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Depth-limited overturning wave shape affects water turbulence and sediment suspension.10

Experiments have shown that wind affects shoaling and overturning wave shape, with uncertain11

mechanism. Here we study wind effects (given by wind Reynolds number) on solitary wave12

shoaling and overturning with the 2-phase DNS model Basilisk run in two-dimensions for a fixed13

wave Reynolds and Bond number and steep bathymetry. The propagating solitary wave sheds a 2D14

turbulent air wake and has nearly uniform speed over the rapidly varying bathymetry for all wind.15

The solitary wave face slope is clearly influenced by wind. Changes to shoaling solitary wave16

shape are consistent with previous studies. As overturning jet impacts, wind-dependent differences17

in overturn shape are evident and quantified. The nondimensional breakpoint location and overturn18

area have similar wind dependence as experiment, albeit requiring larger wind speed. The overturn19

aspect ratio has opposite wind dependence as experiment. During shoaling, the surface viscous20

stresses are negligible relative to pressure. Surface tension effects are also small but grow rapidly21

near overturning. In a wave frame of reference, surface pressure is low in the lee and contributes22

2-5% to the velocity potential rate of change in the surface dynamic boundary condition, which,23

integrated over time changes the wave shape. Reasons the overturn aspect ratio is different than24

experiment and why a stronger simulated wind is required are explored. The dramatic wind-effects25

on overturning jet area, and thus to the available overturn potential energy, make concrete the26

implications of wind-induced changes to wave shape.27

1. Introduction28

As they approach shore, shoaling waves change shape becoming steeper with narrower peaks and29

more pitched forward (e.g. Elgar & Guza 1985). Once sufficiently steepened, depth-limited wave30

breaking occurs with wave overturning, and subsequently the overturn jet impacts the water-surface31

in front of the wave. Depth-limited wave breaking is often qualitatively categorized into spilling32

and plunging (e.g. Peregrine 1983), where spilling waves have very small overturns and plunging33

waves have larger overturns. Bathymetry along with offshore wave height and wavelength are34

well understood (e.g. via the Iribarren number) to be important in setting spilling or plunging35

wave breaking (e.g. Peregrine 1983). For example, larger planar beach slope 𝛽 leads to larger36

overturns (Grilli et al. 1997; Mostert & Deike 2020; O’Dea et al. 2021). Across laboratory and37

field observations, the wave overturn shape is important in the resulting splash up and bubble38

entrainment (Chanson & Jaw-Fang 1997; Yasuda et al. 1999; Blenkinsopp & Chaplin 2007),39

water column turbulence (Ting & Kirby 1995, 1996; Aagaard et al. 2018), sediment suspension40
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(e.g. Aagaard et al. 2018), and wave impact forces on engineered structures (Bullock et al.41

2007). Similarly in numerical simulations of deep-water and depth-limited wave breaking, the42

geometry of wave overturning impacts air entrainment, vorticity generation, and pathways of43

turbulent dissipation (e.g. Lubin et al. 2006; Derakhti & Kirby 2014; Mostert et al. 2022). Thus,44

understanding the factors that affect the shape of overturning waves is important to a range of45

processes.46

In deep water, wind is well understood to lead to surface gravity wave growth and decay (e.g.47

Miles 1957; Phillips 1957). However, wind can also change wave shape in both deep (Leykin48

et al. 1995; Zdyrski & Feddersen 2020) and shallow (Zdyrski & Feddersen 2021) water, as well49

as shoaling waves (Feddersen & Veron 2005; Sous et al. 2021; Zdyrski & Feddersen 2022).50

In laboratory studies, onshore wind results in wave breaking in deeper water (farther offshore)51

(Douglass 1990; Sous et al. 2021), with the opposite for offshore wind. Feddersen et al. (2023)52

studied the explicit dependence of overturn wave shape on wind at the Surf Ranch, a wave basin53

designed for surfing. Field-scale shoaling solitary wave with height ≈ 2.25 m propagated at54

𝐶 = 6.7 m s−1 and overturned. The cross-wave component of wind 𝑈, measured 16 m above55

the water surface, varied from onshore to offshore with realistic −1.2 < 𝑈/𝐶 < 0.7. The non-56

dimensionalized breakpoint location was inversely related to 𝑈/𝐶, consistent with Douglass57

(1990). The nondimensional overturn area 𝐴/𝐻2
𝑏
, where 𝐻𝑏 is breaking wave height, and overturn58

aspect ratio were also inversely related to 𝑈/𝐶, with smaller area and overturns for increasing59

onshore wind (positive𝑈/𝐶). For increasing offshore wind, 𝐴/𝐻2
𝑏

was approximately uniform.60

The nondimensional overturn parameters varied by a factor of two for the observed𝑈/𝐶 indicating61

that the wind has a significant effect on overturn shape. However, the mechanism by which wind62

effects these geometric changes is uncertain. For example, the pressure profiles induced by the63

wind on the different parts of the evolving wave, along with the general flow structure over and64

around the wave, remain unknown.65

Numerical modeling offers a promising avenue for investigating wind effects on shoaling and66

overturning wave shape. Advances in two phase numerical modeling both DNS and LES has67

enabled significant advances in understanding deep (Lubin et al. 2019; Mostert et al. 2022) and68

shallow water wave breaking (e.g. Mostert & Deike 2020; Boswell et al. 2023; Liu et al. 2023).69

Similar advances have occurred in the study of wind and wave interactions in deep water (e.g.70

Hao & Shen 2019; Wu et al. 2022). However, the interaction of shoaling and overturning waves71

and wind has largely not been studied. Numerical studies using two-phase RANS solvers of72

wind-forced solitary (Xie 2014) and progressive (Xie 2017) waves have seen a wind-induced73

shift in breakpoint location analogous to laboratory experiments. However, the effect of wind on74

overturning wave shape has yet to be studied.75

Here, we study the wind effects on solitary wave shoaling and overturning for a model domain76

similar to that of Feddersen et al. (2023) using the two-phase numerical model Basilisk run in77

two-dimensions. In section 2, the model setup is described, the key nondimensional parameters78

including wind Reynolds number Re∗ are defined, and the relationship between modeled air79

velocity ⟨𝑈̄⟩/𝐶 and Re∗ is discussed. In Section 3.1, the qualitative features of the shoaling solitary80

wave and air vorticity are examined for strong onshore and offshore wind. The statistics of solitary81

wave shoaling under strong onshore and offshore wind are described in section 3.2. Overturn wave82

shape is quantified by geometrical parameters defined at the moment of jet impact (Section 3.3).83

The relationship of the nondimensional geometrical parameters (defined in Section 3.4) to Re∗84

is examined (Section 3.5). The relative strength of viscous stresses and pressure at the air-water85

interface is examined in Section 3.6, and the terms of the surface dynamic boundary condition86

including pressure variations and surface tension are analyzed in Section 3.7. We discuss the87

shoaling results relative to previous studies, examine potential reasons for the differences between88

our results here and those of field-scale experiments, and consider implications in Section 4.89

Section 5 provides a summary.90
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2. Methods91

We numerically simulate in two dimensions (2D) the shoaling and overturning of a solitary92

wave with the two-phase incompressible Navier-Stokes equations using the open-source Basilisk93

software package (Popinet 2003, 2009, 2018) for solving partial differential equations on an94

adaptively refined grid. Basilisk has been extensively used to model wave breaking (Deike et al.95

2015, 2016; Mostert & Deike 2020; Mostert et al. 2022), as well as wave interactions with wind96

(Wu & Deike 2021; Wu et al. 2022).97

2.1. Formulation and Governing Equations98

The governing equations are the two-phase (water and air) Navier-Stokes equations in 2D, given99

as100

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌u) = 0

𝜌

(
𝜕u
𝜕𝑡

+ u · ∇u
)
= −∇𝑝 + 𝜌g + ∇ · (2𝜇D) + 𝜎𝜅n𝛿𝑠

∇ · u = 0

(2.1)

where u, 𝜎, 𝜅,D, g are the fluid velocity, surface tension, curvature of the interface, deformation101

tensor, and acceleration due to gravity, respectively. In component form, the 2D fluid velocity102

u = (𝑢, 𝑤) where 𝑢 and 𝑤 are the horizontal and vertical velocities, respectively. For each fluid,103

the water and air density (𝜌w, 𝜌a) and dynamic viscosity (𝜇w, 𝜇a) are uniform. A volume-of-fluid104

(VOF) advection scheme with a color function 𝑓 is used to capture and advect the air-water105

interface in a momentum-conserving implementation. Hence for two-phase mixtures, 𝜌 and 𝜇 are106

represented by107

𝜌 = 𝑓 𝜌w + (1 − 𝑓 )𝜌a

𝜇 = 𝑓 𝜇w + (1 − 𝑓 )𝜇a
(2.2)

where 𝑓 is interpreted as the liquid volume fraction ( 𝑓 = 1 for water, 𝑓 = 0 for air). The
water-to-air ratio for 𝜌 and 𝜇 are important nondimensional parameters and are here held fixed at
𝜌a/𝜌w = 0.001 and 𝜇a/𝜇w = 0.018. The air-water interface requires continuity of velocity and
stress, including surface tension. Surface tension as the interfacial force 𝜎𝜅n𝛿𝑠 is determined from
the Dirac delta 𝛿𝑠 on the interface and the unit normal vector n. This formulation is expressed
in Popinet (2018), alongside the implementation of gravity as an interfacial force. In (2.1), we
substitute

𝜌g → (𝜌a − 𝜌w) (g · x)n𝛿𝑠
which are equal, up to a difference in the pressure field. The reduced gravity implementation108

avoids the appearance of spurious velocities and unphysical energy production near the air-water109

interface (Wroniszewski et al. 2014).110

The two phase incompressible Navier-Stokes equations are solved on an adaptive Cartesian mesh111

using the Bell-Colella-Glaz projection method (Bell et al. 1989) with the VOF scheme described112

above, allowing for a sharp interface between phases (Fuster & Popinet 2018; López-Herrera et al.113

