set of orthogonal functions:∫ 0

−h
dz

∫ ∞
−∞

dx [ϕnkϕ
∗
n′k′ ]

=

{∫ 0

−h
dz sin

(nπ
h

(z + h)
)

sin

(
n′π

h
(z + h)

)}
·
{∫ ∞
−∞

ei(k−k′)x dx

}
=

{
h

π

π

z
δnn′

}
· {2πδ(k − k′)}

= hπ δnn′ δ(k − k′)

Where δnn′ is the Kronecker delta function and δ(k − k′) is the Dirac delta function.

This orthogonality property is of course very useful in calculating the coefficients of

each mode in (11.8). See, for example, Figure 11.2.

4. The {ϕnk} are a complete set of basis functions. Thus (11.8) is the general solution of

the problem.
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11.3.3 Buoyancy and Horizontal Velocity Fluctuations

Recall that the linearized buoyancy equation is

∂b

∂t
+ wN2 = 0

, and with the solution for w(x, y, z, t) of (11.7), we can write the solution for

b(x, z, t) =
AN2

iω
sin
(nπ
h

(z + h)
)
ei(kx−ω(k,n)t) +

BN2

iω
sin
(nπ
h

(z + h)
)
ei(kx+ω(k,n)t) (11.11)

with the full spectral solution similar to (11.8). The velocities can be related from the

continuity equation ux + wz = 0 which becomes ikû = Am cos(m(z + h)) and thus

u(x, z, t) =
Am

ik
cos
(nπ
h

(z + h)
)
ei(kx−ω(k,n)t) +

Bm

ik
cos
(nπ
h

(z + h)
)
ei(kx+ω(k,n)t) (11.12)

This means that if you know the mode-1 u fluctuations, you can infer the mode-1 buoyancy

or temperature fluctuations, or vice-versa. This is very similar to how with linear surface

gravity waves, you can use velocity to infer pressure, and vice versa (recall problem set from

Chapter 2). What about solutions for φ = p/ρ?

11.3.4 Normal Mode Phase and Group Velocity

With the normal-model internal wave dispersion relationship,

ω2 =
N2k2

k2 + n2π2

h2

, n = 1, 2, 3, . . .

Note that the denominator can be re-written as

h−2
(
(kh)2 + n2π2

)
so that

ω2 =
N2(kh)2

(kh)2 + (nπ)2
,

where now we see the re-appearance of our old friend from surface gravity waves - namely

kh the non-dimensionalized depth parameter. We can also write,

ω =
N(kh)

((kh)2 + (nπ)2)1/2

Now, we can calculate the phase and group velocity in the +x direction

c =
ω

k
=

Nh

((kh)2 + (nπ)2)1/2
.
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and the group velocity in the +x direction as

cg =
∂ω

∂k
=

Nh

((kh)2 + (nπ)2)1/2
+ (Nkh)

−1

2
(2kh2)

(
(kh)2 + (nπ)2

)−3/2

=(Nh)
(kh)2 + (nπ)2 − (kh)2

((kh)2 + (nπ)2)3/2

=
Nh(nπ)2

((kh)2 + (nπ)2)3/2

Do you see the analogy with the mode phase and group velocity and the vector IW phase

and group velocity? Are these waves dispersive or non-dispersive? Recall that m = nπ/h.

11.3.5 The shallow water limit: kh� 1

Just like there is a shallow water limit for surface gravity waves, there is a shallow water

limit for modal internal waves. If we re-write(
(kh)2 + (nπ)2

)1/2
= (nπ)

(
1 + (kh)2/(nπ)2

)1/2

and

ω =
Nhk

nπ(1 + (kh)2/(nπ)2))1/2
.

If we let (kh)/(nπ)� 1 then ω = Nhk/(nπ) and the phase speed c becomes

c =
ω

k
=
Nh

nπ
.

This is pretty interesting as now the phase speed is non-dispersive. All frequencies or k

propagate at the same speed. This is analogous to shallow water surface gravity waves. Let

us examine the group velocity in same limit (kh)/(nπ)� 1

cg =
∂ω

∂k
=

Nh(nπ)2

((kh)2 + (nπ)2)3/2
≈ Nh

nπ

and as expected for non-dispersive waves the phase and group velocity are the same c = cg.

11.3.6 Energetics

In Chapter 10, we derived a local energetics equation (10.2) that was the sum of kinetic and

potential energy balancing an energy flux divergence

ρ0
∂

∂t

(
1

2
u · u +

b2

2N2(z)

)
= −ρ0∇ · (uφ) (10.2 repeated)
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where the local energy E(z) was (units of J/m3).

E(z) = 〈ke〉+ 〈pe〉 = ρ0
1

2

|b̂(z)|2

N2

As with surface gravity waves, this can be vertically integrated to

E =

∫ 0

−h
E(z) dz =

ρ0

2N2
b̂2

0

∫ 0

−h
sin2

(nπ
h

(z + h)
)

dz. (11.13)

What units does E have? Similarly the energy flux can be vertically integrated to

F =

∫ 0

−h
〈uφ〉 dz (11.14)

Question: What units does this F have? Question: can you evaluate F and show that

F = Ecg?

11.4 Varying Stratification: Non-constant N 2(z)

In the ocean, N2(z) is very non-uniform. How much of the above remains true in the case

of non-uniform N2(z)? Answer: virtually all.

To consider non-uniform N2(z), we must return to (11.15), rewritten as

d2ŵ

dz2
+ λr(z)ŵ = 0, ŵ = 0 at z = 0,−h (11.15)

where now,

r(z) ≡ N2(z)− ω2

ω2
, λ ≡ k2 (11.16)

Again we regard ω (i.e. r(z)) as given, and try to find k (i.e. λ) such that (11.15) is satisfied.

Obviously ŵ ≡ 0 is always a solution. However, nonzero ŵ exist but only for very special

values of λ. These are called eigenvalues and (11.15) is called an eigenvalue problem.

11.4.1 Sturm-Liouville Eigenfunction Theory - Light

The general theory of eigenvalue problems is called Sturm-Liouville theory. It considers

equations of the general form

d

dz

[
p(z)

dw

dz

]
+ [q(z) + λr(z)]w = 0

of which (11.15) is a special case (although r(z) > 0 is often assumed in texts). See Morse

& Feshbach pp. 719-729.] Here p(x) = 1 and q(x) = 0.
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11.4.2 Properties of internal wave modal structure

Let {λ1, λ2, λ3, . . .} be the eigenvalues of (11.15) and {ŵ1(z), ŵ2(z), ŵ3(z), . . .} the corre-

sponding eigenfunctions. Then we can show the following:

1. Solutions with λ > 0 (k real, as we require for waves) occur only for ω < NMAX. Let

ŵ(z) and λ be any eigenfunction-eigenvalue pair. Then multiply

ŵzz + λr(z)ŵ = 0

by ŵ, and integrate from z = −h to z = 0, using the boundary conditions. The result

is

λ =

∫ 0

−h(ŵz)
2 dz∫ 0

−h r(z)ŵ2 dz

Since we require λ > 0 then ∫ 0

−h
r(z)ŵ2 dz > 0,

and thus r(z) must be positive in some part of its domain. Thus N2(z) − ω2 > 0

somewhere in the vertical. If this is not the case what happens to the eigenvalue λ and

what form does the solution take?

2. The solution ŵ(z) is non-oscillatory where r(z) < 0. To show this, integrate

ŵzz + λr(z)ŵ = 0

between two supposed zeroes, between which r(z) < 0, and demonstrate a contradic-

tion.

3. Where r(z) > 0, the zeroes of wi are closer together than the zeroes of wj provided

λi > λj. To show this, multiply

ŵi by ŵ′′j + r(z)λjŵj = 0

ŵj by ŵ′′i + r(z)λiŵi = 0

and subtract to get

(ŵiŵ
′
j − ŵjŵ′i)′ + (λj − λi)r(z)ŵiŵj = 0

and integrate from z = −h to z0, the first zero crossing of ŵj.

We will suppose that the first zero of ŵi occurs at z > z0, and demonstrate a contra-

diction.

100



H0
z0

z

w j

w i

Then

ŵi(z0)︸ ︷︷ ︸
+

ŵ′j(z0)︸ ︷︷ ︸
−

= (λi − λj)︸ ︷︷ ︸
+

∫ z0

−h
r(z)ŵiŵj︸ ︷︷ ︸

+

dz

which is a contradiction. It follows from all this that there is a lowest eigenvalue

corresponding to no zero crossings (ŵ all of one sign).

4. The {ŵi(z)} are orthogonal. To see this, integrate

(ŵiŵ
′
j − ŵjŵ′i)′ + (λj − λi)r(z)ŵiŵj = 0

between −h and 0. It follows that

(λj − λi)
∫ 0

−h
r(z)ŵiŵj = 0

Thus if λj 6= λi, ∫ 0

−h
r(z)ŵi(z)ŵj(z) = 0

and the functions are orthogonal with respect to the weight r(z).

The orthogonality property is useful for representing arbitrary functions as sums of the

{ŵi}. Let f(z) be an arbitrary function. Then if constants ci can be found such that

f(z)
∞∑
i=1

ciŵi(z)

it must be true that

ci =

∫
r(z)fŵi dz∫
r(z)ŵ2

i dz
.

This is totally analogous to Fourier series and determining Fourier coefficients.

5. The {ŵi(z)} are complete, in the sense that given any f(z), such ci’s always exist to

make the first equation true. (proof not given here.)
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Typical time series of depth-integrated near-inertial flux
(Fig. 2a, b) show both positive and negative contributions, occur-
ring in pulses of several days’ duration and magnitude of the order
of 10–30 kWm21. Magnitudes are several times greater during the
two (southern) winters spanned (shaded). The time integral of each
(Fig. 2c, d) indicates predominant wintertime propagation toward
the northeast, and nearly no net flux during summertime (visible as
zero slope), consistent with storm generation at q < f and sub-
sequent equatorward propagation.
As is the case for energy input by storms13,9, near-inertial energy

passage occurs in finite bursts, with a few events accounting for
much of the total (for example, June 1991, April 1992). This is borne
out in probability density functions (not shown) of all near-inertial
flux estimates for all moorings, which exhibit long tails indicative of
an intermittent process. These findings support the notion of
internal-wave “groups”22. Efforts to identify particular storms
associated with these events are under way. By contrast, the tidal-
band fluxes (not shown) show more constant energy passage and
shorter-tailed distributions, consistent with their more constant
forcing.
Near-inertial fluxes in both hemispheres (Fig. 3a) are directed

overwhelmingly equatorward, as demonstrated in the histogram of
poleward flux (inset), and generally away from regions of large
energy input from the wind to near-inertial motions (colour)3. In
the North Pacific and North Atlantic, where coverage is denser,
fluxes generally decrease in magnitude toward the east, as do the
wind-energy inputs. The zonal component of the fluxes is predomi-
nantly eastward, as expected given the predominance of eastward-
travelling storms15.
The tidal fluxes (Fig. 3b) are generally directed away from

internal-tide sources2 (red). Examples in the figure include arrows

emanating from the western Pacific trench, and north across the
Equator from the Tuamotu archipelago17 at 208 S, 2208 E and/or
Micronesia/Melanesia, further west. Strong fluxes emanate from
some continental shelves; for example, northern Europe (also
observed in ref. 23) and Cuba. Elsewhere (Brazil, west coast of
USA), propagation is on-shelf.

Northeastward energy radiation is observed along 1508W at
258N and 408N, in agreement with altimetric estimates17,18, which
only detect mode 1, astronomically phase-locked signals. Strong
northward fluxes are seen here well past where phase-locked fluxes
have weakened, indicating that phase-locked signals may be a small
fraction of the total. The weak flux observed further west at the
BEMPEX site (418N, 1638W) here and in ref. 24 may result from
superposition of northward fluxes from Hawaii and southward
fluxes from the Aleutians, also suggested from altimetric estimates18.

Coverage is fair in the North Atlantic and Pacific, but very poor at
low latitudes and in the Southern Hemisphere, particularly in the
Pacific. Inclusion of all suitable data from the archives of Woods
Hole and the British Oceanographic Data Centre would improve
coverage in the North Atlantic, but would only provide a few more
points in the Southern Ocean, and none in the South Pacific. It
seems that resolution of fluxes in these oceans must await new
deployments (preferably “profiling moorings”25 capable of resolv-
ing all modes). Several well-placed moorings would considerably
improve the picture.

  

Figure 1 Hydrographic profiles, mode structure and instrument depths for a typical
mooring. a, Profiles21 of climatological temperature (red) and salinity (blue) at the mooring
location (318 S, 398W). b, Temperature gradient Tz (red) and buoyancy frequency N (z )
(blue) computed from a. c, Thick and thin lines show respectively first and second vertical

normal modes of velocity u (red), vertical displacement h (blue), and pressure anomaly p 0

(green). Circles indicate instrument depths. In this and all calculations, temperature

measurements where T z , 3£ 1025 8Cm21; or where T increases towards the sea

floor, are removed from the calculation (bottom three records here). Briefly, flux is

computed as follows (see Methods for details): h is inferred from band-pass-filtered

temperature records and climatological profiles (a, b). A least-squares solution is obtained
for the amplitude of the two longest-wavelength normal modes (c) in terms of the discrete-
depth moored measurements. Depth-integration yields p 0 in terms of h. The correlation

between velocity and p 0 equals the energy flux.

Figure 2 Typical near-inertial time series. a, b, Depth-integrated eastward (a) and
northward (b) energy flux in the near-inertial band for mode 1 (black), mode 2 (red),
and the total (blue), from the mooring in Fig. 1. Southern winter (defined as 1 April–30

September) is shaded. Mean flux in a and b is respectively 0.32 and 0.45 kWm21.

c, d, The time-integral of panels a and b, indicating cumulative energy passage. For
this mooring, the flux is wintertime-enhanced, equatorward, and dominated by

mode 1.

letters to nature
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Figure 11.2: Example of realistic modal decomposition: From Alford Nature (2003)
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11.5 Problems

1. In the internal wave shallow water limit ((kh)/(nπ)� 1), for the vertical momentum

equation, i.e.,
∂w

∂t
= −ρ−1

0

∂p

∂z
− ρ′g

ρ0

what is the dominant dynamical balance? Does this have a name?

2. In the problem set for Chapter 7, you derived a vertical velocity equation that included

rotation (9.21).
∂

∂t

(
∇2w

)
+ f 2∂

2w

∂z2
+N2∇2

hw = 0,

where ∇h is the horizontal Laplacian operator. Here, you are going to repeat the

derivation in Sections 9.1–9.3 for constant stratification N2 and using the boundary

conditions of w = 0 at z = 0 and z− = h,

(a) Plug in a solution w = ŵ(z)ei(kx−ωt) and derive an ODE for the vertical velocity

(b) apply the boundary conditions and solve for the vertical modal structure of ŵ(z)

and the dispersion relationship ω2 = . . ..

(c) For a mode n = 1, single plane wave propagating in +x with frequency ω, what

is the the solution for b(x, z, t), u(x, z, t)?

(d) What is the solution for v(x, z, t)? Why is v 6= 0?

(e) What is the phase and group velocity with rotation?

3. For a mode-1 IW propagating in +x direction at frequency ω0 with vertical velocity

amplitude w0, using the result also for b(x, z, t), derive an expression for φ(x, z, t).

4. (EXTRA CREDIT) Show that F = Ecg for normal mode internal waves where F is

defined in (11.14) and E is defined in (11.13) and cg = ∂ω/∂k.

