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ABSTRACT: Wave spectra and directional moment measurements are of scientific and engineering

interest and are routinely measured with wave buoys. Recently both fixed and UAS-mounted lidar

remote sensing have measured surfzone wave spectra. However, wave statistics seaward of the

surfzone have not been measured with a lidar due to a lower number of returns and directional

moments have not been measured at all. We use a multi-beam scanning lidar mounted on a

gasoline-powered UAS to estimate wave spectra, slope spectra, and directional moments on the

inner shelf in ≈ 10 m water depth from an 11-min hover and compare to a co-located wave buoy.

Lidar returns within circular sampling regions with varying radius 𝑅 are fit to a plane and a 2D

parabola, providing sea-surface and slope timeseries. Wave spectra across the sea-swell (0.04–

0.4 Hz) are robustly estimated for 𝑅 ≥ 0.8 m. Estimating slope spectra is more challenging.

Large 𝑅 works well in the swell band and smaller 𝑅 work well at higher frequencies, comparing

well with a wave buoy inferred slope spectra. Directional Fourier coefficients are estimated from

wave and slope spectra and cross-spectra and are compared to a wave buoy in the sea-swell band.

Larger 𝑅 and the 2D parabola-fit yield better comparison to the wave buoy. Mean wave angles

and directional spreads, functions of the directional Fourier coefficients, are well reproduced at

𝑅 = 2.4 m and the 2D-parabola fit, within the uncertainties of the wave buoy. This UAS-mounted

multi-beam scanning lidar and this methodology can be used in regions where wave buoys are not

easily deployable, e.g., near rocky coasts or cliffs.
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SIGNIFICANCE STATEMENT: Previously fixed or hovering lidar have been used to estimate25

wave spectra in the surf and swash zone where lidar returns are high due to the reflectance of26

foam. We present methodology to accurately estimate wave spectra and directional properties on27

the inner-shelf where waves are not breaking using a hovering Uncrewed Aircraft System with a28

mounted lidar. The estimated wave spectra and directional statistics compare well with a Spotter29

wave buoy demonstrating the methods robustness.30

1. Introduction31

Measurements of surface gravity wave statistics are required for both scientific research and32

engineering applications. Wave statistics of interest are the frequency-dependent sea-surface ([)33

elevation spectra 𝑆[ ( 𝑓 ), from which significant wave height 𝐻s, peak and mean periods are based,34

as well as directional moments such as mean wave angle \ ( 𝑓 ) and directional spread 𝜎\ ( 𝑓 ) (Kuik35

et al. 1988). These directional moments are derived from the first four Fourier coefficients of36

the directional spectra and are denoted 𝑎1( 𝑓 ), 𝑏1( 𝑓 ), 𝑎2( 𝑓 ), and 𝑏2( 𝑓 ) (Longuet-Higgins et al.37

1963). Wave spectra and directional moments are typically derived from pitch-and-roll wave buoys38

(e.g., Kuik et al. 1988), co-located pressure sensor and current meter (e.g., Herbers et al. 1999), or39

from Acoustic Doppler Current Profilers (ADCP, e.g., Herbers and Lentz 2010), using spectra and40

cross-spectra of measured variables. More recently, attention has been focused on the development41

of inexpensive wave buoys that are either GPS-based (e.g., Herbers et al. 2012; Raghukumar et al.42

2019) or inertial measurement unit (IMU) based (e.g., Rabault et al. 2022; Feddersen et al. 2023a).43

Lidar (light detection and ranging) is a remote sensing tool with significant potential for studying44

surface gravity waves as a lidar return is a direct measure of the distance to the water surface.45

An aircraft-mounted scanning (rotating 360◦) single-beam lidar measured the sea surface near a46

wave buoy, and aircraft-lidar derived and buoy derived (non-directional) wave spectra compared47

well (Hwang et al. 2000). Since then, aircraft-based lidar wave measurements have advanced48

significantly (e.g., Melville et al. 2016) and can resolve to the high wavenumber portion of49

the wave spectrum (Lenain and Melville 2017). However, as a single scanning beam is used,50

two-dimensional (2D) statistical observations are obtained by assuming a statistically spatially51

homogeneous wave field. Such assumptions cannot be made in coastal regions where the waves52

are transforming.53
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Fixed-location lidar-based temporal sea-surface elevation measurements were first performed54

by Irish et al. (2006). They mounted four non-scanning point-beam lidars in a rectangular grid55

with horizontal spacing of 0.6–2.0 m on the Field Research Facility (FRF, North Carolina USA)56

pier 6–16 m above the water surface. Wave spectra 𝑆[ ( 𝑓 ) and significant wave heights were well57