2019; van Hooft et al. 2018). The bathymetry is represented with an additional volume fraction114

field as an embedded boundary (Johansen & Colella 1998). Surface tension is implemented using115

the continuum-surface-force approach due to Brackbill et al. (1992).116

2.1.1. Model Domain and Boundary Conditions117

The model domain (figure 1) is similar to to that used in Boswell et al. (2023) with modifications118

to be analogous to the bathymetry of the Surf Ranch (Feddersen et al. 2023). In the offshore region,119
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slip upper boundary

inlet outlet

wallwall

Figure 1. The simulation domain just after initialization as a function of nondimensional
horizontal 𝑥/ℎ0 and vertical 𝑧/ℎ0 coordinates. The brown region represents the bathymetry,
the aqua blue is water, the air-sea interface is indicated by the black curve, and air vorticity
is given by the colorbar. The deeper flat water depth at 𝑥/ℎ0 < 30 has depth ℎ0 such that
the bed is located at 𝑧/ℎ0 = −1. The shallow flat region has depth ℎ𝑠/ℎ0 = 0.371, and the
bathymetric slope connecting these two regions has slope 𝛽 = 0.0693. The solitary wave
initial condition parameters are 𝑎0/ℎ0 = 0.6 and 𝑥0/ℎ0 = 15. The height of the air domain
is ℎ𝑎/ℎ0 = 10. This example is for onshore wind and Re∗ = 2400. The air inlet and outlet
boundary conditions, together with the slip upper boundary condition are noted. The air
vorticity is from the initial condition derived from the air-only precursor simulation.

the bathymetry is flat with depth ℎ0 and the total cross-shore (𝑥) domain size is 𝐿𝑥 = 60ℎ0. The120

offshore flat bathymetry extends for a 𝑥/ℎ0-distance of 30. At 𝑥/ℎ0 = 30, the bathymetry slopes121

upward with a slope of 𝛽 = 0.0693 over a 𝑥/ℎ0-distance of 9.08 to a shallow depth ℎ𝑠/ℎ0 = 0.371,122

which then extends a 𝑥/ℎ0-distance of nearly 20. The bathymetric slope is a key non-dimensional123

parameter well understood to affect overturn shape (e.g. Grilli et al. 1997; Mostert & Deike124

2020; O’Dea et al. 2021). Here, 𝛽 is held fixed to the Surf Ranch bathymetric slope projected in125

the direction of wave propagation (Feddersen et al. 2023) in order to isolate the wind-effects on126

overturning shape. The bathymetry has a no-slip boundary condition for fluid velocity. At the ends127

of the model domain at 𝑥 = 0 and 𝑥/ℎ0 = 60, vertical walls extend from the bathymetry to the still128

water depth at 𝑧/ℎ0 = 0, with associated 𝑢 = 0 and no-slip boundary conditions. The air domain129

extends vertically from the water surface (mostly near 𝑧/ℎ0 = 0) to 𝑧/ℎ0 = ℎ𝑎/ℎ0 = 10, where130

a “ceiling”, with a free-slip boundary condition, is placed on the domain (figure 1). Between131

0 < 𝑧/ℎ0 < 10, at the left and right boundaries (𝑥/ℎ0 = 0 and 𝑥/ℎ0 = 60, figure 1) open boundaries132

allow for air flow in and out of the domain. The inlet and outlet location vary depending on the133

wind direction. For onshore winds, the left side is the inlet and for offshore winds, the right side is134

the inlet. A Neumann condition is placed on the dynamic pressure, 𝜕𝑝/𝜕𝑥 = 0, on the inlet, and a135

Dirichlet dynamic pressure condition 𝑝 = 0 is placed on the outlet, both uniformly in the vertical.136

2.1.2. Water Solitary Wave Initial Condition and Wave-related Nondimensional Parameters137

The simulation free surface initial condition 𝜂0 is a solitary wave solution to the KdV equation138

(e.g. Ablowitz 2011),139

𝜂0 (𝑥) = 𝑎0 sech2

(
(𝑥 − 𝑥0)
ℎ0

(
3𝑎0/ℎ0

4(1 + 𝑎0/ℎ0)

)1/2
)
, (2.3)
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that is formally a water wave solution for small 𝑎0/ℎ0. The water velocity initial condition140

associated with this free surface is,141

𝑢(𝑥) = 𝐶𝜂(𝑥)
ℎ0 + 𝜂(𝑥)

𝑤(𝑥, 𝑧) = 𝐶 𝑧 + ℎ0

ℎ0 + 𝜂(𝑥)

(
𝜕𝜂

𝜕𝑥
(𝑥)

) (
1 − 𝜂(𝑥)

ℎ0 + 𝜂(𝑥)

)
,

(2.4)

where 𝐶 =
√︁
(𝑔ℎ0) (1 + 𝑎0/ℎ0) is the solitary wave propagation speed, and the vertical velocity is142

derived from continuity. For all simulations, the non-dimensional solitary wave amplitude is set143

similar to that generated at the Surf Ranch (Feddersen et al. 2023) at 𝑎0/ℎ0 = 0.6 and the center144

of the solitary wave is located at 𝑥0/ℎ0 = 15 (figure 1), implying a non-dimensional propagation145

speed 𝐶̃ = 𝐶/
√︁
𝑔ℎ0 = 1.265.146

Once the simulation starts, the solitary wave propagates in the +𝑥 direction with speed close147

to 𝐶̃ and adjusts, as the initial condition (2.3 & 2.4) is not an exact solution of the two-phase148

Navier-Stokes equations. However, this initial condition generates minor trailing transients (Mostert149

& Deike 2020), which nonetheless do not affect shoaling or overturning characteristics. The150

solitary wave then shoals over the rapidly varying bathymetry and eventually overturns in the151

shallow flat region (figure 1). From the initial condition solitary wave parameters, a wave Reynolds152

number is defined as (Mostert & Deike 2020; Boswell et al. 2023)153

Rew =

√︃
𝑔ℎ3

0

𝜈𝑤
(2.5)

where 𝜈𝑤 = 𝜇w/𝜌w is the kinematic viscosity of water, and the linear shallow water phase154

speed
√︁
𝑔ℎ0 and offshore depth ℎ0 are used as velocity and length-scales. Here, as in previous155

studies (Mostert & Deike 2020; Boswell et al. 2023), we keep the wave Reynolds number fixed at156

Rew = 4 × 104. The Bond number Bo is also an important nondimensional parameter tracking the157

importance of surface tension. For a solitary wave, Bo is defined as (Mostert & Deike 2020),158

Bo =
(𝜌w − 𝜌a)𝑔ℎ2

0
𝜎

(2.6)

where ℎ0 is chosen as the length-scale because solitary wave width scales with the water depth159

(2.3). Here, we have a fixed Bo = 4000 slightly larger than the Bo = 1000 used in previous160

shoaling and breaking solitary wave studies (Mostert & Deike 2020; Boswell et al. 2023). A161

nondimensional time is defined as162

𝑡 =

(
𝑔

ℎ0

)1/2
𝑡, (2.7)

with 𝑡 = 0 defined at moment when the solitary wave begins propagating. Variables with a tilde163

denote nondimensional variables.164

2.1.3. Air Initial Condition165

The air-phase initial condition used for the shoaling solitary wave problem is defined by first166

running an air-phase-only precursor simulation (described in more detail in Appendix A) analogous167

to the precursor simulation of Wu et al. (2022). The precursor simulation solves for the airflow168

over a solitary wave in a reference frame of the solitary wave propagating with constant speed,169

with no-slip boundary conditions at the wave surface matching the solitary wave fluid velocity170

(2.4).This choice of boundary conditions at the wave surface in the precursor simulation ensures171

that, at the beginning of the two-phase shoaling simulation, the air-phase velocity field is consistent172

with a moving solitary wave. To force the wind, the air-only simulation has an external, spatially173
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and temporally uniform pressure gradient applied, specified by a nominal friction velocity 𝑢∗174

𝜕𝑝

𝜕𝑥
=
𝜌a𝑢∗ |𝑢∗ |
ℎ𝑎

. (2.8)

We characterize the airflow with a wind Reynold number (Wu et al. 2022)175

Re∗ =
𝑢∗ℎ𝑎
𝜈𝑎

, (2.9)

where 𝜈𝑎 is the kinematic viscosity of air and ℎ𝑎/ℎ0 = 10 is the thickness of the undisturbed air176

layer. For offshore winds (air flow opposite of solitary wave propagation direction), 𝑢∗ is negative177

as is the resulting Re∗. The velocity field in the air phase at the conclusion of the precursor178

simulation is then used as the initial condition for the shoaling wave problem, which solves the179

full two-phase system in a fixed reference frame. During the two-phase simulations, the forcing180

pressure gradient discussed above is removed. As the solitary wave fully overturns for all Re∗ by181

𝑡 = 21, the wind does not have sufficient time to decelerate in any meaningful way.182

2.1.4. Recapitulation of Nondimensional Parameters183

The simulations are performed in nondimensional variables and coordinates. Most of the184

nondimensional parameters are held fixed and key fixed parameters are recapitulated here. The185

air-water density ratio is 𝜌a/𝜌w = 0.001. The air-water dynamic viscosity ratio is 𝜇a/𝜇w = 0.018.186

The initial solitary wave amplitude is 𝑎0/ℎ0 = 0.6 corresponding to a wave Reynolds number187

of Rew = 4 × 104. The beach slope is 𝛽 = 0.0693. Note, for a kinematic viscosity of water188