5. (EXTRA CREDIT) For an variable but positive N2(z) profile where the semi-diurnal

radian frequency was always < N everywhere, for a plane semi-diurnal internal wave in

the ocean, sketch out how you might calculate the depth-integrated horizontal energy

flux (units W m−1), ∫ 0

−h
〈up〉 dz.
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Chapter 12

Internal Wave Reflection on a Slope

12.1 Streamfunction definition of IW velocities

In some situations, such as IW reflection on a slope, it is convenient to work with an inter-

nal wave streamfunction ψ(x, z, t) defined in the classical manner where for a right-handed

coordinate system,
∂ψ

∂z
= u,

∂ψ

∂x
= −w

Aside: Why is this decomposition ok? Using the plane wave solution for w(x, y, z, t) it is

easy to show that for each plane wave component, the streamfunction looks like

ψ(x, y, z, t) =
ŵ

ik
ei(kx+mz−ωt) = ψ̂ei(kx+mz−ωt) (12.1)

12.2 Definition of bottom boundary

Suppose the bottom slopes with an ange β such that the bed is located at z = x tan β. We

can define a unit vector parallel to the slope and perpendicalar to the slope as

n̂‖ = î cos β + k̂ sin β

n̂⊥ = −î sin β + k̂ cos β

The bottom boundary condition here is that u · n̂⊥ = 0, which can also be written as

∂ψ

∂x‖
= 0 (12.2)

which implies that ψ is a constant on the boundary which can be taken for convenience as

ψ = 0 on the boundary z = x tan β

104



12.3 Superposition of Incident and Reflected Wave

We can superimpose the streamfunctions for incident and reflected waves, ψ = ψR + ψI and

this must be zero on the boundary. In order for this to work then

(kI +mI tan β)x− ωIt = (kR +mR tan β)x− ωRt (12.3)

which implies that the frequency is conserved upon reflection

ωR = ωI (12.4)

and that the component of wavenumber parallel to the slope (n̂‖) is conserved.

(kI +mI tan β)x = (kR +mR tan β)x (12.5)

which can be written as

kR · n̂‖ = kI · n̂‖ (12.6)

These are general results for the reflection of plane waves. Typically, the reflected wavenum-

ber in the perpincular direction n̂⊥ is then derived from the dispersion relationship.

In acoustic wave reflection, the dispersion relationship does not depend upon the wave

angle only on the wavenumber magnitude. This implied that if ω and k‖ was conserved

then k⊥ was also conserved. But with internal waves, ω2 = N2 cosθ and so if ω is conserved

with reflection then θ must also be conserved. What this means is that k⊥ is not generally

conserved - only for flat bottoms.

To recap:

1. ω is conserved

2. k‖ is conserved (kR · n̂‖ = kI · n̂‖)

3. θR = θI

What this implies is that for a slope of angle β,

|kI | cos(θ − β) = |kR| cos(θ + β) (12.7)
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Chapter 13

Lecture: Combined Internal and
Surface Waves

Now that we have studied surface gravity waves and internal waves separately, we now

examine them jointly. In particular, in examining the modal structure of internal waves

(Chapter 11), we made the assumption that the vertical velocity at the surface was zero,

w = 0 at z = 0 m. This gave us convenient modal solutions. But, is the free surface really

fixed for internal waves? How do surface gravity waves influence internal waves? Or how

does stratificatino affect surface gravity waves? We will address these questions in a linear

context.

13.1 Full equations and bounary conditions

x

z

With a free surface at z = η(x, y, z) and flat (constant) bottom at z = −h, the fully nonlinear

Boussinesq-approximation pefect fluid equations and boundary conditions are

Du

Dt
= −∇ϕ+ bk̂

∇ · u = 0

Db

Dt
+N2(z)w = 0
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with boundary conditions w =
Dη

Dt
p = 0

 at z = η(x, y, t)

w = 0 at z = −h

Where, we use ϕ now for density normalized pressure deviations from hydrostatic, i.e., ϕ =

p/ρ0, where p is the perturbation pressure. Note that earlier we used φ = p/ρ0, and the

change in notation is explained below. Also, note that here yet again, surface tension has

been neglected. And so this analysis explicitly ignores capillary waves as did the surface

gravity wave analysis of Chapter 2.

The corresponding linearized equations and boundary conditions are:

∂u

∂t
= −∇ϕ+ bk̂

∇ · u = 0

w =
∂η

∂t
ϕ = gη

 ∂ϕ

∂t
= gw at z = 0

∂b

∂t
+N2(z)w = 0 w = 0 at z = −h

F

where the boundary condition ϕ = gη at z = 0 is derived by Taylor series expansion about

z = 0, as we’ve seen previously for surface gravity waves (Chapter 2). By writing total

pressure p = p0 +ρ0ϕ where p0 is the hydrostatic pressure, the Taylor series expansion about

p = 0 at z = η

about z − 0 is

p(z = η) = p(0) +
∂p

∂z
(0)η +

∂2p

∂z2
(0)

η2

2
+ · · · = 0

= [p0(0) + ρ0ϕ(0)] + [−ρ0g + ρ0
∂ϕ

∂z
(0)]η + · · · = 0

= ρ0ϕ(0)− ρ0gη + quadratic terms = 0

yielding to first order that ϕ = gη at z = 0. We now concentrate on the system F.

13.2 Simple surface waves: no stratification N 2 ≡ 0

This problem was solved in Chapter 2 by assuming irrotational only flow and then finding

a solution for the velocity potential φ (where u = ∇φ) based on ∇2φ = 0. This requires

that the fluid vorticity be zero. But we’ve seen from Chapter 9 that vorticity is not zero in

internal waves. So, to proceed generally to allow both surface and internal waves, we do not

assume irrotational.
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With no stratification, the system F reduces to

∂u

∂t
= −∇ϕ ∂ϕ

∂t
= gw at z = 0

∇ · u = 0 w = 0 at z = −H

We instead take inspiration from the modal IW solution and plug in a +x propagating wave

solution with arbitrary vertical strcuture. Assuming, the flow is unbounded in (x, y), we can

seek solutions in the form

u = û(z)ei(kx−ωt) , ϕ = ϕ̂(z)ei(kx−ωt)

where the y-wavenumber l = 0 is assumed with no loss in generality. Then:

−iωû = −ikϕ̂ (13.1a)

−iωv̂ = 0 (13.1b)

−iωŵ = −∂ϕ̂
∂z

(13.1c)

ikû+
∂ŵ

∂z
= 0 (13.1d)

−iωϕ̂(0) = gŵ(0) (13.1e)

ŵ(−h) = 0 (13.1f)

The first thing this implies is the trivial result that v̂ = 0.

13.2.1 Equation for vertical velocity

Now adding (13.1a) and (13.1d) yields

ik2

ω
ϕ̂+

∂ŵ

∂z
= 0 (13.2)

and then taking a vertical derivative and combining with (13.1c) yields an equation for the

Fourier transform of the vertical velocity

ŵzz = k2ŵ, (13.3)

which is a pretty familiar 2nd order constant coefficient ODE. Similarly, the ŵ boundary

conditions are

gŵ =
ω2

k2
ŵz at z = 0 (13.4)

ŵ = 0 at z = −h (13.5)
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The solution to (13.3) is

ŵ = Aekz +Be−kz,

and more conveniently:

ŵ(z) = A cosh kz +B sinh kz

Now think about what would happen if k2 were negative...

13.2.2 Aside:

Recall:

cosh z =
ez + e−z

2
sinh z =

ez − e−z

2(
d

dz
cosh z = sinh z ,

d

dz
sinh z = cosh z

)
13.2.3 Application of boundary conditions..

Bottom boundary conditions is w = 0 at z = −h yields

A cosh kh−B sinh kh = 0

and thus A = B tanh(kh). Applying the surface boundary conditions results in

gA =
ω2

k2
kB

That when combined =⇒ A = B = 0 unless

ω2 = gk tanh kh

which is of course the familiar general dispersion relation. As we recalled, this has limiting

cases,

I. deep water waves (kh→∞) ω2 = gk (dispersive)

II. shallow water waves (kh→ 0) ω2 = (gh)k2 (nondispersive)

with solutions,

w = B

[
ω2

gk
cosh kz + sinh kz

]
ei(kx−ωt)

= B[tanh kh · cosh kz + sinh kz]ei(kx−ωt)

= B′[sinh k(h+ z)]ei(kx−ωt)

ϕ = iB′
ω

k
cosh[k(h+ z)]ei(kx−ωt)

= B′
ω

k
cosh[k(h+ z)]ei(kx−ωt+π

2
)

u = B′ cosh[k(h+ z)]ei(kx−ωt+π
2

)

109



Thus, the horizontal velocity, pressure, and surface elevation are in phase, but the vertical

velocity leads the pressure by π/2 (or 90◦).

13.2.4 Deep and shallow water limiting cases reviewed

I. deep water waves (kh→∞)

w = B′′ekz cos(kx− ωt)

ϕ = B′′
ω

k
ekz cos(kx− ωt+ π

2
)

u = B′′ekz cos(kx− ωt+ π
2
)

Particle trajectories are circles.

II. shallow water waves (kh→ 0)

w = B′kh(1 + z
h
) cos(kx− ωt)

ϕ = B′
√
gh cos(kx− ωt+ π

2
)

u = B′ cos(kx− ωt+ π
2
)

Particle trajectories are ellipses.

13.2.5 Linkage with Irrotational-based derivation

Recall, that in Chapter 2 we started off a priori with irrotational assumption. It turns out

that this identical solution is also irrotational, as can be seen at once from the equation

−iωû = −∇ϕ =⇒ û = ∇Φ Φ =
ϕ

iω
.

The boundary condition ∂ϕ
∂t

= gw can be viewed as a linearization of Bernoulli’s equation,

which applies to general nonlinear irrotational flow. This way of proceeding emphasizes

that, for surface waves, the basic equation is elliptic and the waves arise from the boundary

condition.

13.3 Combined surface and internal waves: the case

N 2 = constant

13.3.1 A combined surface and internal wave equation for vertical
velocity

In this case, our equations are those in system F. Again seeking plane wave solutions in the

form

ϕ = ϕ̂(z)ei(kx−ωt), etc
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and we obtain a familiar system of equations

−iωû = ikϕ̂ (13.6)

−iωŵ = −∂ϕ̂
∂z

+ b̂ (13.7)

ikû+
∂ŵ

∂z
= 0 (13.8)

−iωb̂+N2ŵ = 0 (13.9)

with boundary conditions

−iωϕ̂ = gŵ at z = 0 (13.10)

ŵ = 0 at z = −h (13.11)

Important: notice that the only difference with the modal solution in Chapter 11 is that the

the vertical velocity matches (13.10) instead of the previously assumed w = 0 at z = 0.

Now, as before, to get an equation for the vertical velocity we combin (13.6) and (13.8)

to get
ik2

ω
ϕ̂+

∂ŵ

∂z
= 0

and (13.7) and (13.9) to get

[N2 − ω2]ŵ = iω
∂ϕ̂

∂z
.

This can then be combined to get

ŵzz +
k2(N2 − ω2)

ω2
ŵ = 0

or

ŵzz +R2ŵ (13.12)

where

R2 =
k2(N2 − ω2)

ω2
. (13.13)

The surface and bottom boundary conditions are:

ŵ =
ω2

gk2

dŵ

dz
at z = 0 (13.14)

ŵ = 0 at z = −h (13.15)

13.3.2 Solutions in the limit of high and low frequency

There are two possibilities for constant and vertically uniform N2.
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High frequency solutions: ω2 > N2

For ω2 > N2) then we have R2 < 0. This means that we can’t have verticaly oscillating

solutions but instead have exponential of the form

e±k̃z

where

k̃2 ≡ −R2.

We already knew that internal wave solutions were not possible for ω2 > N2, that is that

the solutions were evanenscent. The particular solution

ŵ = B sinh[k̃(h+ z)]

satisfies the equation and bottom boundary condition. The surface boundary condition then

implies

ω2 = gk2 tanh(k̃h)

k̃

which looks similar to the standard surface gravity wave dispersion relationship.

Note: if N2 = 0, then k̃ = k and this case recovers standard surface waves. Also, in the

limit that ω � N then R2 → k2 and standard surface gravity waves are also recovered.

Low frequency solutions: ω2 < N2

When ω2 < N2, we expect to have internal wave solutions. This implies that R2 > 0, which

gives oscillating solutions in the vertical with e±imz, where now m2 ≡ +R2. The particular

solution

ŵ = B sin[m(h+ z)]

satisfies the equation and bottom boundary condition at z = −h. The top boundary condi-

tion then implies

ω2 = gk2 tan(mh)

m

Note:

m2 = R2 =
k2(N2 − ω2)

ω2
.

is just the standard dispersion relation for plane (unbounded) internal waves in a different

format. However, in this case m cannot take arbitrary values, like in the modal solutions.
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13.3.3 Unified treatment of dispersion relationsihp

Normally, we regard k as given and solve for ω(k). Now, because of the algebraic complexity,

it is easier to regard ω as given and solve for k = k(ω).

Thus, let ω be given. First assume that ω2 > N2. Then R2 < 0 and we must solve

ω2

gk
=

tanh

[(
ω2−N2

ω2

)1/2

kh

]
(
ω2−N2

ω2

)1/2
(13.16)

Regarding this as

LHS = RHS

we graph:

k

LHS

RHS

There is exactly one value of k for each ω2 > N2.

If ω2 � N2 we obtain ω2/(gk) = tanh kh, which is the general dispersion relation for

surface waves in homogeneous fluid (N2 = 0). In the opposite limit, ω2 → (N2)+, we

obtain ω2/(gk) = kh, the dispersion relation for shallow water (kh � 1) surface waves.

Now, however, this dispersion relation holds when ω2 → N2 whether or not kh � 1. The

explanation is that as ω → ±N , the vertical acceleration and buoyancy terms cancel. In

the ocean, however, N2 is so small that ω2 = N2 = ghk2 =⇒ k2h2 ∼ 10−3, i.e., at these

frequencies the fluid would be in the shallow water limit anyway.

113



Dispersion relationship for ω2 < N 2

Now suppose that ω2 < N2. In this case we will obtain multiple solutions for k, each

corresponding to a different vertical wavenumber. With R2 > 0 we must solve

ω2

gk2
=

tan

[
mh

]
m

or

ω2

gk
=

tan

[√
N2−ω2

ω2 kh

]
√

N2−ω2

ω2

again equate the left and right hand side,

LHS = RHS

k

LHS

First we consider small mh� 1, this yields

ω2

gk2
=
mh

m
= h, ⇒ ω2 ≈ (gh)k2

Thus, the solution with the lowest value of m (or k) now corresponds to shallow water waves

with phase speed (gh)1/2. This is true provided that N2h
g
� 1. Thus,

Barotropic shallow water surface gravity waves are essentially unaffected by the

ocean’s stratification. They are the same, at all wavenumbers, as they would be in a

homogeneous fluid.

The other solutions in the case ω2 < N2 correspond to internal waves with vertical modal

structure. In the limit of very large g, the left hand side ω2/(gk) → 0 (recall ω2/(gk) = 1
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for deep water surface gravity waves) for and so the right-hand-side must also go to zero and

the dispersion relationship becomes

tan(mh) = tan

[√
N2 − ω2

ω2
kh

]
= 0

which implies that √
N2 − ω2

ω2
kh ≈ nπ , n = 1, 2, 3, . . . (13.17)

This can be rearranged in the form

(N2 − ω2)k2 = m2ω2

m2 ≡ n2π2

h2

which is the dispersion relation for internal waves with vertical wavenumber m = nπ/h. The

vertical velocity is

ŵ = sin

[
nπ

h
(h+ z)

]
and has n− 1 zero crossings as we saw in Chapter 11.

w

z

n = 1

w

z

n = 2

w

z

n = 3

The approximation (13.17) corresponds to replacing the exact surface boundary condition

by w = 0 (a rigid lid). The approximation is worst for the lowest (n = 1) mode. For that

mode we have

ω2 ≈ N2k2

(k2 + π2

h2
)
.