reproduced, but the array spacing and instrument number were not ideal for estimating directional58

moments. Single-beam scanning lidars mounted on a fixed location have been used to measure the59

temporal (𝑡) and cross-shore (𝑥) varying sea-surface [(𝑥, 𝑡) in the swashzone on sandy (Blenkinsopp60

et al. 2010) and gravel (Almeida et al. 2013) beaches. Blenkinsopp et al. (2010) showed that swash61

zone [ estimated from a 905 nm wavelength lidar, matched well with ultrasonic altimeters deployed62

in the swash zone. Using a fixed scanning lidar at a 1550 nm wavelength, Brodie et al. (2015)63

showed that lidar-derived wave setup and wave spectra matched those of pressure sensors in the64

inner-surfzone at low grazing angles and distances 25–65 m from the lidar. A fixed 1550 nm lidar65

scanning a highly-energetic, low-sloped beach compared well to a swash zone pressure sensor at66

ranges of 250-350 m also at low grazing angles (Fiedler et al. 2015). Three fixed lidars mounted on67

a pier were used to generate a cross-shore continuous timeseries of sea surface elevation across the68

surfzone (Martins et al. 2017). As these studies used a single-beam scanning lidar, only a single69

spatial direction was resolved, and directional wave information could not be estimated.70

The aerated nature of water in the swash and surf zone is ideal for lidar reflections at all71

wavelengths. For non-breaking waves, lidar returns depend on the lidar wavelength. Lidars with72

wavelength near 900 nm perform far better on water surfaces than lidars at 1550 nm due to the73

order of magnitude smaller absorption coefficient at 905 nm (Wojtanowski et al. 2014). Thus,74

lidar at a 1550 nm wavelength is more limited in measuring waves seaward of the surfzone where75

the water surface is not aerated. A lidar with a 905 nm wavelength was able to well reproduce76

wavestaff-based wave observations in a laboratory (Blenkinsopp et al. 2012). Detailed observations77

of wave overturning have been made using a multi-beam 905 nm scanning lidar in both field settings78

(O’Dea et al. 2021) and field-scale laboratory settings (Feddersen et al. 2023b; Baker et al. 2023).79

An uncrewed aircraft system (UAS) with RTK-GNSS positioning and video were used to study80

beach profile evolution with structure from motion (Turner et al. 2016), and observe the wave speed81

to estimate bathymetry (Brodie et al. 2019; Lange et al. 2023). As a more direct measurement, lidar82

has advantages and liabilities over video. UAS with a mounted lidar is used in various mapping83
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and surveying applications that were enabled by advances in UAS, positioning (GPS & IMU), and84

lidar technology. One advantage of a UAS with mounted lidar is the high grazing angles, which are85

more conducive to returns than the low grazing angles of shore-mounted systems. Surface gravity86

waves and tides were estimated at a single location by an 870 nm scanning lidar at a height 6-10 m87

above the surface and were validated against an in situ pressure gauge (Huang et al. 2018). Fiedler88

et al. (2021) extended this work with a 905 nm scanning lidar mounted on a UAS. Wave spectra89

within the surfzone and swash zone were estimated and validated against in situ pressure sensor90

data. However, observations were limited seaward of the surfzone where wave breaking did not91

occur, and no directional information was estimated.92

In contrast to single-beam scanning lidars, multi-beam scanning lidars enable two-dimensional93

(2D) sea-surface elevation measurements, allowing for directional wave analysis with a single94

instrument. Here, we use a gasoline-powered UAS with a multi-beam 903 nm wavelength scanning95

lidar payload to estimate directional wave statistics at a location seaward of the surfzone in 10 m96

water depth and compare to a Spotter wave buoy. The UAS together with the lidar package, as97

well as the data collection by the co-located Spotter buoy are described in Section 2. Binning98

regions of different radii are defined, and the statistics of lidar returns, as well as the method for99

fitting the sea surface and its slope are described in Section 3. In Section 4, UAS-lidar estimated100

timeseries of [ and 𝜕[/𝜕𝑥, bulk statistics, as well as 𝑆[ and slope spectra 𝑆 |∇[ | are examined as a101

function of the radius of the binning-region. UAS wave spectra are compared to that of the Spotter102

wave buoy. UAS slope spectra are compared to slope spectra estimated from Spotter wave spectra103

and the wavenumber 𝑘 inferred from the linear dispersion relationship. In Section 5, UAS-lidar104

estimated directional Fourier coefficients are estimated as a function of frequency and compared to105

those of the Spotter wave buoy. Directional moments derived from the Fourier coefficients are also106

compared to the Spotter wave buoy. The capability of a UAS with multi-beam lidar to estimate107

wave and slope spectra as well as directional wave quantities is discussed in Section 6.108

2. Methods112

a. Experiment Overview113

The ROXSI field experiment (Marques et al. 2023) occurred during July 2022 off of China Rock114

on the Monterey Peninsula, CA USA (Fig. 1). The rocky shore off of China Rock has a moderate115
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Fig. 1. Bathymetry (𝑧 in mean sea-level) as a function of local cross-shore (𝑋) and alongshore (𝑌 ) coordinates.