𝜈𝑤 = 10−6 m2 s−1, the wave Reynolds number implies a ℎ0 = 0.055 m, a solitary wave amplitude189

of 𝑎0 = 0.033 m, and a solitary wave speed of 𝐶 = 0.93 m s−1. For the field scale solitary waves190

at the Surf Ranch (Feddersen et al. 2023), the equivalent Rew = 1.4 × 107. Here, the Bo = 4000191

is four times larger than that previously in shoaling and breaking solitary wave studies (Mostert192

& Deike 2020; Boswell et al. 2023). We note that the Bond number for the field scale solitary193

waves at the Surf Ranch is Bo = 3.6 × 105, almost a factor 100× larger than used here. Thus, the194

present simulations are not at field scale with respect to viscous effects or surface tension effects,195

which will be explored in the Discussion. The nondimensional wind friction velocity Re∗ (2.9)196

is hypothesized to be important in setting wind effects on overturning shape and is varied over197

Re∗ = {−1800,−1200,−600, 0, 600, 1200, 1800, 2400}.198

2.1.5. Adaptive Mesh Refinement and Convergence199

Basilisk uses adaptive mesh refinement (AMR) to reduce computational cost. Refinement is200

based on the error of the velocity, VOF field, and solid boundary approximation, using a wavelet201

estimation algorithm. The AMR approach used in Basilisk is described in van Hooft et al. (2018)202

. The Basilisk domain is a 𝐿𝑥/ℎ0 × 𝐿𝑥/ℎ0 square, with quadtree subdivision, ensuring that all203

grid cells are square. A maximum of 14 levels of refinement was chosen so that the effective204

minimum mesh size becomes Δ𝑥/ℎ0 = (𝐿0/ℎ0)/214 = 3.7 × 10−3, corresponding to a minimum205

dimensional mesh size of 0.2 mm, for a dimensional depth of ℎ0 = 0.055 m. Although the domain206

is a square, the vertical domain of interest is about 1/6 of the total vertical domain. The bathymetry207

is embedded as a bottom boundary condition within the domain, and the domain below the208

bathymetry remains essentially unresolved reducing computational cost.209

Previous studies with Basilisk of breaking solitary waves (Mostert & Deike 2020; Boswell210

et al. 2023) found that for similar size model domains (𝐿𝑥/ℎ0 = 50), the model solutions were211

grid-converged across both pre- and post-wave breaking regimes at 14 levels of refinement. Here,212

we are only interested in the model solutions up until the point that the overturning jet impacts the213

water surface in front of it, that is pre-breaking. In terms of refinement, the pre-breaking regime is214

much less demanding. As in figure 1, the scales of the 2D wind turbulence are not small. Therefore215

with 14 levels of refinement, the pre-breaking solution is expected to be converged.216
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Figure 2. Nondimensional 𝑥- and time-averaged wind speed ⟨𝑈̄⟩/𝐶 (2.14) versus wind
Reynolds number Re∗ (2.9) at heights 𝑧/ℎ0 = 6 (blue) and 𝑧/ℎ0 = 2 (green diamonds).

2.1.6. Model output217

Model output is stored every Δ𝑡 = 0.05 for 𝑡 < 18 and every Δ𝑡 = 0.01 for 𝑡 ⩾ 18 to ensure218

that the wave overturn is temporally well-resolved in the model output. From model output, fluid219

volume fraction 𝑓 , velocity, vorticity, pressure are estimated on a regular grid over the domain. In220

addition, the air-water interface 𝜂, as well as interface velocities are output at the AMR resolution.221

Pressure at the interface can be noisy due to the surface tension term. Thus interface air pressure222

is estimated in the air, a distance Δ = 0.01 normal to the surface interface. This distance is223

approximately 2.7× the minimum grid resolution at 14 levels of refinement. In addition we also224

output 𝑢 and 𝑤 in the air on a diamond stencil centered on the location of pressure with stencil225

leg distance 0.004 that allow 2nd order estimates of 𝜕𝑢/𝜕𝑥, 𝜕𝑢/𝜕𝑧, 𝜕𝑤/𝜕𝑥 and 𝜕𝑤/𝜕𝑧 over a226

separation of 0.008. As the wave propagates and shoals, most of the time the air-water interface 𝜂227

is single-valued with 𝑥/ℎ0. Once the overturning jet forms, 𝜂 is no longer single valued. For the228

times when single-valued, we define 𝜂(𝑥, 𝑡) as the air-water interface. Nondimensional water and229

air kinetic (𝐾w, 𝐾a) and potential (𝑃w, 𝑃a) energies are estimated as (e.g. Mostert et al. 2022)230

𝐾w,a =

∫
𝑉w,a

𝜌

2
|u|2d𝑉, 𝑃w,a =

∫
𝑉w,a

𝜌𝑔𝑧d𝑉. (2.10)

where the integrals are over the water or air regions, respectively. The potential energy is referenced231

relative to the potential energy at 𝑡 = 0. The water and air energy (kinetic plus potential) is thus232

𝐸w,a = 𝐾w,a + 𝑃w,a. (2.11)

Nondimensional water energy 𝐸̃w is then given by233

𝐸̃w =
𝐸w

𝜌𝑤𝑔ℎ
3
0
. (2.12)

2.2. Relationship between wind speed and wind Reynolds number Re∗234

Before describing the evolution of the shoaling and overturning solitary wave under the effect235

of varying wind, we examine the dependence of model air velocity (wind) to Re∗. We will average236

the air velocity to have a single wind metric to compare with Re∗. The first averaging operator is237
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the model-domain 𝑥-averaged wind velocity 𝑈̄ (𝑧/ℎ0, 𝑡), defined as,238

𝑈̄ (𝑧/ℎ0, 𝑡) =
1

𝐿𝑥/ℎ0

∫ 𝐿𝑥/ℎ0

0
𝑢(𝑥/ℎ0, 𝑧/ℎ0, 𝑡) d(𝑥/ℎ0) (2.13)

where 𝐿𝑥/ℎ0 = 60 is the length of the model domain (figure 1). As will be seen, the earliest239

solitary wave overturning occurs at 𝑡 = 19.13. Thus, we define the period for time-averaging over240

1 < 𝑡 < 19, which represents time-period of solitary wave evolution prior to overturning. During241

this time-period, the wind was largely steady. The time- and 𝑥-averaged air velocity ⟨𝑈̄⟩ is defined242

as243

⟨𝑈̄⟩(𝑧/ℎ0) =
1
18

∫ 19

1
𝑈̄ (𝑧/ℎ0, 𝑡) d𝑡, (2.14)

is only a function of the vertical 𝑧/ℎ0, and is evaluated only for 𝑧/ℎ0 ⩾ 1 which is always air. We244

define the nondimensional wind speed as ⟨𝑈̄⟩/𝐶.245

We compare Re∗ and ⟨𝑈̄⟩/𝐶 at two vertical locations 𝑧/ℎ0 = {2, 6} (figure 2). The first246

location 𝑧/ℎ0 = 2 is representative of near-surface wind but is still at least two solitary wave247

amplitudes 𝑎0/ℎ above the air-water interface. The second 𝑧/ℎ0 = 6 represents the height of wind248

measurements in the field-scale experiments (Feddersen et al. 2023). For 𝑧/ℎ0 = 6, ⟨𝑈̄⟩/𝐶 is249

largely linear with Re∗ (figure 2, circles) with ⟨𝑈̄⟩/𝐶 = 3.8 for Re∗ = 2400 and ⟨𝑈̄⟩/𝐶 = −2.8 for250

Re∗ = −1800. The linear relationship indicates that the stress is not due to turbulence and that251

Re∗ is a proxy for ⟨𝑈̄⟩/𝐶. At 𝑧/ℎ0 = 2, ⟨𝑈̄⟩/𝐶 is slightly weaker than at 𝑧/ℎ0 = 6 and has a weak252

quadratic trend (green diamonds in figure 2) with ⟨𝑈̄⟩/𝐶 = 3.5 at Re∗ = 2400 and ⟨𝑈̄⟩/𝐶 = −2.5253

at Re∗ = −1800. At both 𝑧/ℎ0, the model ⟨𝑈̄⟩/𝐶 range is larger than in field-scale observations254

where significant wind-effects on wave overturns occurred over −1.2 < 𝑈/𝐶 < 0.8. Based on255

the ⟨𝑈̄⟩/𝐶 and Re∗ relationship (figure 2), this corresponds to |Re∗ | < 1200. Although modeling256

results will be analyzed using Re∗, we will keep this relationship in mind.257

3. Results258

3.1. Description of solitary wave transformation under wind259

We now present qualitative features of the solitary wave shoaling for the strongest onshore260

(Re∗ = 2400) and offshore (Re∗ = −1800) wind (figure 3) at two different times during shoaling.261

For both Re∗, the modeled solitary wave speed is slightly faster than the small 𝑎0/ℎ0 analytic262

𝐶̃ = 1.265. Onshore and offshore wind implies wind blowing in the +𝑥 and −𝑥 directions,263

respectively. The conventions used are as follows. Front and back of the solitary wave are in264

relation to the direction of +𝑥 solitary wave propagation. Upstream and lee of the solitary wave265

are in relation to the airflow direction. At 𝑡 = 14.0, the Re∗ = 2400 solitary wave has propagated266

up the slope and has amplified from initial amplitude 𝑎0/ℎ0 = 0.6 to a peak 𝜂pk/ℎ0 = 0.71 at267

𝑥pk/ℎ0 = 33.2 (figure 3a). Wind is in the direction of solitary wave propagation and is faster than268

the solitary wave speed with ⟨𝑈̄⟩/𝐶 ≈ 3.4 at at 𝑧/ℎ0 = 2 (figure 2). The shoaling solitary wave has269

also changed shape asymmetrically, characteristic of shoaling solitary waves (e.g. Knowles & Yeh270