This approximation is correct provided that

ω2

gk

√
N2 − ω2

ω2
� 1

=⇒ ω2

gk

(
π

kh

)
� 1

=⇒ ω2 � ghk2

=⇒ N2k2

(k2 + π2

h2
)
� ghk2
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which is obviously true for
N2k2

π2

h2

� ghk2

or restated another way

N2h

g
� 1 ,

which is a constraint we’ve seen before in developing the Boussinesq approximation. In this

limit, then, surface waves behave as if N2 = 0, and internal waves behave as if there were a

rigid lid.

13.3.4 Surface expression of internal waves

Internal waves do have a surface expression that can be inferred from satellite altimetry

(Zhao papers). We can rewrite the dispersion relationship for modal internal waves with a

free surface as,
ω2

gk
=

tan(αkh)

α
(13.18)

where α = (N2−ω2)1/2/ω. For small N2h/g the zeros of (13.18) will be near nπ (n = 0, 1, 2,).

So to approximatly solve (13.18), we can use a Taylor’s series expansion! The Taylor’s series

expansion of tan(x) near nπ is

tan(x) = 0 + (x− nπ) + . . .

thus

αkh = nπ +
αω2

gk
(13.19)

which can be re-arranged to a quadratic equation for k.

Thus, given h, N and ω and the mode number, one can calculate and approximate k and

then m = k(N2 − ω2)1/2/ω. The vertical velocity at the surface (z = 0) is then

ŵ = sin(mh) (13.20)

and as ∂η/∂t = w one can then calculate the free-surface dispacement expected. This is in

the homework.
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13.4 Problem Set

1. For an infinetly deep ocean with N = 10−2 rad/s and surface gravity waves of T = 20 s,

(a) Calculate k and the horizontal wavelength

(b) Calculate the vertical decay scale k̃.

2. Consider an ocean of depth h = 1 km with constant buoyancy frequency N = 2π ×
10−3 rad/s on a non-rotating ocean

(a) What is the horizontal wavelength of the mode-one semi-diurnal (i.e., period of

12 h) internal tide? For both rigid surface at z = 0 and a non-rigid surface?

(b) What is the horizontal wavelength of a mode-one internal wave with period of

1 h? For both rigid surface at z = 0 and a non-rigid surface?

(c) For a semi-diurnal model-one internal wave in h = 1000 m depth, estimate the free

surface displacement of the mode-one semi-diurnal internal tide with mid-water

column maximum vertical isotherm dispacement of ∆z = 10 m.
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Chapter 14

Shallow water equations

In Chapter 11, we’ve seen that for the primitive equations with stratification N2(z), that

if kh � 1 then the vertical momentum equation is essentially a balance between vertical

pressure gradient and buoyancy (i.e., ∂p/∂z = −gρ′) otherwise known as the hydrostatic

approximation. From this we saw that all mode n internal waves were non-dispersive. We

now start with the hydrostatic primitive equations and from that derive the shallow water

equations, which will result in non-dispersive system throughout.

14.1 Linear and hydrostatic primitive equations

We assume a Boussinesq and hydrostatic fluid with density of ρ0(z)+ρ on an f -plane with no

friction. The linear (small Rossby number for rotation) primitive equations (see Chapter 8)

with a free surface at z = η(x, y, t) and a bottom at z = −h(x, y) are (x, y, z momentum,

continuity, and density evolution),

∂u

∂t
− fv = − 1

ρ0

∂p

∂x
(14.1)

∂v

∂t
+ fu = − 1

ρ0

∂p

∂y
(14.2)

0 = − 1

ρ0

∂p

∂z
− g

ρ0

ρ (14.3)

ux + vy + wz = 0 (14.4)

∂ρ

∂t
+ w

∂ρ0(z)

∂z
= 0 (14.5)

where N2(z) = −(g/ρ0)∂ρ0
∂z

. Note that the density and vertical momentum equation can be

combined so that

ρ−1
0

∂2p

∂t∂z
= −wN2(z) (14.6)

which we will see again later in this chapter.
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14.2 Barotropic shallow water equations

Here we derive the barotropic shallow water equations where it is assumed that the density

is a constant.

14.2.1 Momentum equations

For a fluid of constant density ρ = ρ0, the hydrostatic approximation implies that ∂p/∂z =

−gρ0 which can be integrated from z to z = η assuming that p = 0 at z = η then,

p(z) = gρ0(η − z).

Because of this, the horizontal pressure gradient is not a function of the vertical,

∂p

∂x
= gρ0

∂η

∂x
,

∂p

∂y
= gρ0

∂η

∂y
.

Thus the horizontal momentum equations can be written as

∂u

∂t
− fv = −g ∂η

∂x
∂v

∂t
+ fu = −g∂η

∂y

for kh� 1.

14.2.2 Continuity Equation

Next we derive the continuity equation for the shallow water equations taking the incom-

pressible fluid continuity equation ∇ · u = 0 and vertically integrating,∫ η

−h

(
∂u

∂x
+
∂v

∂y

)
dz + w|z=η − w|z=−h = 0. (14.7)

Assuming a flat bottom w = 0 at z = −h and knowing the kinematic boundary conditions

at the free surface (z = η) Dη/Dt = w. Now we know from Leibniz’s rule that∫ η

−h

∂u

∂x
dz =

∂

∂x

(∫ η

−h
u dz

)
− u∂η

∂x
. (14.8)

which implies that (in one dimension)

∂η

∂t
+ u

∂η

∂x
− u∂η

∂x
+

∂

∂x

[∫ η

−h
u dz

]
= 0

∂η

∂t
+

∂

∂x
[(h+ η)u] = 0
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where the last step is because the velocity is depth uniform. The form for the full shallow

water equation continuity equation takes the vector form:

∂η

∂t
+∇ · [(η + h)u] = 0 (14.9)

Where now u is the horizontal velocity vector. Note that this is the full (nonlinear) shallow

water continuity equation. Question: Was it necessary to assume that the depth is flat

(i.e., h is constant)? If h = h(x), what is the form of the bottom boundary condition?

14.2.3 Linearizing the continuity equation

In the problem set from Chapter 2, you derived a nondimensional parameter that had to be

small for linear shallow water waves. Here we re-examine that from another point of view of

the continuity equation (14.9), which has a nonlinearity of ηu. Lets suppose η = aη̃ where

η̃ is non-dimensional, and that h is flat and constant. Then we can rewrite the term

∇ · [(η + h)u] = h∇ · [(1 + (a/h)η̃)u] (14.10)

This implies that if a/h � 1, then we can neglect η part of this term and write the linear

continuity equation,
∂η

∂t
+∇ · [hu] = 0 (14.11)

This simplificaion is analogous to vertically integrating the wave kinetic energy only to z = 0

and not z = η. More formally, we are dropping terms of higher order a/h. Question: What

does this imply for the momentum equation which we assumed were linear apriori? How big

is uux relative to ut in the momentum equations?

14.2.4 Complete Linear Shallow Water Equations

Thus the complete linear shallow water equations are

∂u

∂t
− fv = −g ∂η

∂x
(14.12a)

∂v

∂t
+ fu = −g∂η

∂y
(14.12b)

∂η

∂t
+

∂

∂x
(uh) +

∂

∂y
(vh) = 0 (14.12c)

The linear shallow water equations with rotation will be discussed in the next chapter. Recall

that here that the fluid is homogenous (constant density ρ0) and there is no friction.
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14.2.5 Analogy to Incompressible Fluid?

It is worth considering if there are any analogs between the underlying acoustic (6.20–6.22)

and shallow water equations (14.12a–14.12c). See the problem sets.

14.3 Constant depth and constant stratification: mode

equations

This section follows that of Chapman and Rizzoli (Chapter 5). Assume now that (1) the

depth is uniform, (2) the stratification is constant so N2 is a constant, and (3) that the

sea-surface is a rigid lid so that ∂η/∂t = w(z = η) = 0. Note that only assumption (1) is

necessary here. Assumptions (2) and (3) make the problem simpler.

Using wisdom gained from the modal internal wave solution, we choose a strategy of a

separable solution of the form

u(x, y, z, t) = U(x, y, t)F (z),

v(x, y, z, t) = V (x, y, t)F (z),

w(x, y, z, t) = W (x, y, t)G(z),

p(x, y, z, t) = P (x, y, t)H(z),

where F and G are non-dimensional, and U , V , and W have units of m s−1. Now with w = 0

at z = 0 and z = −h this means that G(z) has to satisfy G = 0 at z = 0 and z = −h.

Plugging these solutions into (14.1–14.4) and (14.6), we get(
∂U

∂t
− fV

)
F (z) = − 1

ρ0

∂P

∂x
H(z) (14.13)(

∂V

∂t
+ fU

)
F (z) = − 1

ρ0

∂P

∂y
H(z) (14.14)(

∂U

∂x
+
∂V

∂y

)
F (z) +W

dG

dz
= 0 (14.15)

N2WG(z) =
1

ρ0

∂P

∂t

dH

dz
, (14.16)

where the last equation is based on (14.6) ρ−1
o ptz = −wN2 . Now this is starting to look like

the modal internal wave solutions with kh � 1. Recall there that w ∝ sin[(nπ/h)(z + h)]

and u and p had vertical structure of cos(). We see that if we assume here that u, v, and p

have similarly shaped modal structure such that H(z) = gρ0F (z) then

∂U

∂t
− fV = −g∂P

∂x
∂V

∂t
− fU = −g∂P

∂y
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which looks a lot like the shallow water equations but this is for internal motions where P

now takes the place of η, which implies that P has units of length. Now in order to satisfy

continuity (14.15), we must have that dG/dz = F/d where d is some scale depth, which we

do not yet know.

Now if we think of P as the height of an isopycnal or isotherm then it would make sense

that W ∝ ∂P/∂t (the units match) and we can see from (14.16) that

N2WG(z) = − 1

ρ0

∂P

∂t

dH

dz
= −gdF

dz

∂P

∂t

= −gdd2G

dz2

∂P

∂t

so now by equating W = ∂P/∂t we get

d2G

dz2
+
N2

gd
G = 0 (14.17)

which must match the top and bottom boundary condtions that G = 0 at z = 0,−h. This

becomes an eigenvalue problem where

G(z) = sin
(nπ
h

(z + h)
)

where the eigenvalues dn are defined as so that

N2

gdn
=
n2π2

h2

or

dn =
N2h2

gn2π2
(14.18)

such that (14.17) becomes
d2G

dz2
+
n2π2

h2
G = 0.

We will come back to the interpretation of dn (14.18) soon.

Lastly the continuity equation becomes,

∂P

∂t
+ dn

(
∂U

∂x
+
∂V

∂y

)
= 0

where P replaces η and an effective depth dn (14.18) replaces the water depth h.
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14.3.1 Full Modal SWE and the Effective Depth

The combined modal shallow water equations that govern linear hydrostatic motions in the

ocean are, for a particular mode number n = 1, 2, ..,

∂Un
∂t
− fVn = −g∂Pn

∂x
(14.19a)

∂Vn
∂t

+ fUn = −g∂Pn
∂y

(14.19b)

∂Pn
∂t

+ dn

(
∂Un
∂x

+
∂Vn
∂y

)
= 0 (14.19c)

dn =
N2h2

gn2π2
(14.19d)

Gn(z) = sin
(nπ
h

(z + h)
)

(14.19e)

Fn(z) = cos
(nπ
h

(z + h)
)
. (14.19f)

Recall that the zero mode (n = 0) - or barotropic mode - is not considered here because we

assumed a rigid surface (w = 0 at z = 0).

Next we consider the meaning of dn. Recall that for shallow water waves the phase speed

c = (gh)1/2 and for shallow-water modal internal waves cn = Nh/(nπ). We see then by

analogy that dn is an “effective-depth” such that

c2
n =

(
Nh

nπ

)2

= (gdn)

Thus one interprtation of dn is that it is the effective depth of a shallow-water wave that

propagates with the shallow-water modal internal wave phase speed. Now expand upon

assumptions that N2 is constant and w = 0 at the surface. Both can be relaxed and similar

solutions are derived.
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14.4 Problem Set

1. For the barotropic SWE, was it necessary to assume that the depth is flat (i.e., h is

constant in (14.9)? Show your work.

2. Consider that for a constant N2 in a Boussinesq fluid, we have

N2 = −(g/ρ0)
∆ρ

h
.

where ∆ρ� ρ0.

(a) For n = 1, is dn greater than or less than h?

(b) Is it true that dm > dn for m < n?

(c) If the phase speed c = (gdn)1/2, can this be written instead as a “reduced gravity”

phase speed c = (g′h)1/2? What would the reduced gravity be in this case?

3. In order to assume hydrostatic motions, what constraints must be applied to the hor-

izontal and vertical scales of motion?

4. Analogy between compressible fluid and SWE: Examine the compressible, no gravity,

and no stratification, equations used for acoustics (6.20–6.21) and the shallow water

equations (14.12a–14.12c) with no rotation, f = 0. In compressible fluid, p = c2ρ,

eliminating one equation. By making an analogy between p and η can you infer that

the shallow water phase speed c = (gh)1/2?

5. (EXTRA CREDIT) In 14.19, nonlinear terms were neglected. How would you represent

the terms uux in (14.19) for mode number n = 2? Can nonlinearity force energy from

one mode to another? If so, can you divine a simple algebra rule that says two modes

numbered p and q can force mode n?
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Chapter 15

Shallow water equations without
rotation

15.1 Linear Shallow Water Equations without Rota-

tion

Thus the complete linear shallow water equations without rotation (setting f = 0 in Eq. 14.12)

are,

∂u

∂t
= −g ∂η

∂x
(15.1a)

∂v

∂t
= −g∂η

∂y
(15.1b)

∂η

∂t
+

∂

∂x
(uh) +

∂

∂y
(vh) = 0 (15.1c)

The linear shallow water equations with rotation will be discussed in the next chapter. Recall

that here that the fluid is homogenous (constant density ρ0) and there is no friction.

15.2 Deriving a wave equation for shallow water

With the shallow water equations we can derive a shallow water wave equation. Taking the

time derivative of (15.1c) and substituting in the momentum equation (15.1a and 15.1b) we

get,

ηtt = ∇ · [gh(x, y)∇η] (15.2)

which is starting to look like the classic wave equation. If we assume (which we will not

always do) that h is constant in space then we get

ηtt − gh∇2η = 0 (15.3)
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which is the wave equation where, c2 = gh is the shallow water phase speed squared. Note,

we previously derived this phase speed in Chapter 2 from potential flow theory and then

assuming shallow water kh� 1.

15.3 Plane wave solutions and dispersion relationship

In the case where h is constant, we recover the dispersion relationship from the wave equation

(15.3),

ω2 = gh(k2 + l2)

We can also plug a plane wave solution, i.e., η = η̂ exp[i(kx+ ly−ωt)] into (15.1a–15.1c) to

get,

−iωû = −gikη̂, (15.4)

−iωv̂ = −gilη̂, (15.5)

−iωη̂ + h(ikû+ ilv̂) = 0. (15.6)

Multipy the 3rd line by iω and substitute in with the 1st two equations gives,

ω2η̂ − [gh(k2 + l2)]η̂ = 0,

which gives us the dispersion relationship again,

ω2 = gh(k2 + l2). (15.7)

The point here is that we can use either the 2nd order wave equation OR the shallow water

equations.

For a non-rotating plane wave propagating in the +x direction, we also see that from

(15.4),

û =
(g
h

)1/2

η̂, (15.8)

which can be genralized for any arbitary plane wave direction.

15.4 Basic Diffraction

15.4.1 What is Diffraction?

[FROM WIKIPEDIA] Diffraction refers to various phenomena which occur when a wave

encounters an obstacle or a slit. It is defined as the bending of light around the corners of

an obstacle or aperture into the region of geometrical shadow of the obstacle. Diffraction
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Figure 15.1: Example of diffraction through a slit.

occurs with all waves, including sound waves, water waves, and electromagnetic waves such

as visible light, X-rays and radio waves.