2018; Mostert & Deike 2020; Zdyrski & Feddersen 2022). The asymmetric front-face minimum271

steepness (slope) min(𝜕𝜂/𝜕𝑥) = −0.46 and the back-face maximum slope |𝜕𝜂/𝜕𝑥 | = 0.32, both272

larger than initial solitary wave maximum slope magnitude |𝜕𝜂/𝜕𝑥 | = 0.25, indicate solitary wave273

shoaling. Upstream of the solitary wave, the airflow is laminar with the strongest negative vorticity274

concentrated at the air water interface. In the lee of the solitary wave, the airflow has separated and275

strong turbulence and turbulent ejections are present near the front face of the wave with positive276

and negative nondimensional vorticity near 10. At 𝑡 = 14.00, the Re∗ = −1800 solitary wave277

has propagated up the slope with maximum 𝜂pk/ℎ0 = 0.68 at 𝑥pk/ℎ0 ≈ 33.0 (figure 3b), slightly278

slower than for the Re∗ = 2400 simulation. The wind blows counter the direction of solitary279



9

-1

0

1

2

3

4

-10

0

10

-1

0

1

2

3

4

-10

0

10

-1

0

1

2

3

4

20 25 30 35 40 45

-1

0

1

2

3

4

Figure 3. The solitary wave in water (aqua blue) shoaling over the bathymetry (brown) with
overlaid air vorticity as a function of horizontal 𝑥/ℎ0 and vertical 𝑧/ℎ0 coordinates for times
(a,b) 𝑡 = 14 and (c,d) 𝑡 = 18.30 for (a,c) strong onshore wind Re∗ = 2400 and (b,d) strong
offshore wind Re∗ = −1800. The air-water interface is indicated by the black curve.
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wave propagation and at 𝑧/ℎ0 = −2 the nondimensional wind speed is ⟨𝑈̄⟩/𝐶 ≈ −2.4 (figure 2).280

Upstream, the airflow is laminar with strongest positive vorticity near the air water interface. In281

the lee of the solitary wave, the airflow separates with a trail of quasi-regular vortices ejected282

off of the back face of the wave, that are smaller than that for the onshore wind case (figure 3a).283

The offshore-wind solitary wave has weaker front face minimum slope min(𝜕𝜂/𝜕𝑥) = −0.37284

and weaker maximum rear face slope |𝜕𝜂/𝜕𝑥 | = 0.31, relative to the onshore wind case. These285

differences in solitary wave slope between Re∗ = 2400 and Re∗ = −1800 suggest the wind is at286

𝑡 = 14.0 already having an effect on the solitary wave.287

Later at 𝑡 = 18.30, the differences between the Re∗ = 2400 and Re∗ = 1800 solitary wave are288

even starker. At 𝑡 = 18.30, the Re∗ = 2400 solitary wave peak is located at 𝑥pk/ℎ0 ≈ 39.2 and289

has transformed substantially (figure 3c). The overturning jet has just formed as the front face290

slope goes beyond vertical with maximum 𝜂/ℎ0 = 0.74 and infinite maximum steepness. The back291

face, with maximum |𝜕𝜂/𝜕𝑥 | = 0.3, is even more gently sloped than the back-face at 𝑡 = 14.0.292

The airflow is laminar upstream of the solitary wave, and the airflow separates on the front face293

of the wave with recirculating vortices. At 𝑡 = 18.30, the Re∗ = −1800 solitary wave is quite294

different from the Re∗ = 2400 solitary wave. The solitary wave peak is located at 𝑥pk/ℎ0 = 39.0295

with maximum height 𝜂pk/ℎ0 = 0.74 and although the front-face has steepened significantly with296

maximum steepness of |𝜕𝜂/𝜕𝑥 | = 2.15, the overturning jet has not yet formed (figure 3d). The297

back-face maximum slope is much weaker at |𝜕𝜂/𝜕𝑥 | = 0.3. The upstream airflow is laminar, but298

the airflow separation near the crest is more intense than at 𝑡 = 14.0 as the wave is steeper and299

lee vortices continue to be shed. The differences in the shoaling solitary wave for onshore and300

offshore wind both during shoaling (𝑡 = 14.0) and the stronger differences at- or near-overturning301

at (𝑡 = 18.30) demonstrate wind-effects on solitary wave shoaling.302

3.2. Statistics of solitary wave shoaling under wind303

We next examine statistics of soliton shoaling under wind. As before, 𝜂pk/ℎ0 is the peak of304

the air-water interface associated with the solitary wave, with horizontal location 𝑥pk/ℎ0. The305

minimum slope on the front face of the solitary wave is defined as min(𝜕𝜂/𝜕𝑥). We also examine306

the nondimensional water energy 𝐸̃w (2.12). These parameters are estimated from 𝑡 = 11 to307

𝑡 = 17.9 corresponding to the time when shoaling on the slope commences to just prior to when308

the Re∗ = 2400 slope goes vertical.309

For all cases 𝑥pk/ℎ0 is essentially linear function of 𝑡 (figure 4a), indicating a constant propagation310

speed as the solitary wave propagates over the rapidly varying bathymetry. The lack of solitary311

wave deceleration is similar to other model simulations over rapidly varying bathymetry (Guyenne312

& Grilli 2006) and observations at the Surf Ranch (Feddersen et al. 2023). For both Re∗, a313

least-squares fit between time and 𝑥pk/ℎ0 yields skill exceeding 𝑟2 = 0.9996. For Re∗ = 2400,314

the fit solitary wave speed is 𝐶̃ = 1.33. For Re∗ = −1800, the fit solitary wave speed 𝐶̃ = 1.32315

is slightly slower, indicating that wind has only a small effect on propagation speed. Both fit316

speeds are slightly larger than the theoretical solitary wave speed of 𝐶̃ = 1.265. Prior to shoaling,317

the solitary wave has already adjusted from the initial condition of 𝑎0/ℎ = 0.6 to a larger value318

near 𝜂pk/ℎ0 ≈ 0.68 for both Re∗ (figure 4b). As the solitary wave shoals up the steep slope,319

𝜂pk/ℎ0 slowly grows and even close to overturning, 𝜂pk/ℎ0 is still < 0.77. Overall, the solitary320

wave amplitude shoaling (𝜂pk/𝑎0) is slightly slower than Green’s law (ℎ/ℎ0)−1/4 consistent with321

the large-slope and significant nonlinearity regime of Knowles & Yeh (2018). The Re∗ = 2400322

solitary wave does have larger 𝜂pk/ℎ0 during much of shoaling but as the solitary wave steepens323

significantly near 𝑡 = 17.9, the 𝜂pk/ℎ0 reduces slightly as overturning nears. Similar features can324

be seen in the simulations of Grilli et al. (1997).325

The wave energy 𝐸̃w has small changes during shoaling (11 < 𝑡 < 17.9) between Re∗ = 2400326

and Re∗ = −1800 (figure 4c). At 𝑡 = 11, 𝐸̃w is slightly (two percent) larger (𝐸̃w = 0.554) for327

Re∗ = 2400 relative to Re∗ = −1800 (𝐸̃w = 0.542). For Re∗ = −1800, 𝐸̃w decays weakly to328
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Figure 4. Statistics of solitary wave shoaling under wind versus nondimensional time 𝑡
for Re∗ = 2400 and Re∗ = −1800: (a) horizontal location of peak water elevation 𝑥pk/ℎ0,
(b) maximum water elevation 𝜂pk/ℎ0, (c) nondimensional water energy 𝐸̃w (2.11) and
(d) minimum air-sea interface slope min(𝜕𝜂/𝜕𝑥). The time period shown 11 < 𝑡 < 17.9
corresponds to solitary wave shoaling on the slope until just prior to the slope going vertical
for Re∗ = 2400.

𝐸̃w = 0.532 at 𝑡 = 17.9, reflecting both the offshore wind slowly extracting energy from the solitary329

wave and small viscous dissipation at the wave Reynolds numer Rew = 4 × 104. For Re∗ = 2400,330

the wave energy 𝐸̃w is essentially constant during shoaling with 𝐸̃w = 0.553 at 𝑡 = 17.9, as small331

onshore wind energy input and weak viscous dissipation largely balance. Overall, for these extreme332

Re∗, energy transfer between wind and the solitary wave over this short duration of shoaling is333

weak.334

Unlike 𝜂pk/ℎ0 and 𝐸̃w, the minimum slope min(𝜕𝜂/𝜕𝑥) evolves significantly during shoaling335

with strong differences between Re∗ = 2400 and Re∗ = −1800 (figure 4d). At 𝑡 = 11, min(𝜕𝜂/𝜕𝑥) ≈336

−0.36 for both Re∗ with slightly more negative min(𝜕𝜂/𝜕𝑥) for Re∗ = 2400. As discussed in337

Section 3.1, by 𝑡 = 14, the differences in min(𝜕𝜂/𝜕𝑥) between the two Re∗ have grown substantially338

with min(𝜕𝜂/𝜕𝑥) = −0.46 for Re∗ = 2400 and min(𝜕𝜂/𝜕𝑥) = −0.37 for Re∗ = −1800. For both339

Re∗, min(𝜕𝜂/𝜕𝑥) continues to evolve rapidly with large differences between Re∗ for 𝑡 > 15.340

For example, by 𝑡 = 17.0 the Re∗ = 2400 min(𝜕𝜂/𝜕𝑥) = −0.98 whereas the Re∗ = −1800341

min(𝜕𝜂/𝜕𝑥) = −0.73 is smaller in magnitude. Shortly thereafter at 𝑡 = 17.9, min(𝜕𝜂/𝜕𝑥) = −1.61342
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Figure 5. Overturning solitary wave (aqua blue) at the moment of overturning jet impact on
the water surface, with the bathymetry (brown) and overlaid air vorticity as a function of
horizontal 𝑥/ℎ0 and vertical 𝑧/ℎ0 coordinates: (a) Onshore wind Re∗ = 2400 and 𝑡 = 19.13,
(b) no wind, Re∗ = 0 and 𝑡 = 19.96, and (c) offshore wind Re∗ = −1800 and 𝑡 = 20.22. The
air-water interface is indicated by the black curve.