While diffraction occurs whenever propagating waves encounter such changes, its effects

are generally most pronounced for waves whose wavelength is roughly comparable to the

dimensions of the diffracting object or slit. If the obstructing object provides multiple,

closely spaced openings, a complex pattern of varying intensity can result. This is due to the

addition, or interference, of different parts of a wave that travels to the observer by different

paths, where different path lengths result in different phases (see diffraction grating and

wave superposition). The formalism of diffraction can also describe the way in which waves

of finite extent propagate in free space.

We’re not formally covering diffraction here, but the basic idea of waves propagating

through a very small slit can be thought of as solutions to the wave equation in polar

coordinates. We will explore that here.

15.4.2 Setup

Now consider a very thin piston at (x, y) = (0, 0) pumping the surface up and down at a

frequency ω. How does the surface respond? We start with the wave equation and transform

it into polar coordinates where (x, y)→ (r, θ) where x = r cos θ and y = r sin θ. We assume

that the solution to the wave equation (15.3) is uniform in the θ direction and so

∇2f = ∂2
rf + (1/r)∂rf
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Figure 15.2: Hankel function H
(1)
0 [(ω/c)r] as a function of (ω/c)r for both real (solid) and

imaginary (dashed) parts. Note how the r decay is rapid at first and then slows down to a
slowly-decaying cosine function.

and that the solution goes like eiωt results in

−ω2η̂ = gh∇2η̂

= (gh)

[
∂2η̂

∂r2
+

1

r

∂η̂

∂r

]
Which can be reworked into a form as (with c2 = gh),

r2η̂rr + rη̂r +
ω2

c2
r2η̂ = 0. (15.9)

Note that (15.9) is a 2nd order homogenous ordinary differential equation but not with

constant coefficients. In general, solving such equations is a pain. However, (15.9) is in the

form of a Sturm-Liouville eigenfunction problem. Recall that ordinary differential equations

of the form
∂

∂x

(
p(x)

∂φ

∂x

)
+ q(z)λφ = 0

is a special case of a Sturm-Liouville eigenfunction problem.

Boundary Conditions

What about boundary conditions? We need two boundary conditions for η̂. The first obvious

boundary condition is that the solution η̂ must decay at large r or η̂ → 0 as r →∞.

What about at r = 0, where the piston goes up or down? We can approximate the

piston as having a tiny but finite width near (x, y) = (0, 0) (or near r = 0). At this location

the piston oscillates harmonically and so near r = 0, η(t)η̂(r)eiωt? Now, we could do the

problem with a bounary condition at some small positive r+ but the issue is that we would

have to match the boundary condition to a linear combination of the two solutions to the
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fundamental ODE. Instead we will bring the boundary condition direction to r = 0 and

assign it as η̂(r) = δ(r) so that

η(r = 0, t) = δ(r) cos(ωt).

With (15.9) and the boundary conditions, this makes a full statement of the Sturm-

Liouville eigenvalue problem and the solution has a number of properties.

15.4.3 Bessel function as a solution

The wave equation in polar coordinates (15.9) with the boundary condition looks a lot like

the ordinary differential equation for Bessel functions

x2y′′ + xy′ + (x2 − n2)y = 0. (15.10)

with solutions as Bessel functions of the first and second kind Jn(x), Yn(x). Now for our

equation (15.9), n = 0 and so J0(x) and Y0(x) will be our solutions. Note that at x = 0, J0 is

finite and Y0 is singular. These standard Bessel functions are used for standing type solutions,

ie J0(x) cos(ωt). In addition, the standard Bessel functions can be linearly combined into

something called a Hankel function H
(1)
0 and H

(2)
0 that correspond to J0(x) and Y0(x) and

are defined as H
(1)
0 (x) = J0(x) + iY0(x) and H

(1)
0 (x) = J0(x) − iY0(x). One can think of

Hankel functions as complex exponentials and they are used to get propagating solutions.

i.e.,

H
(1)
0 (x) exp(iωt) (15.11)

15.4.4 Conversion to Bessel Function Equation

To convert (15.9) to the ODE for the Bessel function we have to create a new variable

s = (ω/c)r and ds = (ω/c) dr so that r = (c/ω)s and dr = (c/ω) ds. With this substitution

(15.9) becomes

s2η̂ss + sη̂s + s2η̂ = 0.

which matches (15.10) with n = 0 and the solution is J0(s).

15.4.5 Solution

Thus, the solution in r space is η̂(r) = H
(1)
0 [(ω/c)r]. Now it is worth noting that for plane

waves, by definition, ω/c = k and so this could be interpreted as H
(1)
0 (kr). However, a

wavenumber k is technically not well defined for things that are not plane waves, as here we

are in cylindrical or polar coordinates The solution for η̂(r) as a function of (ω/c)r is shown
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Diffraction away from (x,y)=(0,0): (h=5 m, T=15 s)
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Figure 15.3: Snapshot of the sea surface for the piston forcing at (x, y) = (0, 0) m with water
depth h = 5 m and T = 15 s.

in Figure 15.2. Note that for (ω/c)r > 15, the solution looks like a slowly decaying cosine

function. In fact for large arguments H
(1)
0 ≈ (2/(πx))1/2 cos(x − π/4) which is consistent

with Figure 15.2.

The full solution for η(r, t) is,

η(r, t) = Re
{
H

(1)
0 [(ω/c)r]eiωt

}
,

a snapshot of which is shown in in Figure 15.3.

15.5 Energy Conservation

Here, we will demonstrate energy conservation for the linear shallow water equations with a

flat bottom (h is constant). Taking the LSWE (15.1),

∂u

∂t
= −g ∂η

∂x
,

∂v

∂t
= −g∂η

∂y
,

∂η

∂t
+ h

[
∂

∂x
(u) +

∂

∂y
(v)

]
= 0,
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and multiplying these 3 equations by (hu, hv, gη), respectively, integrating by parts and

summing, results in,

h

2

∂

∂t

[
u2 + v2 + gη2

]
= −gh

[(
η
∂u

∂x
+ u

∂η

∂x

)
+

(
η
∂v

∂y
+ v

∂η

∂y

)]
, (15.12)

= −gh∂(ηu)

∂x
+
∂(ηv)

∂y
. (15.13)

We can rewrite this in vector form as,

∂

∂t

[
h

2
|u|2 +

1

2
gη2

]
︸ ︷︷ ︸

=E

+∇ · (ghηu)︸ ︷︷ ︸
=F

= 0, (15.14)

which is the instantaneous (unaveraged) energy conservation in flux conservation form,

∂E

∂t
+∇ · F = 0.

We’ve seen this kind of energy conservation now for arbitrary depth surface gravity waves,

sound waves, and internal waves. It remains to be shown that for plane waves that 〈F〉 =

〈E〉cg. Question: Does this instantaneous (unaveraged) form of energy conservation change

with rotation?

15.6 Reflection off of a boundary

Consider a plane shallow water wave of radian frequency ω in constant depth h propagating

at angle θI to the +x direction that impinges on a solid boundary at x = 0 that extends

to −∞ < y < ∞. In acoustics and internal waves off of a flat bottom, the reflection was

specular in that θR = −θI . Do shallow water plane waves also reflect specularly?

First we need to consider the appropriate boundary condition. It is no-flow though the

boundary, u · n = 0 where n is the outward normal from the boundary. In the case of a

boundary at x = 0, it implies u = 0. From the x momentum equation, we have

∂u

∂t
= −g ∂η

∂x
.

Thus, if u = 0 then ηx = 0 at the boundary as well. For an arbitrary solid boundary, this

can be generalized to ∇η · n = 0 at the solid boundary. Question: Does this also work on

an f -plane?

From this, we can now use the same machinery we used for acoustic waves. We write the

incident wave ηI and reflected wave ηR as,

ηI(x, y, t) = η̂I exp[i(kIx+ lIy − ωIt)],

ηR(x, y, t) = η̂R exp[i(kRx+ lRy − ωRt)].
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Now the boundary condition at x = 0 becomes,

∂ηI
∂x

+
∂ηR
∂x

= ikI η̂I exp[i(lIy − ωIt)] + ikRη̂R exp[i(lRy − ωRt)] = 0. (15.15)

In order for (15.15) to be true, a few things are necessary. First, (lIy − ωIt) = (lRy − ωRt)
for all time and all y and all t. In order for this to be true then ωR = ωI and lR = lI . Then,

since both incident and reflected wave obey the dispersion relationship (15.7) then |kI | = |kR|
which really implies that kR = −kI , otherwise the reflected wave would be propagating into

the boundary still. This implies that θR = −θI . Lastly, then we see that η̂R = η̂I and the

wave is fully reflected. So thus, we have specular reflection again.

15.7 Propagation over a step

Now consider the case of a +x direction propagating wave in depth h1 that encounters at

x = 0 a step in the bathymetry to h2. This is analogous to the problem of sound wave

reflection and transmission in the problem set of Chapter 6. Now, one requirement of the

shallow water equations is that the bathymetry varies gently. A step clearly violates this as

∇h becomes very big. The way that this is dealt with is to assume that except for right near

the step, the shallow water equations are fine. Then we need to have continuity relationships

on each side of the step. This means that we need is to develop the boundary conditions to

the problem using the shallow water equations.

First, we get a boundary condition for η by considering the x momentum equation ut =

−gηx. Integrate this equation across the depth discontinuity at x = 0 to get,∫ ∆

−∆

∂u

∂t
dzx = −g [η|∆ − η|−∆] , (15.16)

2∆
∂u

∂t
= −g [η|∆ − η|−∆] . (15.17)

Thus, for ∂u/∂t to be finite as ∆→ 0, we must have that η(x = ∆) = η(x = −∆) or that η

is continuous across the boundary.

The boundary condition for velocity is interesting and is derived from the continuity

equation ηt = (hu)x. Again, integrating across the discontinuity gives,∫ ∆

−∆

∂η

∂t
dzx = [(hu)|∆ − (hu)|−∆] , (15.18)

2∆
∂η

∂t
= −g [(hu)|∆ − (hu)|−∆] . (15.19)

Thus, again for ηt to be finite as ∆ → 0, we see that (hu) must be continuous or that

h1u1 = h2u2, where u1 and u2 represent the velocity at either side of the bathymetry step.

132



With these two boundary conditions to be applied at a step, one can now do the reflection

and transmission problem across a boundary. Question: With the boundary condition h1u1 =

h2u2, what quantity is continuous across the boundary? In general this boundary condition

can be written as hu ·n is continous across the step where n is the outward normal from the

step.

15.8 Closed Body of Water: An Eigenvalue Problem

15.8.1 Closed Boundary Conditions

For the linear shallow water, there are two types of boundary conditions, (i) closed boundary

conditions and (ii) open boundary conditions. The former is relatively straightforward to

handle the latter is subtle. For closed boundary conditions, the standard boundary condition

is no normal flow into the boundary or,

u · n̂ = 0; (15.20)

as then,

∂tu · n̂ = 0,

which implies that,

∇η · n̂ = 0. (15.21)

If we use the 2D wave equation form (15.3) in a closed domain such as a lake. then this is

the appropriate boundary condition. However, it turns (15.3) into an eigenvalue problem.

15.8.2 Setup of Problem

Consider (15.3),

ηtt = gh∇2η,

in a domain G where on ∂G the boundary condition of ∇η · n̂ = 0 is applied. Now we cannot

use the plane wave (or the polar coordinate solutions). Instead we seek solutions of the form,

η(x, y, t) = η̂(x, y)e−iωt,

which transforms (15.3) to the Helmholtz equation,

∇2η̂ +
ω2

gh
η̂ = 0, (15.22)

with boundary condition ∇η̂ · n̂ = 0. This is similar to the solutions for the vibrating

string (wave equation) on a finite domain. There are only certain solutions that satisify an
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eigenvalue problem - in particular for the boundary conditions only cos() and not sin() will

satisfy the boundary conditions.

In general, there is only a solution to (15.22) for a discrete set of eigenvalues ωn and

eigenfunction η̂n(x, y). For example, in a 1D case in a domain between 0 ≤ x ≤ L the

frequencies are,

ωn = nπ(gh)1/2/L, n = 1, 2, . . . ,

and,

η̂(x)n = cos
(nπx
L

)
.

Consider another example: A circular domain. Then the eigenfunctions are (likely) Bessel

functions in r and sines/cosines in θ. Question: What happens if you force a closed body of

water at a frequency corresponding to one of the eigenvalues ωn?

15.8.3 Aside on open boundaries

What about open boundaries. We have two options, either specify η or u. This works fine

for incoming waves. What happens with outgoing waves?

15.9 Friction and Damping

Up to now, we’ve only explicitly examined inviscid systems for surface gravity waves, acoustic

waves, and internal waves. Here, we now examine frictional effects in the shallow water

equations. Simple frictional effects are often represented in the shallow water momentum

equations as Rayleigh friction, that is −r(u, v) where r is the Rayleigh drag coefficient that

has units of 1/Time. [ASIDE: Is there real physics in this form of friction?]

With Rayleigh friction, the resulting SWE are

∂u

∂t
= −g ∂η

∂x
− ru

∂v

∂t
= −g∂η

∂y
− rv

∂η

∂t
+

∂

∂x
(uh) +

∂

∂y
(vh) = 0

We can re-arrange this into a new equation for η only. Taking the time derivative of the

continuity equation and substituting from the momentum equations result in,

ηtt +∇ · (−gh∇η − rhu) = 0

and then by subsituting in for rηt = −∇ · (rhu) we get

ηtt +∇ · (−gh(x, y)∇η) + rηt = 0 (15.23)
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For constant h, we can now look for wave-like solutions, η = η̂(t)eikx so that,

η̂tt + rη̂t + ω2
0 η̂ = 0, (15.24)

where ω2
0 = (gh)k2. now plugging in η̂ = exp(st) we get

s2 + rs+ ω2
0 = 0, (15.25)

which has solutions,

s =
−r ±

√
r2 − 4ω2

0

2
. (15.26)

Now if the dissipation rate is small, r2 � 4ω2
0, then we can expand this using the fact that

(1 + ε)1/2 ≈ 1 + ε/2,

s = −r
2
± iω0

√
1− r2/(4ω2

0) ≈ −r
2
± iω0

(
1− r2

8ω2
0

)
, (15.27)

Thus the plane wave solution has propagating wave solution that decay slowly, i.e.,

η = η0 exp(−rt/2) exp(i(kx− ωt),

with frequency

ω = ω0

(
1− r2

8ω2
0

)
,

that is slightly “de-tuned” from the normal dispersion relationship.
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15.10 Problem Set

1. In the linear shallow water equations with a wave propagating in the +x direction in

constant depth h

(a) What is the relationship between wave amplitude a and the cross-shore velocity

magnitude u0?

(b) Is this relationship between a and u0 the same as for linear surface gravity waves

from Chapter 2?

2. Can you give a quick explanation why is the inertial-gravity wave velocity in the

direction of the wavenumber k when for internal waves u · k = 0?

3. For linear shallow water waves we neglected the uux term in

∂u

∂t
+ u

∂u

∂x
= −g ∂η

∂x

Using the linear SWE solutions what is the size of the uux term relative to the other

two terms?

4. Does the instantaneous (unaveraged) form of energy conservation (15.14) change with

rotation added? Why or why not? Is this question familiar?

5. Shallow water wave reflection and transmission across a step bathymetry. Consider a

wave of frequency ω propagating in depth h1 at angle θI to a bathymetry step at x = 0

for −∞ < y <∞ that has depth h2 > h1 on the other side of the step. The boundary

conditions at the step are that η and hu are continuous. Consider the incident wave

to have amplitude of one, η̂I = 1.

(a) With the boundary condition h1u1 = h2u2, what is the quantity that is continuous

across the boundary?

(b) What are the reflected and transmitted wave amplitudes (η̂R and η̂T ) and angles

(θR and θT )?

(c) Can the relationship between θT and θI be generalized? What is it called?

(d) for h2 > h1 can one have total reflection and if so what is the incident critical

angle?

(e) for h1 > h2 can one have total reflection and if so what is the incident critical

angle?
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6. For the boundary condition (15.20) and (15.21), show that the spatially-integrated

energy is conserved when integrated over a closed body of water such as a lake.

7. Consider a rectangular lake of 50 m depth in a non-rotating world: How long must one

dimension be in order to create resonant motions at

(a) Semi-diurnal periods (imagine tidal forcing)

(b) Diurnal periods (e.g., sea-breeze)

(c) Do any lakes or enclosed bodies of water exist that are this big?

(HINT: use solutions from Problem set of Chapter 1.)

8. Rederive energy conservation for the linear shallow water equations to show that the

addition of Rayleigh friction can only extract energy and not add energy.
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Chapter 16

Shallow water equations with
Rotation

Much of this Chapter is based on Hendershott (1980) and the Chapman and Malanotte-

Rizolli notes in honor of Myrl.

16.1 Laplace’s Tidal Equations (LTE)

To explain the dynamics of tides, Laplace in 1775-1776 derived equations for the evolution

of a homogeneous thin fluid on a sphere subject to gravity. This is a remarkable achievement

particularly for the time. Newton’s Principia was only published less than 100 years before

setting up the theory of mechanics and gravitation! The assumptions that go into the LTE

are

1. linear equations that describe small perturbations on a state of rest

2. a perfect sphere

3. a uniform gravitational field

4. a rigid (non-deformable) crust

5. only the component of Coriolis normal to the geoid is considered.

The Hendershott (1980) review discusses how good these approximations are in detail with

some surprising answers. With these assumptions, the LTE results in three equations for η,

which are the free surface deviation from the mean, uφ the zonal flow (along a constant lati-

tude defined as θ) and meridional flow uθ (along constant longitude defined as φ). Laplace’s
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Tidal equations are

∂η

∂t
+

1

r cos θ

[
∂(huφ)

∂φ
+
∂(huθ cos θ)

∂θ

]
= 0 (16.1a)

∂uφ
∂t
− 2Ω sin θuθ = − 1

r cos θ

∂(η − Γ)

∂φ
(16.1b)

∂uθ
∂t

+ 2Ω sin θuφ = −1

r

∂(η − Γ)

∂θ
(16.1c)

Where h is the still water depth, r is the radius of the sphere, Ω is the rotation rate, and

Γ = Γ(θ, φ, t) is the tidal generating force - essentially the gravitational force of the moon

and sun on the fluid of the sphere. These equations look familiar and bear a resemblance

to the shallow water equations in a standard x-y coordinate system with analogies to the

continuity equation and momentum equations.

The LTE accept a number of types of freely propagating “wave” solutions in one set of

equations. These include

• Sverdrup/Poincare/Inertial-Gravity Waves

• Kelvin Waves

• Short and Long Rossby waves

• Equatorial Waves

• Bathymetrically trapped waves

The barotropic tide is a forced motions that can respond as a mixture of Kelvin and Inertial-

Gravity waves.

16.2 Shallow water equations with Rotation on f-plane

Lord Kelvin in 1879 projected these equations on a plane of constant rotation rate to come

up with the rotating shallow water equations. When these have a constant rotation rate, this

is called the f -plane, and there are no rotation variations with latitude. Thus an f -plane

can only cover a limited region of the ocean. Yet it is still super useful and allows for much

insight to be derived.

The linear shallow water equations with rotation are similar to those without rotation

only that we add in a f k̂× u in the momentum equation to result in

∂u

∂t
+ f k̂× u = −g∇η (16.2)

∂η

∂t
+∇ · (hu) = 0 (16.3)
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or

∂u

∂t
− fv = −g ∂η

∂x
(16.4a)

∂v

∂t
+ fu = −g∂η

∂y
(16.4b)

∂η

∂t
+

∂

∂x
(uh) +

∂

∂y
(vh) = 0 (16.4c)

16.2.1 Boundary Conditions

At solid boundaries we need to have no normal flow or u · n = 0. When we had no-rotation

f = 0, the no-normal flow boundary conditions translated into ∇η ·n = 0 very cleanly. How

do we reproduce this boundary conditions for a f -plane? We first take the ∂t of (16.4a) to

get

utt − fvt = −gηxt

and then substitute back (16.4b) to get

utt + f 2u = −g (fηy + ηxt)︸ ︷︷ ︸
=0

(16.5)

in order to ensure that u = 0 at solid boundary at a fixed x in (16.5) the quantity in

underbrace must be zero. For a boundary at a constant y, a similar equation can be derived.

This equation (16.5) is important because with rotation, it is the way to relate one velocity

component to η. Without rotation (set f = 0 in Eq. 16.5) it clearly simpler.

This boundary condition can be generalized for arbitrary geometry as

∇ηt · n̂⊥ + f∇η · n̂‖ = 0, (16.6)

and interpreted as the non-rotating boundary condition augmented by rotation. Consider,

purely steady geostrophic flow at a boundary. Then in order for u = 0 then ηy must also be

zero, as ηx only relates to the alongcoast (v) current. But when f is small, then the standard

non-rotating boundary condition applies.

16.3 Potential vorticity on an f-plane of constant depth

Vorticity ζ = ∇× u = vx − uy, and we can derive a vorticity equation for a constant depth

fluid by taking the curl of (16.2) which results in

∂ζ

∂t
+ f

(
∂u

∂x
+
∂v

∂y

)
= 0
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where the first term is rate of change of relative vorticity and the 2nd term is the stretching

of planetary vorticity. Substituting back the continuity equation yields

∂

∂t

(
ζ − fη

h

)
= 0 (16.7)

which is a linear barotropic constant depth potential vorticity conservation statement. This

is an approximation to the more general potential vorticity conservations statement for the

full nonlinear shallow water equations of

D

Dt

(
ζ + f

h+ η

)
. (16.8)

Question: Can you show how the linear potential vorticity conservation (16.7) comes from

the full potential vorticity conservation?

16.4 Deriving a wave equation with rotation for shal-

low water

The linear PV conservation result will be used to now derive a wave equation for shallow

water on an f -plane for flat bottom depth. The procedure is identical to without rotation.

We start off taking the time-derivative of (16.3) and substituting into that (16.2) to get

ηtt = gh∇2η + fh

(
∂v

∂x
− ∂u

∂y

)
. (16.9)

This equation almost has only η as a dependent variable with the exception of the presence

of vorticity above. The vorticity can be turned into η using the linear potential vorticity

(16.7) to get

ηtt + f 2η − gh∇2η = 0 (16.10)

which is a modified wave equation!

Note that this wave equation (16.10) is only valid for flat bottom and an f -plane. A

more general wave equation that is valid for arbitrary bathymetry is derived similarly but

one needs to take another time-derivative (TRY IT!). The result is

ηttt + f 2ηt −∇ · [gh(x, y)∇ηt] + fg[(hηx)y − (hηy)x] = 0 (16.11)
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Figure 16.1: Inertial Gravity wave dispersion relationship (a) ω = [(gh)k2 + f 2]1/2 for h =
1000 m and f = 10−4 s−1, and (b) c = ω/k and cg = ∂ω/∂k versus k. The magenta dashed
line indicates (2π)L−1

d . The black dash-dot line in (b) indicates the non-rotating phase and
group velocity (gh)1/2.

16.5 Inertia-Gravity Waves: Plane wave solutions and

dispersion relationship

In the case where h is constant, if we plug in a plane wave solution of η = η0 exp[i(kx− ωt)]
to (16.10), we recover the dispersion relationship:

ω2 = gh(k2 + l2) + f 2,

which is similar to without rotation but with an addition term of f 2. This is also clearly

related to the modal internal wave dispersion relationship we have already derived. These

waves are also called Sverdrup waves and in particular situations Poincare waves.

16.5.1 Phase speed and group velocity

The dispersion relationship describes a flat to linear shape for a wave in the +x direction,

ω =
√

(gh)k2 + f 2,
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which is shown in Figure 16.1a. The group velocity is

cg =
∂ω

∂k
=

(gh)k

[(gh)k2 + f 2]1/2

which is near-zero for very long wavelengths or length-scales (i.e., k � L−1
d ). For short

wavelengths (or short length-scales, k � L−1
d ), the dispersion relationship and phase speed

approach the non-rotating limit of being non-dispersive (Figure 16.1b).

16.5.2 Solution for velocity

We can also then get a solution by plugging in a plane wave for η, u, and v into the f -plane

shallow water equations, yielding

−iωu0 − fv0 = −igkη0

−iωv0 + fu0 = 0

Thus we see that v0 = −i(f/ω)u0 and then

−i

(
ω +

f 2

ω

)
u0 = −igkη0

u0 =
gkω

ω2 + f 2
η0

u0 =
gkω

ghk2
η0

u0 =
ω

hk
η0

u0 =
c

h
η0

So we see here again that u0/c = η0/h, which again provides a simple physical constraint

that η0/h < 1. But we also already saw that for the linear shallow water equations. Then

we also get the relationship that

v0 =
−if

ω
u0

which means that v is π/2 out of phase with u and that |v0| ≤ |u0|. This also means that

the particle motions with such a wave are ellipses with the major axis in the direction of the

wavenumber k.

16.5.3 Wave-averaged Energy Conservation

One can take the instantaneous energy conservation equation and wave-average it and using

the solutions for velocity and the dispersion relationship derive a wave energy conservation
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equation
∂E

∂t
+

∂

∂x
(cgE) = 0.

See problem set.

16.5.4 Reflection of Inertial Gravity Waves

Many wave systems have specular reflection off of a boundary? What about Inertial-gravity

waves? Lets find out. Consider a boundary at x = 0 with an incident wave with k = (k, l).

The boundary condition is (16.6)

∇ηt · n̂⊥ + f∇η · n̂‖ = 0

which becomes with n̂⊥ = (1, 0) and n̂‖ = (0, 1) at x = 0 of

ηxt + fηy = 0.

Now if we consider an incident and reflected wave, η = ηI + ηR,

ηI = η̂I exp[i(kIx+ lIy − ωIt)] (16.12)

ηR = η̂R exp[i(kRx+ lRy − ωRt)] (16.13)

Then the boundary condition becomes

(kIωI + f ilI)η̂I exp[i(lIy − ωIt)] + (kRωR + f ilR)η̂R exp[i(lRy − ωRt)] = 0.

As with out other reflection problems, this implies that (1) ωI = ωR, (2) lR = lR, which

in turn from the dispersion relationship implies that |kR| = |kI | and thus kR = −kI , and

reflection is specular (θR = θI). But wait, there is more. What about the wave amplitudes?

With these simplifications we can write the boundary condition as

(kIωI + f ilI)η̂I + (−kIωI + iflI)η̂R = 0

η̂R = −−kIωI + iflI
kIωI + iflI

η̂I

Thus, that magnitudes of the incident and reflected wave are the same, |η̂R| = |η̂I | but the

there is a phase shift because of f . If we write η̂R = −Rη̂I where R is a complex number

given by

R =
−kIωI + iflI
kIωI + iflI

,

then one can show that |R| = 1 and just represents a phase shift of eiφ. Note that if f = 0

then η̂R = η̂I and there is no phase shift.
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16.5.5 Channel Modes

16.6 Kelvin Waves

Lord Kelvin showed that with the addition of a boundary there is an additional special kind

of solution which we now know as a Kelvin wave. Consider a boundary at x = 0 where u = 0

everywhere. Now imagine a solution that is geostrophic in the cross-shore x momentum

equation but is a pure gravity wave in the alongshore y direction, and with continuity the

equations are

−fv = gηx

vt = −gηy
ηt + hvy = 0.

Now let η(x, y, t) be separable so that η = N(x)η̂(y, t). The 2nd and 3rd equation can be

converted into a wave equation for η̂(y, t),

η̂tt + ghη̂yy = 0

which gives a dispersion relationship ω2 = (gh)l2 which gives a part of the solution

η̂(x, y) = η̂0 exp[i(ly − ωt)].

We can now examine the cross-shore dependence term N(x). Taking the time derivative

of the cross-shore momentum equation and substituting back the alongshore momentum

equation yields

−fvt = −gηxt
g(fηy + ηxt) = 0

and substituting in the η = N(x)η̂(y, t) solution we get

f ilN − iω
dN

dx
= 0

dN

dx
− fl

ω
N = 0

dN

dx
− f

(gh)1/2
N = 0

dN

dx
− 1

Ld
N = 0
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where the length-scale Ld = (gh)1/2/f a fundamental quantity called the Rossby deforma-

tion radius. In this particular case it is the barotropic Rossby deformation radius (also

sometimes called the ”external” Rossby deformation radius). Another way of interpreting

Ld = f/(gh)1/2 is as lf/ω. Thus this has a sign. For waves propagating in the +y direction

l/ω is positive. For waves propagating in the −y direction l/ω is negative.

Consider +y propagating waves at a wall at x = 0 so that the ocean is at x ≤ 0. The

solution has the form

N(x) = ex/Ld

so that as x→ −∞, N → 0, and the full solution is

η(x, y, t) = η̂0e
x/Ld exp[i(ly − ωt)] (16.14)

If we consider −y propagating waves, the l/ω is negative and then

N(x) = e−x/Ld

so that as x → −∞, N → ∞ and we do not like that solution. Thus, Kelvin waves can

only propagate with the coast on the right of the propagation direction in the Northern

Hemisphere. If the sign of f changes as in the Southern Hemisphere, then Kelvin waves

propagate with the coast on the left of propagation direction.

The full single Kelvin wave solution for x ≤ 0 is thus

η(x, y, t) = η̂0 exp(x/Ld) exp[il(y − c0t)]

Thus a Kelvin wave propagates alongcoast with coast to the right (for positive f) at phase

speed (gh)1/2 and an offshore exponential decay in η that decays with length-scale Ld =

(c/f)1/2. Interestingly, Kelvin waves have no low-frequency limit on their frequency as do

Inertial-Gravity waves.

16.7 Kelvin Waves in a Channel

Imagine now that one has an infinite channel running north/south with a boundary at x = 0

and x = L so that the channel width is L. Because u = 0 for waves propagating north

along x = L and wave propagating south at x = 0 (in the northern hemisphere), This means

we can sum the two Kelvin wave solutions as they satisfy the boundary condition at both

x = 0, L. Consider a “north” (ηn) and “south” (ηs) of equal amplitude. The solution is

η(x, y, t) = ηn + ηs = η̂0 (exp(−x/Ld) cos(l(y − c0t) + exp((x− L)/Ld)) cos(l(y + c0t)) ,
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at x = L/2 the cross-channel exponential decay terms are the same and the solution can be

written there as (CHECK)

η(x = L/2, y, t) = 2η̂0 exp(−L/(2Ld)) cos(ly) cos(c0lt).

Thus, these waves have points where the sea-surface is always equal to zero at y = nπ+π/2

where n is an integer! This is called an amphidromic point and this is the start of realistic

tides.

16.8 Problem Set

1. Show how the linear potential vorticity conservation (16.7) can be derived from the

full potential vorticity conservation (16.8) assuming η and u are “small”. Recall that

(1 + ε)−1 ≈ 1− ε.

2. More linear potential vorticity: Consider (i) inertial-gravity waves in an infinite ocean

f -plane and (ii) Kelvin waves propagating in +y on a f -plane semi-infinite ocean. For

(i) and (ii),

(a) What is the relative vorticity ζ = vx − uy?

(b) What is the linear potential vorticity (16.7)? Is linear PV conserved?

3. For baroclinic mode-1 inertial-gravity waves with constant f , N , and h. See chapter 14

(a) What is the dispersion relationship?

(b) What is the mode-1 internal deformation radius Ld?

(c) Can the dispersion relationship be expressed as the modal rotating internal wave

dispersion relationship? If so how?