and −1.13 for Re∗ = 2400 and 1800, respectively, indicating the rapid evolution. These strong343

differences in min(𝜕𝜂/𝜕𝑥) for the two Re∗ indicate wind effects during shoaling.344

3.3. The moment of overturning jet impact345

We examine the moment in time when the overturning jet impacts the water surface in front of346

it for three different wind speeds (figure 5). The time of impact is defined as the earliest time at347

which the vertical separation between the lowest part of the overturning jet and the water surface348

below it is Δ𝑧/ℎ0 ⩽ 0.015, or 2.5% of the initial solitary wave amplitude 𝑎0/ℎ0 = 0.6. This is also349

about 4× the minimum model resolution of Δ𝑧/ℎ0 = 3.7 × 10−3 at 14 levels of refinement. With350
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Figure 6. Overturning solitary wave (aqua blue) at the moment of overturning jet impact on
the water surface with overlaid air vorticity as a function of horizontal 𝑥/ℎ0 and vertical
𝑧/ℎ0 coordinates for the Re∗ = 2400 case and definitions for the geometrical properties of
the overturning wave. The air-water interface is represented by the black curve. The magenta
diamond indicates the nondimensional breakpoint location 𝑥bp/ℎ0 and the yellow diamond
indicates the nondimensional breaking wave height 𝐻b/ℎ0. The red curve indicates the
enclosed overturn region with area 𝐴o/ℎ2

0, and the gray region indicates the overturning jet
area 𝐴J/ℎ2

0. The dashed red lines schematize the length 𝐿 and width𝑊 of the overturn. The
overturn orientation relative to horizontal 𝜃o is indicated.

this time of impact definition, the jet is just about to impact but has not quite yet. The breakpoint351

location 𝑥bp/ℎ0 is defined as the horizontal location of smallest Δ𝑧/ℎ0. At the time resolution of352

model output Δ𝑡 = 0.01, occasionally the impact time is chosen when the jet has just made contact353

with the surface below, and then 𝑥bp/ℎ0 is defined as the smallest location to cross 𝑧/ℎ0 = 0. This354

breakpoint location definition is analogous to that used in Feddersen et al. (2023).355

For Re∗ = 2400, the moment of jet impact occurs at 𝑡 = 19.13 making contact at 𝑥bp/ℎ0 = 40.85356

(figure 5a). The overturn has the classical parametric cubic shape (Longuet-Higgins 1982) seen in357

both models and observations of wave overturning. The Re∗ = 2400 overturning jet is relatively358

thin and the overturn orientation is relatively inclined. For Re∗ = 0, overturning-jet impact occurs359

at 𝑡 = 19.96 at 𝑥bp/ℎ0 = 42.05 (figure 5b), farther onshore and later than for Re∗ = 2400. Relative360

to Re∗ = 2400, the Re∗ = 0 maximum height of the wave is slightly reduced, the overturning jet is361

thicker, and the overturn is longer and oriented more horizontal. Although, in the fixed reference362

frame, the air velocity is essentially zero at 𝑧/ℎ0 ⩾ 2 (figure 2), as the solitary wave moves with363

speed near 𝐶̃, the relative air velocity is substantial, and vortices are shed behind the overturning364

solitary wave. For Re∗ = −1800, the overturning jet impact occurs even later at 𝑡 = 20.22 and is365

located at 𝑥bp/ℎ0 = 42.25 (figure 5c). Relative to Re∗ = 0, the Re∗ = −1800 has an even thicker366

overturn jet and a longer overturn, which is oriented even more horizontally. The farther offshore367

overturning jet-impact with onshore wind (Re∗ = 2400) relative to offshore wind (Re∗ = −1800)368

is consistent with laboratory (Douglass 1990) and field scale experiments (Feddersen et al. 2023)369

experiments.370

We note in passing that a vortex street is visible in the lee of the overturning wave in figure 5c.371

This is the wake of a small droplet torn from the crest of the wave during the initial stage of372

overturning. Such droplets occasionally appear in the simulations we present, but we do not373
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consider them in detail as they do not have great physical significance in our 2D setting, and they374

do not discernibly affect the evolving breaker.375

3.4. Definition of Geometrical Parameters of Wave Overturning376

Next, we define geometrical parameters of the overturning wave at the moment of jet-impact377

for the Re∗ = 2400 case (figure 6) following the methodology used in the experimental study378

over wave overturning (Feddersen et al. 2023). The first geometrical parameter is the breakpoint379

location 𝑥bp/ℎ0 (magenta diamond in figure 6). The breaking wave height 𝐻b/ℎ0 is defined as the380

maximum elevation of the air-water interface (yellow diamond in figure 6), as no trough is present381

in front of the solitary wave, i.e., 𝑧/ℎ0 = 0 (figure 3, 5). The overturn boundary enclosing the air382

within the overturn (red curve in figure 6) has area 𝐴o/ℎ2
0 (figure 6). The region of the overturning383

jet is the defined as the upper region of water where the air-water interface is multi-valued in 𝑥/ℎ0,384

with area 𝐴J/ℎ2
0 (gray region in figure 6). Note, overturning jet area was not measured in previous385

studies. As done previously for overturn area (O’Dea et al. 2021; Feddersen et al. 2023), both386

overturn area and jet area are normalized by 𝐻b/ℎ0 so that analysis is performed on 𝐴o/𝐻2
b and387

𝐴J/𝐻2
b . The overturn boundary has shape similar to the functional form (Longuet-Higgins 1982)388

used previously to fit laboratory and field measured wave overturns (e.g. Blenkinsopp & Chaplin389

2008; O’Dea et al. 2021; Feddersen et al. 2023). Overturn length 𝐿 and width𝑊 (figure 6) are390

estimated by rotating the overturn boundary by the overturn angle 𝜃o (figure 5) to the horizontal391

and fitting to the functional form (Longuet-Higgins 1982)392

𝑧′

𝑊
= ±3

√
3

4

√︂
𝑥′

𝐿

(
𝑥′

𝐿
− 1

)
, (3.1)

where the 𝑥′ and 𝑧′ coordinates are oriented along and across the overturn, and 𝐿 and𝑊 are the393

overturn length and width (figure 7).394

3.5. Geometrical Parameters dependence on Wind395

Across all Re∗, 𝑥bp/ℎ0 varies from 40.9 to 42.2 with smaller 𝑥bp/ℎ0 (farther offshore) for396

increasing Re∗ as in figure 5. To highlight wind effects, we define a demeaned breakpoint location397

as398

Δ𝑥bp

ℎ0
=

⟨𝑥bp⟩
ℎ0

−
𝑥bp

ℎ0
, (3.2)

where ⟨⟩ is an average over the eight simulations at different Re∗. Thus, positive Δ𝑥bp/ℎ0 is farther399

offshore, consistent with previous experiment work (Douglass 1990; Feddersen et al. 2023). From400

no-wind (Re∗ = 0) to onshore wind (positive Re∗), Δ𝑥bp/ℎ0 increases rapidly from -0.2 to 0.9,401

with the largest increase at larger Re∗ (figure 7a). From no-wind to offshore wind (negative Re∗),402

Δ𝑥bp/ℎ0 decreases more slowly with Re∗ than for onshore wind reaching Δ𝑥bp/ℎ0 = −0.4 at403

Re∗ = −1800 (figure 7a). This breakpoint dependence on the wind is qualitatively consistent404

with experimental results (Douglass 1990; Feddersen et al. 2023). Normalizing the field-scale405

results of Feddersen et al. (2023) by ℎ0 as we do here, yield observed field-scale Δ𝑥bp/ℎ0 variation406

of ±0.8 consistent with modeled Δ𝑥bp/ℎ0 variation. However, the field-scale variation occurs407

from substantially weaker wind variations than seen in the modeling, as will be discussed. We408

next examine the effect of wind on the breaking wave height 𝐻b/ℎ0. For no wind (Re∗ = 0),409

𝐻b/ℎ0 = 0.64 and for onshore wind 𝐻b/ℎ0 increases to 𝐻b/ℎ0 = 0.674 for Re∗ = 2400 (figure 7b).410

From no wind to offshore wind, the 𝐻b/ℎ0 decreases slightly to 𝐻b/ℎ0 = 0.627. Note that this411

range of 𝐻b/ℎ0 is a reduction relative to the largest values of 𝜂pk/ℎ0 during shoaling (figure 4b),412

similar to potential flow simulations of overturning solitary waves (Grilli et al. 1997).413

We now examine wind effects on nondimensional overturn ara 𝐴o/𝐻2
b (figure 7c). From no-wind414

(Re∗ = 0) to onshore wind, 𝐴o/𝐻2
b decreases from 𝐴o/𝐻2

b = 0.352 at Re∗ = 0 to 𝐴o/𝐻2
b = 0.301415
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aspect ratio𝑊/𝐿, and (e) nondimensional wave jet area 𝐴J/𝐻2

b , (f) overturn angle 𝜃o.

at Re∗ = 2400. From no-wind to offshore wind, 𝐴o/𝐻2
b is relatively constant before decreasing416

slightly to 𝐴o/𝐻2
b = 0.344 at Re∗ = −1800. This relationship with 𝐴o/𝐻2

b and Re∗ is qualitatively417

consistent with field-scale experiment (Feddersen et al. 2023). However, the experimental 𝐴o/𝐻2
b418

varied between 0.2 and 0.4, a larger variation than seen in the model, for weaker wind or Re∗419

variation. Next, we examine the overturn aspect ratio𝑊/𝐿 (figure 7d). For no-wind,𝑊/𝐿 = 0.300420

and increases for onshore wind to 𝑊/𝐿 = 0.381 at Re∗ = 2400. For offshore wind, 𝑊/𝐿 is421

largely constant varying from 0.296 to 0.305. This pattern of increasing𝑊/𝐿 with positive Re∗ is422

inconsistent with the experimental results of Feddersen et al. (2023), who found𝑊/𝐿 decreased423

with increasing onshore wind. Furthermore, the experimental results had larger𝑊/𝐿 range, varying424

from 0.3 to 0.5, larger than the 0.3 to 0.38 modeled variation in𝑊/𝐿.425

We next examine the wind effect on the non-dimensional jet area 𝐴J/𝐻2
b (figure 7e). For no-wind,426
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𝐴J/𝐻2
b = 0.219, which decreases rapidly with onshore wind to 𝐴J/𝐻2

b = 0.132 for Re∗ = 2400.427

For offshore wind, 𝐴J/𝐻2
b is largely constant with Re∗, varying from 0.229 to 0.219. Overturn428

jet area has not been previously examined experimentally or numerically. Lastly, we examine the429

overturn angle 𝜃o (figure 7f). For Re∗ = 0, the overturn angle 𝜃o = 29◦ and this increases with430

onshore wind to 𝜃o = 39◦ for Re∗ = 2400, consistent with the orientations of the overturn seen431

in figure 5a,b. For offshore wind, 𝜃o varies only weakly with negative Re∗. This range of 𝜃o is432

smaller than the 𝜃o ≈ 42◦ ± 8◦ at the Surf Ranch (Feddersen et al. 2023). It is also on the low end433

of 30◦ < 𝜃o < 60◦ reported in surfzone overturning waves (O’Dea et al. 2021).434

3.6. Relative strength of pressure and shear stress435

Airflow can affect the water-based solitary wave via two mechanisms on the air-water interface.436

The first mechanism is through an air-flow induced pressure, and the second mechanism either437

normal or shear viscous stresses. Here we will examine the relative strength of pressure and438

viscous stresses on the air-water interface at a shoaling time just prior to when 𝜂 goes multivalued.439

Henceforth, we will use nondimensional variables indicated with a (̃). As discussed in Section 2.1.6,440

air pressure and velocity gradients are output and estimated at a small nondimensional distance441

Δ = 0.01 normal to the air-water interface. This prevents biases in pressure estimation due to noise442

in air-water interface curvature estimates. From the velocity gradients, the nondimensional viscous443

stress tensor S̃ (in index notation)444

𝑆𝑖 𝑗 = 𝜇̃𝑎

(
𝜕𝑢̃𝑖

𝜕𝑥 𝑗
+
𝜕𝑢̃ 𝑗

𝜕𝑥𝑖

)
(3.3)
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where the nondimensional air dynamic viscosity is 𝜇̃𝑎 = Re−1
w 𝜇a/𝜇w = 4.53 × 10−7. The normal445

(ñ) and parallel (s̃) unit vectors to the air-water interface are also estimated. At the air-water446

interface 𝜂, the viscous normal stress is 𝑓𝑛 = ñ · S̃ · ñ and the viscous shear stress is 𝑓𝑠 = s̃ · S̃ · ñ.447

To isolate the pressure disturbance associated with the solitary wave, the air-water interface448

nondimensional pressure differential Δ𝑝 is estimated as the pressure 𝑝 minus an upstream pressure449

located at Δ𝑥 = ±6 depending on the wind direction.450

We examine the end of the shoaling period at 𝑡 = 18.0, where the Re∗ = 2400 air-water interface451

𝜂 is close to being multivalued. For both Re∗ = 2400 and Re∗ = −1800 the 𝜂(Δ𝑥) profile have452

classic sawtooth shapes with steep front face and a milder-sloped back face (figure 8a,b), with453

steeper front face for Re∗ = 2400 (e.g. figure 4d). For Re∗ = 2400, the windward side of the solitary454

wave (−3 < Δ𝑥 < −1 has mildly elevated 𝑝 ≈ 0.2 × 10−3 (figure 8c) and on the leeward side (in455

front of the wave) a deep low pressure with minimum 𝑝 = −3.7 × 10−3 occurs over 0 < Δ𝑥 < 4.456

This low pressure is associated with the strongly separated flow that occurs many Δ𝑥 in front of457

the wave (figure 3a,b). In contrast, the Re∗ = −1800 simulation has much higher 𝑝 ≈ 1.5 × 10−3
458

on the windward wave face and a deeper low pressure with minimum 𝑝 = −6.3 × 10−3 in the lee459

of the wave (figure 8d). For Re∗ = −1800, the lee low-pressure width (≈ 2Δ𝑥 wide) is half as460

wide as that for Re∗ = 2400 due to the differences flow separation and attachment. On the air-sea461

interface, the magnitude of the viscous stresses relative to pressure are generally small (figure 8e,f).462

For Re∗ = 2400 and Re∗ = −1800, both normal and shear stresses have magnitude < 5 × 10−5,463

roughly a factor of 100× smaller than that of 𝑝. The normal stresses are a factor of 2-3× larger464

than the shear stresses for both Re∗ = 2400 and Re∗ = −1800. The Re∗ = −1800 viscous stresses465

are larger than those of Re∗ = 2400 due to the stronger shear between the wind blowing counter to466

the +Δ𝑥 directed solitary wave velocities.467

This demonstrates that the pressure forces must be those that are influencing changes in wave468

shoaling and overturning. This result at 𝑡 = 18.0 is consistent at other wave shoaling times469

11 < 𝑡 < 18 where pressure variability exceeds viscous stresses by 100×. These results are470

consistent with DNS simulations of wind-wave growth which found pressure about 10× larger471

than viscous stresses (Wu et al. 2022). They also found that pressure forces grew with wave slope472

particularly for smaller wave age, but that viscous forces did not grow. During shoaling, the soliton473

is steeper (4d) than any regime of Wu et al. (2022). Moreover, Wu et al. (2022) investigated a474

lower Re∗, for which viscous forces are likely to be stronger relative to inertial effects than for the475

strongest Re∗ presented here. These observations may explain why our ratio of pressure to viscous476

forces is so strong relative to Wu et al. (2022).477

3.7. The Surface Dynamic Boundary Condition478

With the viscous stresses negligible, we next examine the role of 𝑝 on the air-water interface 𝜂479

using the irrotational flow surface dynamic boundary condition boosted into a moving horizontal480

reference frame Δ𝑥 with constant best-fit speed 𝐶̃ (figure 4a) for the Re∗ = 2400 and Re∗ = −1800481

cases. In the Δ𝑥 reference frame moving with constant speed 𝐶̃, the nondimensional dynamic482

boundary condition is transformed to483

𝜕𝜙

𝜕𝑡
− 𝐶̃𝑢̃ + 1

2
[
𝑢̃2 + 𝑤̃2] + 𝜂 + Δ𝑝 = 𝑇 (3.4)

where 𝜙 is the nondimensional velocity potential, all terms are evaluated at 𝑧 = 𝜂, Δ𝑝 is the484

pressure jump at the surface, and 𝑇 represents the nondimensional surface tension term, for which485

the curvature 𝜅 from (2.1)can be written in terms of the (single-valued) interface 𝜂486

𝑇 = Bo−1 𝜕2𝜂/𝜕 (Δ𝑥)2(
1 + (𝜕𝜂/𝜕 (Δ𝑥))2)3/2 . (3.5)
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Figure 9. Surface dynamic boundary condition terms (3.4) versus Δ𝑥 for (left) Re∗ = 2400
and (right) Re∗ = −1800 and from time 𝑡 = 14.0 (black) to 𝑡 = 18.0 (gold) at Δ𝑡 = 1: (a,b)
𝜂, (c,d) −𝐶̃𝑢̃ (solid) and (1/2) [𝑢̃2 + 𝑤̃2] (dashed), (e,f) the residual term 𝑅̃ (3.6), (g,h) Δ𝑝,
and (i,j) the surface tension term 𝑇 (3.5).
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The change in the solitary wave in the moving reference frame is represented by 𝜕𝜙/𝜕𝑡, and for an487

unchanging solitary wave propagating at 𝐶̃, 𝜕𝜙/𝜕𝑡 = 0. Thus, for Δ𝑝 = 0 and no surface tension,488

the residual489

𝑅̃ = −𝐶̃𝑢̃ + 1
2

[
𝑢̃2 + 𝑤̃2] + 𝜂 (3.6)

is zero for an unchanging solitary wave. Nonzero 𝑅̃ can therefore be interpreted as the signature of490

the wave’s unsteady evolution i.e. of its evolving asymmetry and nonlinear steepening. The terms491

−𝐶̃𝑢̃, (1/2) [𝑢̃2 + 𝑤̃2], and 𝑇 also are evaluated on the air-water interface. The terms of (3.4) are492

analyzed during the latter part of the shoaling phase (14 ⩽ 𝑡 ⩽ 18) when significant differences in493

the minimum slope on the front of the wave face occur (figure 4d) and when 𝜂 is still single-valued.494

During shoaling (𝑡 = 14.0 to 𝑡 = 18.0), both Re∗ = 2400 and Re∗ = −1800 solitary waves evolve495

from a more symmetrical wave to an asymmetrical sawtooth type pattern (figure 9a,b) as maximum496

𝜂 ≈ 0.7 throughout (as in figure 4a). Although subtle differences between the Re∗ = 2400 and497

Re∗ = −1800 solitary waves are evident at 𝑡 = 14.0, by 𝑡 = 18.0, the Re∗ = 2400 solitary wave498

front face is clearly significantly steeper than for Re∗ = −1800, consistent with figure 4d. For both499

Re∗, the peak −𝐶̃𝑢̃ ≈ −1 at 𝑡 = 14.0 which grows in time and becomes more asymmetric (solid,500

figure 9c,d), with Re∗ = 2400 having more growth and asymmetry at 𝑡 = 18.0. For both Re∗ at501