4. Using the instantaneous energy conservation for a constant depth h, use the plane

wave solutions for a plane wave propagating in x and wave average to show that wave

energy conservation holds i.e., Et + (cgE)x = 0

5. For an ocean of depth h = 1000 m everywhere and a constant N = 3× 10−3 s−1 on an

f -plane with f = 10−4 s−1.

(a) What is the barotropic deformation radius?

(b) How much time does it take for a barotropic Kelvin wave to travel the distance

from the equator to California? (Take the approximate straight line distance from

Ecuador to Pt. Conception CA with Google Earth).
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(c) For the mode-1 baroclinic SWE (see Chapter 14), derive the solution for a mode-1

internal Kelvin wave

(d) What is the cross-coast decay scale?

(e) What is the internal phase speed? Is it dispersive or non-dispersive?

(f) How long does it take for a mode-1 internal Kelvin wave to propagate from the

equator to California?

6. (EXTRA CREDIT) Derive (16.11).
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Chapter 17

WKB

17.1 Setup: Equation for slowly varying shoaling waves

Now we re-examine the normally-incident shallow-water shoaling surface gravity waves on a

slope that was performed using ray theory. Now, we will solve the problem with the WKB

method - an asymptotic theory - to obtain an approximation to the full solution. The WKB

method is more powerful and general than ray theory, but also more opaque. Here, we will

observe that they give the same results.

Here we start from the PDE governing sea-surface elevation η variations,

∂2η

∂t2
= g

∂

∂x

(
h
∂η

∂x

)
, h = h(x)

and set

η(x, t) = η̂(x)e−iω0t

since h(x) is time-independent. Then

d2η̂

dx2
+

1

h

dh

dx

dη̂

dx
+
ω2

0 η̂

gh
= 0

Now, non-dimensionalizing as follows:

η̂ = Nη̂′

h = h0h
′

x = Lx′

(where primes denote dimensionless quantities and ω2
0/k

2
0 = gh0). The nondimensional

equation becomes (dropping the primes)

ε2
[

d2η̂

dx2
+

1

h

dh

dx

dη̂

dx

]
+
η̂

h
= 0
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where ε = 1/k0L = wavelength/2πL � 1 provided that h(x) varies slowly compared to the

wavelength of the motion.

The form of the equation suggests an expansion in ε, but we expect singular behavior as

ε→ 0 because e2 multiplies the highest derivatives.

17.2 Solution with WKB

The WKB method proposes a solution of the form

η̂(x; ε) = eS(x,ε)

where

S(x, ε) ∼ S0(x)

ε
+ S1(x) + εS2(x) + . . .

The tilde symbol denotes an asymptotic series, by which is meant a series with the property

that any truncation (e.g. S0

ε
+ S1) approaches S(x, ε) as ε → 0. (The full series need not

converge, and usually doesn’t.) The equation now is

ε2

[
d2S

dx2
+

(
dS

dx

)2

+
1

h

dh

dx

dS

dx

]
+

1

h
= 0

and, inserting the expansion and setting coefficients of powers of ε to zero, gives(
dS0

dx

)2

= −1

h
(eikonal eqn.) O(1)

d2S0

dx2
+ 2

dS0

dx

dS1

dx
+

1

h

dh

dx

dS0

dx
= 0 O(ε)

d2S0

dx2
+ 2

dS0

dx

dS2

dx
+

(
dS1

dx

)2

+
1

h

dh

dx

dS1

dx
= 0 O(ε2)

etc.

=⇒ S0(x) = ±i
∫ x

0

1

(h(x̃))1/2
dx̃+ const

S1 = lnh−
1
4 + const

The approximation η̂
.
= exp

[
S0

ε
+ S1

]
⇐⇒ η̂

.
= const

h1/4
exp

[
± i
ε

∫ x
0

1√
h(x̃)

dx̃

]
or in dimensional form

η(x, t)
.
=

C±
h1/4

exp

[
±ik0

∫ x

0

√
h0

h(x̃)
dx̃− iω0t

]
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is of the form

η̂
.
= A(x, t)eiθ

with

A(x, t) ∝ 1

h(x)1/4
, θ(x, t) = k0

∫ x

0

√
h0

h(x̃)
dx̃− ω0t

where C± are complex constants to be determined by detailed matching to the incoming

wave. The WKB solution predicts

E ∝ |A2| ∝ 1√
h

and k =
∂θ

∂x
= k0

√
h0

h

in agreement with the Ray Theory.

The WKB method has the advantages:

1. it can be continued (by including more terms) until desired accuracy is reached.

2. the error can be estimated from the next term in the series

It has the disadvantage that it is more cumbersome than the heuristic theory and that the

physics gets hidden inside the formalism. However, WKB can handle problems for which

the simpler theory is inadequate. (See Bender & Orszag, Chap. 10)

17.3 WKB solution of the caustic problem

Now we start from the equation

∂2η

∂t2
= g

∂

∂x

(
h
∂η

∂x

)
+ gh

∂2η

∂y2
(1)

and, since h depends only on x, seek solutions in the form

η(x, y, t) = η̂(x)ei(l0y−ω0t) (2)

where
d2η̂

dx2
+

1

h

dh

dx

dη̂

dx
+

(
ω2

0

gh
− l20

)
η̂ = 0 (3)

Nondimensionalizing as before gives

ε2
[

d2η̂

dx2
+

1

h

dh

dx

dη̂

dx

]
+

[
1

h
− 1

h0

]
η̂ = 0 (4)
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where ε = 1
L(k20+l20)1/2

� 1 if the length scale L for variation of the medium is long

compared to a wavelength.

Here

hc =
k2

0 + l20
l20

(5)

is the nondimensional critical depth. It is convenient to exchange x for a new coordinate

x̃ to be chosen such that the first derivative disappears from (4). Using

d

dx
=

dx̃

dx

d

dx̃
and

d2

dx2
=

d2x̃

dx2

d

dx̃
+

(
dx̃

dx

)2
d2

dx̃2

in (4) gives

ε2

[(
dx̃

dx

)2
d2η̂

dx̃2
+

{
d2x̃

dx2
+

1

h

dh

dx

dx̃

dx

}
dη̂

dx̃

]
+

[
1

h
− 1

hc

]
η̂ = 0

and we want
d2x̃

dx2
+

1

h

dh

dx

dx̃

dx
=

1

h

d

dx

(
h

dx̃

dx

)
= 0

The choice

x̃ =

∫ x

xc

1

h(x′)
dx′ (6)

suffices, where

h(xc) = hc (7)

Our problem now takes the simple form

ε2
d2η̂

dx̃2
= Q(x̃)η̂ (8)

where

Q(x̃) =
h

hc
(h− hc) (9)

note that x̃ = 0 at the caustic, where h = hc and Q(x̃) ≷ 0 for x̃ ≷ 0. We thus anticipate

oscillatory behavior on x̃ < 0 and exponentially decaying behavior for x̃ > 0.

It will turn out that the WKB method works only in regions I and III, away from

x̃ = 0. However, the WKB solutions can be systematically matched to a third asymptotic

approximation which is valid in region II. The result will be that we can obtain accurate

approximations for all x̃ (all x).
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x̃x̃ = 0

x̃ < 0 x̃ ≈ 0 x̃ > 0

I

I I

I I I

17.3.1 Regions I and III

In regions I and III we again assume

η̂ = eS(x̃;ε)

where

S(x̃; ε) ∼ S0(x̃)

ε
+ S1(x̃) + εS2(x̃) + . . . (10)

Substitution of (10) into (8) gives (
dS0

dx̃

)2

= Q(x̃) O(1)

d2S0

dx̃2
+ 2

dS0

dx̃

dS1

dx̃
= 0 O(ε)

d2S1

dx̃2
+ 2

dS0

dx̃

dS2

dx̃
+

(
dS1

dx̃

)2

= 0 O(ε2)

etc.

with solutions

S0(x̃) = ±
∫ x̃

0

√
Q(t) dt

S1(x̃) = −1

4
ln |Q(x̃)|

etc.

Since Q(x̃) ≷ 0 for x̃ ≷ 0, we therefore have

η̂I ∼
A

|Q(x̃)|1/4
exp

[
i

ε

∫ 0

x̃

√
|Q(t)| dt

]
+

B

|Q(x̃)|1/4
exp

[
− i
ε

∫ 0

x̃

√
|Q(x̃)| dt

]
(11)

η̂III ∼
C

Q1/4
exp

[
−1

ε

∫ x̃

0

√
Q(t) dt

]
+

D

Q1/4
exp

[
1

ε

∫ x̃

0

√
Q(t) dt

]
(12)

where A,B,C,D are constants to be determined.
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17.3.2 Regions II

In region II x̃ ≈ 0 and (8) approximates to

ε2
d2η̂

dx̃2
= ax̃η̂ (13)

where

a = Q′(0)

is assumed not to be zero.

We now digress to note that the differential equation

d2y

dx2
= xy(x)

is a standard one, with independent solutions Ai(x) and Bi(x), the Airy functions. They

look like Fig. 17.1 and have the following asymptotic behaviors:

Ai(x) ∼ 1

2
√
π
x−

1
4 e−

2
3
x3/2 , x→∞

Bi(x) ∼ 1√
π
x−

1
4 e

2
3
x3/2 , x→∞

Ai(x) ∼ 1√
π
|x|−

1
4 sin

[
2

3
|x|

3
2 +

π

4

]
, x→ −∞

x

Ai(x)

Bi(x)

Figure 17.1: Example of Airy Functions

The general solution to (13) is thus

η̂II = EAi

(
a

1
3 x̃

ε
2
3

)
+ FBi

(
a

1
3 x̃

ε
2
3

)

where E and F are two more constants to be determined. (We now have 6 in all.)
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The next step is to show that the regions I, II, and III in which these approximations hold

overlap. This will allow them to be matched, and eliminate 4 of the undetermined constants.

(We should have no more than 2 before applying b.c.’s, because the original equation (8)

was second-order.)

Now η̂I, η̂III → ∞ as x̃ → 0 so that the WKB approximations evidently break down at

the caustic. However, it is possible to determine the regions of their validity as follows: The

approximation

η̂ ≈ exp

(
S0

ε
+ S1

)
is valid if S0

ε
� S1 , S1 � εS2 and εS2 � 1. (See Bender & Orszag p. 493 - 494 for a

discussion.)

Near x̃ = 0,

S0 = ±
∫ x̃

0

√
Q(t) dt ≈ ±

∫ x̃

0

√
at = O

(
a

1
2 x̃

3
2

)
,

S1 = −1

4
ln |Q| ≈ −1

4
ln a|x̃| ,

and S2 ≈ ±
5

48
a−

1
2 x̃−

3
2

It can be shown that S1 � εS2 , S0

ε
� S1 , εS2 � 1 are all satisfied if |x̃| � ε

2
3 . Therefore,

η̂ ≈ η̂I for x̃� −ε
2
3

and η̂ ≈ η̂III for x̃� ε
2
3

The approximations that led to η̂II only required that the Taylor series for Q(x̃) be

truncated after the linear term. Thus

η̂ ≈ η̂II for |x̃| � 1

For ε→ 0, we see that regions I and II, and II and III do indeed overlap.

Next we do the matching and boundary conditions:

First, D = 0 in order that η̂III → 0 as x̃→∞.

155



In the overlap region II-III,

η̂III ∼
C

(ax̃)1/4
exp

[
−1

ε

∫ x̃

0

√
at dt

]
=

C

(ax̃)1/4
exp

[
−2

3

a
1
2 x̃

3
2

ε

]
, x̃→ 0+

and η̂II ∼
E

2
√
π

ε
1
6

a
1
12 x̃

1
4

exp

[
−2

3

a
1
2 x̃

3
2

ε

]
+

F√
π

ε
1
6

a
1
12 x̃

1
4

exp

[
2

3

a
1
2 x̃

3
2

ε

]
, x̃→∞

matching requires F = 0 and C

a
1
4

= Eε
1
6

2
√
πa

1
12

.

In the overlap region I-II

η̂I ∼
A

a
1
4 |x̃| 14

exp

[
i
2

3

a
1
2 |x̃| 32
ε

]
+

B

a
1
4 |x̃| 14

exp

[
−i2

3

a
1
2 |x̃| 32
ε

]
, x̃→ 0−

and η̂II ∼ E
1√
π

ε
1
6

a
1
12 |x̃| 14

sin

[
2

3

a
1
2 |x̃| 32
ε

+
π

4

]
, x̃→ −∞

matching requires

A = B∗ =
Eε

1
6a

1
6

2
√
π
e−i

π
4

Collecting all of our results,

η̂I =
G

|Q(x̃)| 14
sin

(∫ 0

x̃

1

ε

√
|Q(t)| dt+

π

4

)
η̂II =

√
πG

a
1
6 ε

1
6

Ai

(
a

1
3 x̃

ε
2
3

)

η̂III =
G

2Q(x̃)
1
4

exp

[
−1

ε

∫ x̃

0

√
Q(t) dt

]
where G is a constant chosen to match the specified amplitude at x̃ = −∞. Further details

of the above solution are given in Bender & Orszag (pp. 504 - 510).

The solutions can easily be converted into dimensional form. For example

η̂IIdimensional
∝ Ai

(
(k2

0 + l20)
1
3

(
dh

dxc

1

hc

) 1
3 h0

hc
(x− x0)

)
but they are in fact easier to interpret in their nondimensional form. Remember that the

nondimensional scale for variation of the medium (h) is O(1) and the incident wavelength

is ε � 1. The solutions confirm that the only steady waves possible are standing in x, and

they determine the positions of the nodes and anti-nodes relative to the caustic.
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The energy of the wave is enhanced by a factor of ε−
1
3 within a narrow region of width

ε
2
3 near the caustic,

η̂2 ∝ 1

a
1
3 ε

1
3

for |x̃| < ε
2
3

This finite peak in energy density corresponds to the infinite energy density predicted by

the heuristic theory. It is as if the ray theory of energy propagation remained valid to within

ε
2
3 of the caustic, where that theory would predict E ∼ ε−

1
3 .

It is remarkable that most of these results can be obtained without formal asymptotic

analysis and matching. For example, either (1) ray theory, (2) the WKB solution away from

x̃ = 0 or (3) inspection of the equation

ε2
d2η̂

dx̃2
= Q(x̃)η̂

will predict the width
(
|x̃| = ε

2
3

)
of the energy peak from the simple observation that the

local wavelength ε√
Q

= ε

a
1
2 x̃

1
2

becomes large compared to the distance over which Q varies

by a sizable fraction of itself, namely x̃, for |x̃| smaller than ε
2
3 .

The WKB envelope η̂2 ∝ 1√
Q
∝ 1

x̃
1
2

controls the size of the oscillations until |x̃| = ε
2
3 , the

boundary of the caustic region. Thus η̂2 ∝ 1

(ε
2
3 )

1
2

= 1

ε
1
3

in this region. The smaller ε gets,

the closer the oscillatory behavior gets to x̃ = 0 before the Airy function puts a limit on the

amplitude, i.e. the farther the oscillatory curve can “ride up” the ascending WKB envelope.

Finally, it will be recalled that η̂ ≈ η̂II over an O(1) region near the caustic, essentially

because the only approximation involved in (13) was truncation of the Taylor series. In

view of this, it is not too surprising that there exists a single uniformly valid approximate

solution. It turns out to be

η̂ ∝
(
S0

ε

) 1
6 1

|Q| 14
Ai

[(
3S0

2ε

) 2
3

]

For more details, see Bender & Orszag page 510.
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Chapter 18

Action Conservation

The Wave-Energy Equation

Suppose that the solution to a slowly varying waves problem can be expressed as the su-

perposition of wave packets, each with the same amount of energy. Each wavepacket is

characterized by a location x(t) and a “carrier” wavenumber k(t). Thus each wavepacket

corresponds to a point in x−k space. The wavepackets are analogs of the phase space points

in the previous section. Let

N (k,x, t) dk dx (4.1)

be the number of wavepackets in the volume dk dx at time t. Then, in complete analogy

with the previous section,

∂N
∂t

+
∂

∂xi
(ẋiN ) +

∂

∂ki
(k̇iN ) = 0 (4.2)

Finally, suppose that each wavepacket conserves its energy, and that the total energy is

the sum of the energy in each wavepacket.

Then if

E(k,x, t) dk dx

is the energy in wavenumber k at location x and time t,

E(k,x, t) ∝ N (k,x, t)

Therefore,
∂E
∂t

+
∂

∂xi
(ẋiE) +

∂

∂ki
(kiE) = 0 (4.3)

Equation (4.3) is the generalization of a previously derived wave-energy equation to the

case of a full spectrum of slowly varying waves. The definition of E(k,x) obviously requires a
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scale separation between the longest waves having significant energy, and the length scale for

variability of the locally measured wavenumber spectrum. To obtain our previous equation,

assume that the spectrum is mono-chromatic, i.e.

E(k,x, t) = δ (k− k0(x, t)) E(x, t)

and apply
∫ ∫ ∫∞

−∞ dk to (4.3). If E(k,x, t) vanishes at ki = ±∞, then

∂

∂t
E(x, t) +

∂

∂xi

(∫ ∫ ∫
dkẋiE(k,x, t)

)
= 0

But ∫ ∫ ∫
dkẋiE(k,x, t) =

∫ ∫ ∫
dk

∂Ω

∂ki
(k,x, t)δ(k− k0)E(x, t)

= Cg(k0,x, t)E(x, t)

and thus
∂E
∂t

+
∂

∂xi
(CgiE) (4.4)

This is a familiar equation.

Conservation of Action

If the medium varies in time, or if mean currents are present, then the energy of individual

wavepackets is not conserved, and (4.3) does not hold. Amazingly, however, if the medium

and the currents vary slowly, then the individual wavepackets conserve a quantity called

“action”, and (4.3) can be replaced by a more general equation expressing the conservation

of wave action. We begin with the simplest possible example.

Consider a mass on a spring:

m

x

If x = 0 corresponds to the equilibrium position of the mass, then

ẍ = −ω2
0x (5.1)

where ω2
0 = k

m
and k is the spring constant.
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Now suppose that either k or m varies slowly in time in a prescribed way. Then ω0(t)

has a prescribed time variation. By “slow” we mean that the time scale for variation of ω0(t)

is long compared to the period of the oscillator. An obvious scaling converts (5.1) to the

dimensionless form

ε2ẍ = −ω2
0x

for which we seek solutions in the WKB form,

x(t) = exp

[
i
S0(t)

ε
+ S1(t) + . . .

]
We easily find that

x(t) ∼ A√
ω0(t)

ei
∫
ω0(t′)dt′

The energy E averaged over a period of the motion is

E(t) =
1

T

∫ t+T
2

t−T
2

dt
1

2
m(ẋ)2 ∝ ω0(t)A2

Thus

E(t)

ω0(t)
∝ A2 , i.e.

d

dt

(
E(t)

ω0(t)

)
The quantity E

ω0
is called action and is conserved by any system composed of slowly vary-

ing oscillations. This includes even weakly nonlinear systems in which the slow variations

arise from weak couplings between the oscillators.

It turns out that individual wavepackets can be regarded as slowly varying oscillators

when viewed in a reference frame which is moving at the velocity of the local mean current.

Each wavepacket thus conserves its action,

A =
Er
ωr

where Er and ωr are the energy and frequency of the wavepacket relative to the local mean flow.

Let

A(k,x, t) dk dx

be the total action of all the wavepackets in dk dx at time t. Then since (4.2) still governs

the number density of wavepackets, it follows that

∂A

∂t
+

∂

∂xi
(ẋiA) +

∂

∂ki
(k̇iA) = 0
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is the proper generalization of (4.3) to waves in time-varying media and currents.

When mean currents are present, the ray equations for ẋi and k̇i also require modi-

fications. In the presence of currents, the plane-waves dispersion relationship inevitably

generalizes to

ω = U(x, t) · k + Ω(k,x, t)

where U(x, t) is the prescribed mean current and U · k represents the Doppler shift. The

ray equations then become

dxi
dt

=
∂

∂ki
(U · k + Ω) = Ui +

∂Ω

∂ki

dki
dt

= − ∂

∂xi
(U · k + Ω) = −∂Uj

∂xi
kj −

∂Ω

∂xi

and
dω

dt
=
∂U

∂t
· k +

∂Ω

∂t

If the currents and the medium contain no time dependence, then

ω = U(x) · k + Ω(k,x) = constant

and wavepackets must generally change their relative frequency ωr ≡ Ω(k,x) to compen-

sate changes in U · k. However, Er
ωr

is conserved. Therefore Er must change to compensate

ωr. This change in the energy of the wavepacket represents energy lost to, or gained from,

the mean flow.

Critical layers occur when wavepackets asymptote to regions where ωr = 0. As ωr →
0 , Er → 0 and the wavepacket energy is irreversibly lost to the mean flow. There are a

surprising variety of such phenomena.

Lighthill’s derivation of action conservation equation

We will think of internal waves and therefore use the Boussinesq approximation, but the

same argument also applies to sound waves. Again, let

ui = ūi + u′i

where ūi is the mean current and u′i is the deviation from the mean. Then the linear

momentum equation is

ρ0

[
∂u′i
∂t

+ ūj
∂u′i
∂xj

+ u′j
∂ūi
∂xj

]
= − ∂p

′

∂xi
+ T ′δi3
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Now we re-write this equation in an inertial reference frame moving at the velocity of the

local mean flow. In this reference frame ūi = 0 but ∂ūi
∂xj
6= 0. Thus the equation becomes

ρ0
∂ūi
∂t

= − ∂p
′

∂xi
+ T ′δi3 − ρ0u

′
j

∂ūi
∂xj

(1)

This equation is the same as would be obtained by linearizing about a state of rest

except for the last term. The other equations (continuity and buoyancy) are exactly the

same as would be obatined by linearizing about a state of rest.

Next form the energy equation in the comoving reference frame. We must get the same

result as for linearizing about a state of rest, except for the contribution of the last term in

(1).
∂

∂t

(ρ0

2
u′iu
′
i

)
= −∇ · (u′p′) + ω′T ′ − ρ0u

′
iu
′
j

∂ūi
∂xj

(2)

Averaging over a wavelength must give

∂

∂t
Er = −∇ · 〈u′p′〉 − ρ0〈u′iu′j〉

∂ūi
∂xj

(3)

where Er is the average wave energy measured in this comoving frame. Now if, as in all

previous cases,

〈u′p′〉 = CgEr (4)

then we have
d

dt
Er +∇ · [CgEr] = −ρ0〈u′iu′j〉

∂ūi
∂xj

(5)

The term on the right-hand side represents the work done on the waves by the mean

flow.

Now define:

fi ≡ u′j
∂ūi
∂xj

and assume that ūi has only horizontal components.

Then the only u′i that contributes to the right-hand side of (5) are also horizontal, and

obey the horizontal part of (1), namely

ρ0
∂u′i
∂t

= − ∂p
′

∂xi
− ρ0fi (6)

If the motions are wave-like, this is

−ρ0iωru
′
i = −ikip′ − ρ0fi (7)
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Thus

ρ0u
′
i =

kip
′

ωr
− i ρ0

ωr
fi (8)

The last term in (8) is 90◦ out of phase with the first two and hence makes no contribution

to

−ρ0〈u′iu′j〉
∂ūi
∂xj
≡ −ρ0〈u′ifi〉 (9)

which therefore becomes

− ρ0〈
(

1

ρ0

ki
ωr
p′
)
u′j〉

∂ūi
∂xj

=− ki
ωr
CgjEr

∂ūi
∂xj

by (4) (10)

Thus the wave activity equation becomes

∂

∂t
Er +

∂

∂xj
(Fj) = − ki

ωr
Fj
∂ūi
∂xj

(11)

where F = CgEr. To manipulate (11) into the form of a conservation law, we next develop

an equation for ωr.

We temporarily bo back to the original set of coordinates, in which the mean flow is not

locally zero. Suppose that the medium and the mean flow ū are steady. Then we know that

dω

dt
= 0 along a ray (12)

since

ω = ū · k + ωr (13)

this means that

d

dt
ωr = − d

dt
(ū · k)

= −ūi
dki
dt
− ki

dūi
dt

= −ūi
[
−kj

∂ūj
∂xi
− ∂ωr
∂xi

]
− ki

[
∂ūi
∂xj

dxj
dt

+
�
�
��7

0
∂ūi
∂t

]
(14)

Then substituting
dxj
dt

= ūj + Cgj (15)
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and noting a cancellation, we have

dωr
dt

= ūi
∂ωr
∂xi
− ki

∂ūi
∂xj

Cgj (16)

In the comoving reference frame, (16) becomes

dωr
dt

= −ki
∂ūi
∂xj

Cgj (17)

In this same reference frame, (11) is

dEr
dt

= −Er∇ ·Cg −
ki
ωr
Cgi

∂ūi
∂xj

Er
ωr

(18)

Then

1

ωr
(18)− Er

ω2
r

(17) =⇒

d

dt

(
Er
ωr

)
= −

(
Er
ωr

)
∇ ·Cg

which is the desired result.

This derivation of the action conservation equation seems somewhat unmotivated and

not completely rigorous. In particular, it relies on (4), which was never generally proved,

and might be itself affected by the presence of the mean flow.

The other approach to action conservation relies on a variational formulation of the whole

problem. It seems to be very useful as a unified approach to all of slowly varying theory,

even including nonlinear effects, and so we consider it next.

Return of the slowly varying oscillator

A function is a rule that assigns one number to another:

f = f(x)

A functional is a rule that assigns a number to an entire function, over some range of its

argument:

F = f [x(t)]

Functionals are frequently defined by integrals, for example:

F [x(t)] =

∫ t2

t1

{
1

2
m

(
dx

dt

)2

− 1

2
k(t)x(t)2

}
dt
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A typical question about functionals is: For what x(t) does F [x(t)] take a stationary

value (a maximum, minimum, or critical point)?

More precisely, for what x(t) is F [x(t)] unchanged by small changes δx(t) in x(t) which

obey

δx(t1) = δx(t2) = 0

but are otherwise arbitrary?

To answer the question we compute

F [x+ δx] =

∫ t2

t1

{
1

2
m

(
d

dt
(x+ δx)

)2

− 1

2
k(t)(x+ δx)2

}
dt

and subtract F [x].

The result is

δF ≡ F [[x+ δx]− F [x]

=

∫ t2

t1

{
m

dx

dt

dδx

dt
− k(t)xδx

}
+O(δx)2

Integrating by parts, we get

0 =

∫ t2

t1

{
+

d

dt

(
m

dx

dt
δx

)
−md2x

dt2
δx− k(t)xδx

}
dt

The first term vanishes because δx = 0 at t = t1, t2. Thus we are left with:∫ t2

t1

{
m

d2x

dt2
+ k(t)x

}
dxdt = 0

Since δx(t) is arbitrary, we must have

mẍ = −k(t)x

which is the equation for the mass on the slowly varying spring. This equation is said to be

equivalent to the variational principle that gave it. The most famous variational principle is

Hamilton’s principle (of which this is an example).

For any equation, we can seek the corresponding variational principle. If we find it, then

we have an elegant way of doing slowly varying theory. The idea is to insert a slowly varying

solution into the Lagrangian functional and then to simplify (by averaging) before taking
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the variations.

Suppose that

x(t) = A(t) cos θ(t)

where A(t) and θ̇(t) are slowly varying functions (slow compared to θ(t)). Then

ẋ(t) = Ȧ(t) cos θ(t)− A(t)θ̇ sin θ

≈ −Aθ̇ sin θ

Then

F ∼=
∫ t2

t1

[
1

2
mA2θ̇2 sin2 θ − 1

2
kA2 cos2 θ

]
dt

≈ m

4

∫ t2

t1

[A2θ̇2 − ω2
0A

2]dt

where ω2
0(t) ≡ k(t)

m
as before. The variations now yield:

δA : θ̇ = ω2
0

δθ :
d

dt
(A2θ̇) = 0

This is the same result as from WKB, but note how action conservation results directly

from the variation in phase. The same approach works for wave equations in space and time,

and the algebra requred is usually much less than for other types of perturbation theory.
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Chapter 19

Sound waves and Internal Waves in a
Current

Sound waves and internal gravity waves in a current

Assume that U = (ū(z), 0, 0) and that the medium is other-
wise uniform. Then the refraction equations tell us that:

x

z

dk

dt
= 0 ,

dl

dt
,

dm

dt
= −dū(z)

dz
k ,

dω

dt
= 0

Then k = k0, l = l0, ω = ω0.

Assume l = 0.

Then the unknown m(z) can be determined from the slowly varying dispersion relation

alone:

ω +− = k0ū(z) + Ω(k0, 0,m(z))

Sound Waves

In the case of sound waves this is

ω0 = k0ū(z) + c
√
k2

0 +m2(z)

where c is assumed constant.

The ray equations are

dx

dt
= ū(z) +

ck0√
k2

0 +m2(z)
,

dz

dt
=

cm(z)√
k2

0m
2(z)
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These three equations are to be solved together. However, the general character of the

solutions can be seen without explicitly solving them.

Suppose dū
dz
> 0 at all levels and that the waves are incident from below.

Then upwind propagation:

(k 0, m 0)

ū(z )

requires that c
√
k2

0 +m2(z) increase to offset the increase in k0ū(z). (k0 < 0). As m

increases, the rays bend upward.

By the same reasoning, downwind propagation requires that m(z) decrease as ū(z) in-

creases. A turning point is reached when m = 0, i.e. where

ω0 = k0ū(z) + ck0

This is a caustic with the same general properties as in the case of long gravity waves studied

in a previous lecture.

The new feature is an energy exchange between the waves and the mean flow. A wavepacket,

conserving Er
ωr

, gains Er as ωr increases in upstream propagation. Conversely, Er decreases as

ωr decreases in downstream propagation.

These energy changes are absolute, and distinct from the energy density changes that

arise from ray tube convergence near the caustic. However, both effects are reversible as rays

are reflected at the caustic: the energy lost to the current is regained as ωr increases again

in the reflected wave.
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Internal waves

The situation for internal waves is much more complex. The slowly varying dispersion

relation is now

ω0 = k0ū(z) +
N |k0|√

k2
0 +m2(z)

For upstream energy propagation

(k 0, m 0)

energy

k0 < 0, and |m| must decrease as ū(z) increases. A turning point is reached when m− 0

(ωr = N). To be sure of what happens there, we must examine the behavior of the ray

equations:
dx

dt
= ū(z)− Nm2

(k2 +m2)
3
2

,
dz

dt
=
−N |k|m

(k2 +m2)
3
2

near the turning point, where
(

dx
dt
, dz

dt

)
= (ū, 0).

Let z = 0 correspond to the turning point. Then the dispersion relation

ω0 − k0ū(z) ≈ 1− 1

2

Nm2(z)

k2
0

tells us that |m| ∼
√
|z| near the turning point. Thus

dz

dt
≈ −Nm ∼

√
z

=⇒
∫

dz√
z

=

∫
dt

Since 1√
z

has an integrable singularity, the ray reaches the turning point in a finite time,

and turns back in a qualitatively similar way to sound waves.

Internal waves propagating downstream:

169



(k 0, m 0)

energy

behave quite differently. Since k0 > 0 now, m(z) must increase as ū(z) increases. How-

ever, ωr can get no smaller than zero. A critical level is reached when

ω0 = k0ū(z) + 0

i.e. where the x-direction phase velocity ω0

k0
equals ū(z). The ray equations are

dx

dt
= ū(z) +

Nm2

(k2 +m2)
3
2

,
dz

dt
=
−Nkm

(k2 +m2)
3
2

Again
(

dx
dt
, dz

dt

)
= (ū, 0) at the critical level, but the behavior near the critical level is

quite different than before.