𝑡 = 14.0, the nonlinear term (1/2) [𝑢̃2 + 𝑤̃2] is largely symmetric with maximum of 0.36 and 0.27502

for Re∗ = 2400 and Re∗ = −1800, respectively (dashed, figure 9c,d), indicating wind-induced503

difference in shoaling at this time. This also indicates that the weakly nonlinear assumption is504

starting to be questionable. With increasing time, (1/2) [𝑢̃2 + 𝑤̃2] increases dramatically to values505

of 0.88 and 0.63 at 𝑡 = 18.0 and also becomes asymmetric, indicating strong nonlinearity at this506

time, particularly for Re∗ = 2400.507

Although the 𝜂, −𝐶̃𝑢̃, and (1/2) [𝑢̃2 + 𝑤̃2] terms are 𝑂 (1) (figure 9a-d), the residual term508

𝑅̃, that sums these terms, is an order of magnitude smaller (figure 9g,h). At 𝑡 = 14.0, 𝑅 has a509

minimum of ≈ −0.06 that is slightly more negative and broader for Re∗ = 2400. Although over510

time 𝑅̃ grows broadly in Δ𝑥, for 𝑡 ⩾ 16.0, 𝑅̃ growth is concentrated at the solitary wave’s front511

face (0 ⩽ Δ𝑥 ⩽ 0.7), which attains minimum value of −0.26 and −0.18 for Re∗ = 2400 and512

Re∗ = −1800, respectively. This focussed large 𝑅̃ leads to rapid 𝜙 changes leading to overturning.513

We have already seen the magnitude of pressure term at 𝑡 = 18.0 is Δ𝑝 ≈ 5× 10−3 (figure 8c,d).514

Over time from 14.0 ⩽ 𝑡 ⩽ 18.0, the Re∗ = 2400 Δ𝑝 is negative in the lee of the solitary wave515

(0 < Δ𝑥 < 2) and grows with time (figure 9g). In the lee-region but away from the concentrated516

𝑅̃ (1 < Δ𝑥 < 2), Δ𝑝 can be 10% or more of 𝑅̃ with the same sign, thus enhancing 𝑅̃. From517

14.0 ⩽ 𝑡 ⩽ 18.0, the Re∗ = −1800 Δ𝑝 is also negative in the solitary wave lee (−1.5 ⩽ Δ𝑥 ⩽ 0)518

and grows with time. In this region Δ𝑝 can also be 10% of 𝑅̃, but on the rear-face of the soliton.519

Closer to the time of overturning in the narrow region from 0 ⩽ Δ𝑥 ⩽ 0.7 where 𝑅̃ is concentrated,520

Δ𝑝 is small (1–2%) relative to 𝑅̃. However, the significant Δ𝑝 (≈ 10% of 𝑅) in the lee outside of521

the concentrated region will, during shoaling, induce slowly growing wind-induced differences in522

wave shape that manifest themselves forward in time until the overturning jet impacts.523

As our Bo = 4000 is not at field scale, we also examine the surface tension term 𝑇 (figure 9i,j).524

For 𝑡 ⩽ 16.0, the 𝑇 term is concentrated near Δ𝑥 = 0 and is an order of magnitude smaller than Δ𝑝.525

However, 𝑇 grows rapidly at the later stages of shoaling and by 𝑡 = 18.0, is ≈ 10−3 at Δ𝑥 ≈ 0, still526

small overall relative to Δ𝑝 in the lee, but of the same magnitude as Δ𝑝 at Δ𝑥 ≈ 0 for Re∗ = 2400527

(figure 9i,j). Thus, surface tension effects are generally small but not negligible relative to pressure.528

Relative to the residual 𝑅̃, because 𝑇 is concentrated where 𝑅̃ is concentrated, the surface tension529

term is orders of magnitude smaller than 𝑅̃ for 𝑡 ⩽ 18.0. As the overturning jet forms and falls,530

then surface tension effects will become even more important.531
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Figure 10. Air-water interface height 𝜂/ℎ0 versus 𝑡 at location 𝑥/ℎ0 = 37.5 for Re∗ = 2400
and Re∗ = −1800.

4. Discussion of wind effects on the solitary wave532

4.1. Wave shoaling533

We now discuss the wind effects on wave shoaling statistics (figure 4) in the context of previous534

studies. Zdyrski & Feddersen (2022) derived a vKdV-Burgers equation for soliton shoaling over535

mildy sloping bathymetry with Jeffrey’s style wind forcing (Jeffreys 1925) where the air-water536

interface pressure is proportional to 𝜕𝜂/𝜕𝑥. This equation only applies asymptotically well before537

wave overturning. Although their slope was 3–7× gentler than that here, for offshore to onshore538

wind, their wind-forced solitary wave had qualitatively similar shoaling to those those here,539

particularly the steepness of the front of the wave (figure 4d). This similarity occurs even though540

the air-water interface pressure distribution only has a loose qualitative resemblance to the Jeffrey’s541

style wind forcing. The effect of wind on the solitary wave during shoaling is also qualitatively542

similar to the laboratory experiments with periodic waves and wind with𝑈/𝐶 varying from 0 to 6543

(Feddersen & Veron 2005). At a fixed location, the time evolution of the shoaling wave revealed544

a larger maximum elevation and a temporally-narrower wave than for no wind. Similar features545

were seen in the solutions of Zdyrski & Feddersen (2022) for onshore and offshore wind. Here, we546

examine the temporal evolution of 𝜂/ℎ0 at a location of 𝑥/ℎ0 = 37.5 that is still on the bathymetric547

slope but that has shallowed significantly (figure 10). At this virtual wave gauge, the solitary548

wave has shoaled significantly. At this location, the Re∗ = 2400 solitary wave reaches a maximum549

𝜂/ℎ0 = 0.76 at 𝑡 = 17.15 and decays rapidly (blue curve in Figure 10). The Re∗ = −1800 solitary550

wave initially increases similarly to the Re∗ = 2400 until 𝜂/ℎ0 = 0.4 (orange dashed in figure 10).551

The subsequent maximum 𝜂/ℎ0 = 0.73 is smaller and shifted slightly later in time. The subsequent552

temporal decay is also shifted later such that the temporal width of the solitary wave is wider553

for Re∗ = −1800. This is qualitatively similar to the laboratory experiments (Feddersen & Veron554

2005) and that of the relatively simple vKdV-Burgers equation (Zdyrski & Feddersen 2022) even555

accounting for differences in wind forcing, bathymetry, and periodic versus solitary waves.556

4.2. Wave overturning557

The integrated wind-induced surface pressure effect on the shoaling solitary wave then leads to558

differences in the breakpoint location and the overturn geometrical parameters (figures 6,7). The559

geometrical parameters in the present numerical simulations have similarities and differences to the560

field-scale experiment of Feddersen et al. (2023). The breakpoint location Δ𝑥/ℎ0 and overturn area561

𝐴o/𝐻2
b (figure 7a,c) have similar functional dependence on wind to the field-scale observations.562

However, the aspect ratio𝑊/𝐿 (figure 7d) did not. Furthermore, variation in overturn geometrical563

parameters require a stronger wind in the present simulations than in the field-scale observations.564

Here we explore potential causes for these differences.565
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4.2.1. Wave Reynolds number and Bond number effects566

The Rew = 4 × 104 and Bo = 4000 values in this study are much smaller than the field-scale567

values (Rew = 1.4 × 107 and Bo = 3.6 × 105) of Feddersen et al. (2023) as both Rew and Bo are568

defined in terms of the offshore depth ℎ0. The wave energy decreases noticeably, particularly569

for offshore wind, decreasing 2% from 𝑡 = 11 to 18 for Re∗ = −1800 (Figure 4c). This decrease570

is likely due to viscous dissipation at the bottom and air-water interface boundary layers. The571

boundary layers have thicknesses proportional to Re−1/2
w (Batchelor 1967) which result in an572

exponential wave height decrease with decay constant also proportional to Re−1/2
w (Keulegan573

1948). The present Rew being much smaller than field values results in more dissipation in the574

shoaling wave prior to breaking. This may then indirectly require a stronger ⟨𝑈⟩/𝐶 than in the575

field in order to generate the same geometrical overturn parameters.576

Any Bo effects are strongest at overturning when interface curvature is largest. For deep-water577

breaking Stokes waves, Mostert et al. (2022) observed that Bo did not affect the nonlinear578

steepening processes, but directly modulated the geometrical overturn parameters. That study did579

identify a sufficiently large Bo (defined according to the deep-water breaker wavelength, hence580

different from the definition here) for which surface tension effects ceased to affect the overturn.581

That the surface tension contribution reaches the same order as pressure contribution in the surface582

dynamic boundary condition (Figure 9i,j), implies that surface tension effects are not negligible583

during overturning, and therefore could have some effect on the overturn geometry, potentially584

explaining the different aspect ratio relationship to wind between the present simulations and the585

field experiment. Quantifying potential Rew and Bo effects is left for future work.586

4.2.2. Two dimensional versus three dimensional turbulence587

Two-dimensional simulations are convenient with lower computational cost. They provide a588

good indication of energetic dissipation during wave breaking, as discussed by Iafrati (2009);589

Deike et al. (2015); Mostert et al. (2022) in the context of deep water breakers. However, here we590

are concerned with the wind-induced effects on steepening and overturning solitary wave, which591

depends on the structure of the airflow over the air-water interface. An obvious 2D effect in the592

present simulations is the formation of relatively large, wake vortices for both onshore and offshore593

wind (Figures 3, 5). This air turbulence is constrained to be 2D and and therefore characterized by594

an inverse energy cascade transferring energy from smaller to larger scales. This is in contrast to595

the 3D turbulent airflow in the field-scale experiment of Feddersen et al. (2023), featuring a direct596

cascade where larger eddies rapidly break up to smaller scales. The air-flow separation, wake,597

and reattachment to the solitary wave during wave shoaling would be different between 2D and598

3D turbulence, and certainly result in different pressure forcing at the air-water interface. More599

concretely, for strong onshore wind (Re∗ = 2400, figure 3a,c), the airflow wake has scales of the600

solitary wave height, and flow reattachment occurs many 𝑥/ℎ0 in front of the wave. This results in601

a wake low pressure that is much broader than for offshore wind (figure 9g,h). If the turbulent602

were 3D, flow reattachment would likely occur closer to the wave with the wake low pressure603

region being thus narrower, and particularly for onshore wind, affecting more the wave face. As604

overturning begins, the wake structure would also be different. With the associated different605

air-water interface pressure, the resulting overturn geometry would likely be different. This may606

explain the qualitatively different𝑊/𝐿 dependence on wind between simulations (figure 6d) and607

field experiment as well as simulations requiring a stronger ⟨𝑈̄⟩/𝐶.608

4.2.3. Two versus three dimensional wave overturning609

The present simulations and the field study of Feddersen et al. (2023) have underlying geometrical610

differences in wave overturning. In our simulations, the wave overturn is 2D (e.g. figure 5) which611

can be interpreted as an overturn with infinitely long crest, the entirety of which is simultaneously612
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(a) (b)

Figure 11. Photos of progressively shoaling and overturning solitary waves at the Surf
Ranch: (a) Aerial photo of the obliquely incident solitary wave with arrow indicating a view
into the overturn and (b) photo looking into the progressively overturning solitary wave.
Note the two photos are of different waves. Progressively overturning waves are the norm in
the ocean. Photo credits: (a) Rob Grenzeback, (b) Pat Stacey.

overturning. However, the solitary wave at the Surf Ranch (Feddersen et al. 2023) approaches613

shore obliquely and overturns progressively (figure 11) such that wave overturning is 3D, with614

significant along-crest variation. The wave transitions along-crest from an offshore region where615

𝜂 is single valued, through the process of overturning, ending in a region where the overturn616

void collapses and only foam is present (figure 11). Most depth-limited wave breaking in the617

ocean is 3D. The geometrical differences between 2D and 3D overturning likely result in different618

pressure distributions during overturning. For a 2D overturn, the moment of impact leads to a619

dramatic increase in air pressure (𝑝 = 0.08) trapped by the water of the overturn (figure 12), This620

𝑝 magnitude is 20× to 40× larger than that during shoaling (figure 9). In contrast, a progressive621

3D overturn (as in Feddersen et al. 2023) always has an overturn volume open to one spanwise622

side, inducing a spanwise airflow out of the overturn. This would lead to a pressure drop within the623

overturn, which is not captured in our 2D simulations. The resulting air-water pressure distribution624

would be different during the overturning. This may explain the differences seen between the 3D625

overturning (Feddersen et al. 2023) and the simulated 2D overturning, particularly in the aspect626

ratio𝑊/𝐿.627

4.3. Implications and the overturning jet628

The implications of the wind effects on overturned shoaling and overturning waves was discussed629

in Feddersen et al. (2023). Essentially onshore and offshore wind for the otherwise identical630

wave field will induce changes to wave overturning shape generating different cross-shore wave631

dissipation patterns, turbulence injection, and sediment suspension. Such effects are not accounted632

for in modern coastal engineering wave models. Such wind-induced effects, may then eventually633

affect nearshore morphological evolution. Potential wind effects on turbulence injection can be634

concretely seen in the modeled overturning jet area 𝐴J/𝐻2
b (figure 7e), whose wind effects have635

not been examined previously. Spanning the strongest offshore to onshore wind, 𝐴J/𝐻2
b varies by a636

factor of two, the strongest variation in all the parameters. This 𝐴J/𝐻2
b variation also equates to a637

large variations in potential energy available in the overturn. This will lead to stronger turbulence638

injection and increased sediment suspension near the breakpoint for offshore wind relative to639

onshore wind. Such wind-effects are commonly understood in the surfing community.640
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Figure 12. For Re∗ = −1800 at 𝑡 = 20.22, overturning solitary wave (aqua blue) at the
moment of overturning jet impact on the water surface with overlaid air pressure as a function
of horizontal 𝑥/ℎ0 and vertical 𝑧/ℎ0 coordinates. The air-water interface is indicated by the
black curve. Note the very high pressure within the nearly enclosed overturn.

5. Summary641

Here wind effects (given by the wind Reynolds number Re∗) on solitary wave shoaling and642

overturning were studied with the 2-phase DNS model Basilisk run in two-dimensions. The643

fixed bathymetry was similar to that of the Surf Ranch. Wave Reynolds and Bond numbers644

(Rew = 4 × 104,Bo = 4000) were fixed, at values orders of magnitude smaller than experiment. A645

precursor wind-only simulation provides wind initial condition. During the subsequent 2-phase646

simulations, wind forcing is removed but the wind does not have sufficient time to meaningfully647

decelerate. The propagating solitary wave sheds a 2D turbulent air wake either in front of the wave648

for onshore wind or on the back of the wave for offshore wind. The onshore and offshore wind649

cases have different wake structure. The propagating solitary wave has nearly uniform speed over650

the rapidly varying bathymetry for all Re∗. The solitary wave face slope is clearly influenced by the651

wind, with steeper slope for stronger onshore wind. Changes to shoaling solitary wave shape are652

qualitatively consistent with previous laboratory studies and reduced order models. At the moment653

of overturning jet impact, wind-dependent differences in overturn wave shape are evident and these654

shapes are quantified by geometrical parameters. The nondimensional breakpoint location and655

overturn area have similar functional dependence on wind as in experiment. However, modeled656

wind speeds that are a factor 2–3 stronger than observed are required. The overturn aspect ratio657

had opposite functional dependence on wind than in experiment. The overturning jet area, not658

having been previously studied, depends strongly on wind. Airflow can affect the water-based659

solitary wave through two mechanisms on the air-water interface: pressure or viscous stresses.660

Throughout the shoaling processes normal and shear viscous stresses are negligible relative to661

pressure on the air-water interface. Surface tension effects are negligible early in shoaling, but as662

the wave steepens these effects grow rapidly such that near overturning, surface tension effects663

are no longer negligible and likely become important in overturning. In a propagating solitary664

wave frame of reference, pressure is low in the lee and contributes 2-5% to the velocity potential665

rate of change in the surface dynamic boundary condition. Integrated over the time of shoaling,666

this leads to changes in the wave shape. Three potential reasons why the modeled overturn aspect667

ratio differs from experiment and why a stronger modeled wind is required are explored. The first668
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involves potential scale effects resulting from our far smaller Rew and Bo than experiment. The669

second is that the airflow is 2D not 3D, resulting in different flow separation, wake structure, and670

reattachment than experiment. The third is an underlying difference in the modeled 2D geometry671

of wave breaking relative to the 3D geometry at the Surf Ranch. The dramatic wind-effects on the672

nondimensional overturning jet area, and thus to the potential energy available in the overturn,673

make concrete the implications of wind-induced changes to wave shape.674
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Appendix A. Precursor simulations to obtain wind air initial condition686

An air-only simulation over a moving solitary wave solid boundary is performed as a precursor687

to the coupled simulation, providing air initial conditions to the coupled model. The precursor688

simulation is done under a Galilean transformation in the reference frame of the solitary wave, and689

is physically equivalent to allowing an unchanging solitary wave to propagate in an arbitrarily long690

channel of constant depth in the presence of wind. At the solitary wave surface, a no-slip velocity691

boundary condition given by (2.4) and translated through a Galilean transformation into the solitary692

wave’s frame of reference moving at 𝐶̃ in the +𝑥 direction is applied. In the solitary wave reference693

frame, air-flow at the air-water interface must be in the −𝑥 direction to match the solitary wave694

surface velocity boundary conditions (2.4). An external, spatially, and temporally uniform pressure695

gradient is used to force the wind given by (2.8). The precursor simulation is run until equilibrium.696

The equilibrium airflow is relatively insensitive to the choice of initial condition, which affects697

only the time to equilibrate. Here, the initial condition for air vertical velocity is 𝑤 = 0. The initial698

condition for horizontal velocity is uniform in 𝑥 and 𝑢 is set to a logarithmic profile transformed699

into the solitary wave reference frame with an inner-layer velocity profile that goes to 𝑢 = −𝐶700

at the boundary. This 𝑢 initial condition does not match the no-slip boundary condition on the701

solitary wave (2.4). However any generated transients are advected way, eventually leaving an702

equilibrated state for use as initial condition in the coupled air-water simulations. Identical to the703

coupled simulation, Neumann pressure condition 𝜕𝑝/𝜕𝑥 = 0 is placed on the inlet and a Dirichlet704

pressure condition 𝑝 = 0 is placed on the outlet, both uniformly in the vertical. In the moving705

reference frame, the air-flow in the precursor stage may not be unidirectional, particularly for706

strong onshore winds as the near-surface airflow will be in the −𝑥 direction and higher in the air707

column will be in the +𝑥 direction and thus neither boundary is fully an inlet or outlet. However,708

since the airflow is forced and the solitary wave is sufficiently far from either boundary, specific709

choices for lateral boundary conditions do not significantly affect the wind profile. The precursor710

simulations at all Re∗ were performed to time 𝑡 = 1000 with a maximum of 11 levels of grid711

refinement resulting in Δ𝑥/ℎ0 = 0.0293 which is sufficient, due to the relatively large-scale of the712

solitary wave and the lack of need to resolve very small-scale dynamics such as the overturn. A713
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time of roughly 𝑡 ≈ 800 was sufficient for obtaining an equilibrated initial condition for the largest714

Re∗ magnitude.715
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