Let z = 0 correspond to the critical level. Then the dispersion relation

ω0 = k0ū(z) ≈ Nk0

m(z)

tells us that

m(z) ∼ 1√
z

near the critical level. Thus dz
dt
∼ 1

m2 ∼ z2 near the critical level, and∫
dz

z2
=

∫
dt

implies that rays reach the critical level only after an infinite time. In other words, the ray

is an asymptote.

Since ωr → 0 as the ray approaches the critical level, action conservation demands that

Er → 0. Therefore, wavepackets lose all of their energy to the mean current flow as the

critical layer is approaches.
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ray
z = 0

Technically, ray theory breaks down at both turning points and critical levels. Asymptotic

matching theory fixes the problem at the turning point (in a manner similar to the Airy-

function analysis in a previous lecture). However, asymptotic analysis is not sufficient for a

close analysis of the critical level; the solution of the differential equation turns out to have

a branch singularity there. What is really needed is additional physics. One must add one

of the following:

1.) viscosity

2.) nonlinearity

3.) or reconsider as an initial value problem (See Booker & Bretherton, op. cit.)

All of this assumes that the mean flow is stable. If not, other phenomena (e.g. over-

reflection) can occur.
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Chapter 20

Appendix A: The Analogy Between
Ray Theory and Hamiltonian
Mechanics

This appendix outlines the analogy between ray theory and mechanics. This analogy can be

carried rather far, and it illuminates both fields.

We begin with a single-paragraph summary of ray theory: Given a linear waves problem,

we can seek a slowly-varying solution in the form

ψ ∼ A(x, t)eiθ(x,t) , (1.1)

where the wavevector,

k(x, t) ≡ ∂θ

∂x
(1.2)

and frequency

ω(x, t) ≡ −∂θ
∂t

(1.3)

are assumed to be large compared to the inverse length (and time) scales for the variability

of A, k, and ω.

Let

ω = Ω(k,D) (1.4)

be the dispersion relation for the plane waves in the special case of a constant medium.

(Again, D is a general medium parameter.) Then, for the slowly varying wave, it is reasonable

to require that:
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ω(x, t) = Ω (k(x, t), D(x, t)) ≡ Ω(k,x, t) (1.5)

i.e., that the slowly varying frequency and wavenumber obey the local plane wave dispersion

relationship. Everything follows from (1.2, 1.3, 1.5).

The problem defined by (1.2, 1.3, 1.5) can be posed in several equivalent ways. For

example, we can use (1.2) and (1.3) to eliminate k and ω, and write (1.5) in the form

∂θ

∂t
+ Ω

(
∂θ

∂x
,x, t

)
= 0 (1.6)

Alternatively, we can write (1.2, 1.3, 1.5) as “ray equations”, viz.

dx

dt
=
∂Ω

∂k
,

dk

dt
= −dΩ

dx
,

dω

dt
=
∂Ω

∂t
(1.7)

These equations were derived in the previous section. As explained there, the first two

of (1.7) can be solved independently of the last.

The Mechanical Analogy

Every mechanical system may be described by Hamilton’s canonical equations. For example,

let q be the location of a particle with mass m moving in a force potential V (q, t). If we

define

p ≡ mq̇ and H(p,q, t) ≡ 1

2m
p · p + V (q, t)

then Newton’s law,

mq̈ = −∂V
∂q

is equivalent to the canonical equations:

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
,

dE

dt
=
∂H

∂t
(1.8)

where E is the energy of the particle.

Equations (1.7) and (1.8) are analogous. The analogy is between:

x←→ q

k←→ p

ω(x, t)←→ E(q, t)

Ω(k,x, t)←→ H(p,q, t)
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Thus every mechanical problem corresponds to a waves problem and vice-versa.

Mechanical problems are frequently solved using the canonical equations (1.8). However,

we may instead use the analog of (1.6) viz.

dS

dt
+H

(
∂S

∂q
,q, t

)
= 0, (1.9)

which is called the Hamilton-Jacobi equation. Here S(q, t), which is the analogy of θ(x, t),

is defined by the equations

p =
∂S

∂q
and E = −∂S

∂t
, (1.10)

which are analogues of (1.2) and (1.3). S(q, t) is called Hamilton’s principal function.

The discussion of these equations in mechanics books is sometimes made very abstract,

but once the complete analogy with the waves problem is realized, the entire development

is almost trivial.

This analogy can be exploited in other ways, too. For example, it is well known that the

canonical equations (1.8) are equivalent to a variational principle (actually several). It follows

that the equations for slowly varying waves are also equivalent to a variational principle. The

most famous variational principle for waves is Fermat’s principle. The mechanical analogy

of Fermat’s principle is Jacobi’s principle. Historically, Fermat’s principle came first.

Connection with Quantum Mechanics

The analogy between classical mechanics and the equations for slowly varying waves is so

remarkable that it invites the following conjecture: that Hamilton’s equations are not merely

analogous to, but actually are, slowly varying approximations to an underlying, more funda-

mental wave equation. The most obvious difficulty with this conjecture is that the dimensions

of the momentum p are different from the dimensions of the wavenumber k. But suppose

that the momentum p and energy E are related to the wavenumber k and frequency ω by

p = h̄k and E = h̄ω

If the constant h̄ (Planck’s constant) has dimensions ML2/T , then (with q = x), Hamil-

ton’s equations (1.8) are equivalent to

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
,

dω

dt
=
∂Ω

∂t
(1.7)
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where

Ω(k,x, t) =
1

h̄
H(h̄k,x, t) (2.1)

The form of the underlying wave equation can now be deduced from the dispersion

relation

ω =
1

h̄
H(h̄k,x, t) (2.2)

by simply reversing the procedure by which the dispersion relation is obtained from the

original wave equation. This amounts to the replacements

−iω → ∂

∂t
, ik→ ∇

Using

H(p,q, t) ≡ 1

2m
p · p + V (q, t),

we easily obtain Schrödinger’s equation,

ih̄
∂ψ

∂t
=

1

2m

[
−h̄2∇2 + V

]
ψ (2.3)

This method of “deriving” quantum mechanics makes the correspondence between oper-

ators and classical variables seem far less mysterious than do other ways of introducing the

subject.

Liouville’s Equation

Liouville’s equation is the basis for statistical mechanics. It turns out that it is also the

mechanical analog of the “energy equation” for the waves system. We return to the canonical

equations for a classical particle:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2, 3 (3.1)

The six-dimensional space spanned by (q1, q2, q3, p1, p2, p3) is called phase space. Every

point in phase space represents a possible position-momentum state of the particle. Every

realization of (3.1) is a trajectory in phase space.

Consider a collection of moving points in phase space. Let

P(q,p, t) dq dp (3.2)

be the number of points in the phase volume dq dp at time t. Since these points are neither

created nor destroyed,
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∂P
∂t

+
∂

∂qi
(q̇iP) +

∂

∂pi
(ṗiP) = 0 (3.3)

This equation is the analogy of the continuity equation,

∂ρ

∂t
+

∂

∂x
· (uρ) = 0

expressing the conservation of mass-points in ordinary three-dimensional space. It follows

from the canonical equations (3.1) that

∂q̇i
∂qi

+
∂ṗi
∂pi

= 0 (3.4)

and thus (3.3) may be written

∂P
∂t

+ q̇i
∂P
∂qi

+ ṗi
∂P
∂pi

= 0

which is the analog of the continuity equation for an incompressible fluid.

The Wave-Energy Equation

Suppose that the solution to a slowly varying waves problem can be expressed as the su-

perposition of wave packets, each with the same amount of energy. Each wavepacket is

characterized by a location x(t) and a “carrier” wavenumber k(t). Thus each wavepacket

corresponds to a point in x−k space. The wavepackets are analogs of the phase space points

in the previous section. Let

N (k,x, t) dk dx (4.1)

be the number of wavepackets in the volume dk dx at time t. Then, in complete analogy

with the previous section,

∂N
∂t

+
∂

∂xi
(ẋiN ) +

∂

∂ki
(k̇iN ) = 0 (4.2)

Finally, suppose that each wavepacket conserves its energy, and that the total energy is

the sum of the energy in each wavepacket.

Then if

E(k,x, t) dk dx

is the energy in wavenumber k at location x and time t,

E(k,x, t) ∝ N (k,x, t)
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Therefore,
∂E
∂t

+
∂

∂xi
(ẋiE) +

∂

∂ki
(kiE) = 0 (4.3)

Equation (4.3) is the generalization of a previously derived wave-energy equation to the

case of a full spectrum of slowly varying waves. The definition of E(k,x) obviously requires a

scale separation between the longest waves having significant energy, and the length scale for

variability of the locally measured wavenumber spectrum. To obtain our previous equation,

assume that the spectrum is mono-chromatic, i.e.

E(k,x, t) = δ (k− k0(x, t)) E(x, t)

and apply
∫ ∫ ∫∞

−∞ dk to (4.3). If E(k,x, t) vanishes at ki = ±∞, then

∂

∂t
E(x, t) +

∂

∂xi

(∫ ∫ ∫
dkẋiE(k,x, t)

)
= 0

But ∫ ∫ ∫
dkẋiE(k,x, t) =

∫ ∫ ∫
dk

∂Ω

∂ki
(k,x, t)δ(k− k0)E(x, t)

= Cg(k0,x, t)E(x, t)

and thus
∂E
∂t

+
∂

∂xi
(CgiE) (4.4)

This is a familiar equation.

Conservation of Action

If the medium varies in time, or if mean currents are present, then the energy of individual

wavepackets is not conserved, and (4.3) does not hold. Amazingly, however, if the medium

and the currents vary slowly, then the individual wavepackets conserve a quantity called

“action”, and (4.3) can be replaced by a more general equation expressing the conservation

of wave action. We begin with the simplest possible example.

Consider a mass on a spring:

m

x
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If x = 0 corresponds to the equilibrium position of the mass, then

ẍ = −ω2
0x (5.1)

where ω2
0 = k

m
and k is the spring constant.

Now suppose that either k or m varies slowly in time in a prescribed way. Then ω0(t)

has a prescribed time variation. By “slow” we mean that the time scale for variation of ω0(t)

is long compared to the period of the oscillator. An obvious scaling converts (5.1) to the

dimensionless form

ε2ẍ = −ω2
0x

for which we seek solutions in the WKB form,

x(t) = exp

[
i
S0(t)

ε
+ S1(t) + . . .

]
We easily find that

x(t) ∼ A√
ω0(t)

ei
∫
ω0(t′)dt′

The energy E averaged over a period of the motion is

E(t) =
1

T

∫ t+T
2

t−T
2

dt
1

2
m(ẋ)2 ∝ ω0(t)A2

Thus

E(t)

ω0(t)
∝ A2 , i.e.

d

dt

(
E(t)

ω0(t)

)
The quantity E

ω0
is called action and is conserved by any system composed of slowly vary-

ing oscillations. This includes even weakly nonlinear systems in which the slow variations

arise from weak couplings between the oscillators.

It turns out that individual wavepackets can be regarded as slowly varying oscillators

when viewed in a reference frame which is moving at the velocity of the local mean current.

Each wavepacket thus conserves its action,

A =
Er
ωr

where Er and ωr are the energy and frequency of the wavepacket relative to the local mean flow.

Let

A(k,x, t) dk dx
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be the total action of all the wavepackets in dk dx at time t. Then since (4.2) still governs

the number density of wavepackets, it follows that

∂A

∂t
+

∂

∂xi
(ẋiA) +

∂

∂ki
(k̇iA) = 0

is the proper generalization of (4.3) to waves in time-varying media and currents.

When mean currents are present, the ray equations for ẋi and k̇i also require modi-

fications. In the presence of currents, the plane-waves dispersion relationship inevitably

generalizes to

ω = U(x, t) · k + Ω(k,x, t)

where U(x, t) is the prescribed mean current and U · k represents the Doppler shift. The

ray equations then become

dxi
dt

=
∂

∂ki
(U · k + Ω) = Ui +

∂Ω

∂ki

dki
dt

= − ∂

∂xi
(U · k + Ω) = −∂Uj

∂xi
kj −

∂Ω

∂xi

and
dω

dt
=
∂U

∂t
· k +

∂Ω

∂t

If the currents and the medium contain no time dependence, then

ω = U(x) · k + Ω(k,x) = constant

and wavepackets must generally change their relative frequency ωr ≡ Ω(k,x) to compen-

sate changes in U · k. However, Er
ωr

is conserved. Therefore Er must change to compensate

ωr. This change in the energy of the wavepacket represents energy lost to, or gained from,

the mean flow.

Critical layers occur when wavepackets asymptote to regions where ωr = 0. As ωr →
0 , Er → 0 and the wavepacket energy is irreversibly lost to the mean flow. There are a

surprising variety of such phenomena.

Selected References for Appendix II

Goldstein Classical Mechanics 1st edition (p. 307-314 discuss the analogy between optics

and mechanics)
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Bretherton & Garrett. Wavetrain in inhomogeneous moving media. Proceedings of the

Royal Society A 302 529-554 (1969)

Whitham. Two-timing, variational principles and waves. JFM 44, 373-395 (1970)

Henyey. Improved ray description of wave equations. Phys Rev Lett 45, 1897-1900 (1980)

Krasitskiy. Toward a theory of transformation of the spectrum on refraction of wind

waves. Izv., Atmospheric & Ocean Physics, 10, 1, 72-82 (1974)
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Chapter 21

Currents Effects on Waves

21.1 Nonlinear shallow water equations

The nonlinear shallow water equations are in 2 dimensions (momentum and continuity)

∂u

∂t
+ u

∂u

∂x
= −g ∂η

∂x
∂η

∂t
+
∂[(η + h)u]

∂x
= 0

21.2 Review of Standard Linearization

If we linearize on a background current of u = 0, then we get,

∂u

∂t
= −g ∂η

∂x
∂η

∂t
+
∂(hu)

∂x
= 0

This all implies that η � h. We can get a wave equation for this with for flat bottom

ηtt − ghηxx = 0 (21.1)

21.3 Wave Equation for Simple Steady and Uniform

Flow

Now, consider a case where there is a steady and spatially uniform mean flow in the x

direction U . Then the total current in the x direction is U +u. Lets say that U � u. Doing

a similar linearization procedure gives us

∂u

∂t
+ U

∂u

∂x
= −g ∂η

∂x
∂η

∂t
+ U

∂η

∂x
+ h

∂u

∂x
= 0
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Now define a new time derivative operator

∂t̃ = ∂t + U∂x, (21.2)

the equations above revert back to the linearized about the mean shallow water equations

with wave equation of

ηt̃t̃ − ghηxx = 0 (21.3)

and with

ηtt + 2Uηxt + U2ηxx − ghηxx (21.4)

and with plugging in solution η = η̂ exp[i(kx− ωt)] we get

− ω2 + 2Uωk + U2k2 + ghk2 (21.5)

Now if we complete the square we get

(ω − Uk)2 = ghk2 (21.6)

and if we define the intrinsic frequency ωi =
√
ghk as the dispersion relationship without

any mean flow, Now we replace the symbol ω bu ωa to connote the absolute frequency, ie

that seen by a fixed observer. Then we have

(ωa − Uk)2 = ω2
i (21.7)

ωa − Uk = ωi (21.8)

ωa = Uk + ωi. (21.9)

This implies the absolute frequency (ωa) is Doppler shifted by the mean currents (Uk) away

from the intrinsic frequency (ωi). This can be generalized to two dimensions with

ωa = U · k + ωi

This kind of analysis can apply to many types of wave systems.

21.4 Slowly varying mean currents
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