Magenta dots represent all instrument locations. The yellow circle represents the location of the Spotter mooring

where the hover took place. Regions in white indicate no bathymetry observations.

109

110

111

(1:40) cross-shore slope. In water depths ℎ < 20 m, the bathymetry has significant variability,116

or roughness, at a range of length-scales (Fig. 1). A China Rock cross- and alongshore (𝑋,𝑌 )117

coordinate system is defined where −𝑋 is directed towards 285◦ N. The shoreline has multiple118

small headlands about 250 m apart with embayments that extend 100 m onshore. During the119

experiment a number of instruments, including ADCPs, Spotter wave buoys (Raghukumar et al.120

2019), and pressure sensors were deployed from the shoreline to 30 m water depth (blue dots in121

Fig. 1). At 8 locations, co-located Spotter wave buoys and time-synchronized pressure sensors122

were deployed (Marques et al. 2023). Spotter wave buoys are GPS-based (Herbers et al. 2012),123

and are highly effective in capturing wave spectra 𝑆[ ( 𝑓 ) and directional moments in the sea-swell124

(0.05 < 𝑓 < 0.3 Hz) frequency band (e.g., Raghukumar et al. 2019; Collins et al. 2023). To125

estimate directional parameters, wave buoys (whether GPS- or IMU-based) use displacement or126

slope cross-spectra to estimate the Fourier coefficients of the directional spectra (or directional127

Fourier coefficients) 𝑎1( 𝑓 ), 𝑎2( 𝑓 ), 𝑏1( 𝑓 ), and 𝑏2( 𝑓 ) (Longuet-Higgins et al. 1963; Kuik et al.128

1988). Although only tested out to 0.3 Hz (Raghukumar et al. 2019; Collins et al. 2023), the129

Spotter wave buoy reports spectral quantities out to 1 Hz with unknown accuracy from 0.3–1 Hz.130
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Fig. 2. Georectified sea-surface image in offset China Rock (𝑥, 𝑦) coordinates with overlaid lidar-based sea-

surface elevation [(𝑥, 𝑦) (dots). Lidar returns are at 10 Hz. The magenta dot indicates the UAS location. The

solid, dash-dot, and dashed yellow circles represent radii of 𝑅 = {0.4,1,2.4} m around (𝑥, 𝑦) = (0,0) m. The

time is 19-July-2022 14:59:08 PDT.
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b. UAS and Lidar-Package Description131

We use an eight-rotor Skyfront Perimeter 8 as the Uncrewed Aircraft System (UAS). The Perime-136

ter 8 is powered by a hybrid gasoline-electric propulsion system, consisting of a 32 cc 1-cylinder137

2-stroke engine that generates electricity to power the UAS. Two Lithium Polymer (LiPo) batteries138

provide startup and emergency backup power. Tip-to-tip, the Perimeter 8 measures 2.31 m long by139

2.2 m wide by 0.37 m high. The Perimeter 8 weighs ≈ 20 kg with 4 L of fuel and the payload gives140

it a takeoff weight of ≈ 22.5 kg. Fully loaded, the UAS was flown for up to 100 min, including141

takeoff, kinematic alignment maneuvers, transit, hovers, and landing. The Skyfront Perimeter 8142
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uses a proprietary PX4-based flight controller and is remotely operated using a 2.4 GHz radio143

remote controller connected to a Windows laptop running the Skyfront Ground Control Software144

(GCS) for both manual and automated waypoint flight. The flight controller navigation system145

was upgraded with a RTK-GNSS module that receives relative position updates from a fixed base146

station on shore. This allows the UAS to maintain its position without drifting over time. With147

a team of three people, the lidar UAS can be set up and deployed within 30 min of arrival on148

site. The downtime between each flight to refuel, swap batteries, and resume data collection was149

approximately 20 minutes. External LiPo batteries are used for ground power to keep the lidar and150

GNSS system running without interruption.151

The UAS payload is a Phoenix Lidar Systems (PLS) Scout-Ultra, consisting of a Velodyne Ultra152

Puck (VLP-32C) lidar, a proprietary PLS NavBox, and a 24 MP Sony A6K-Lite RGB camera. The153

Scout-Ultra NavBox integrates the inertial measurement unit (IMU), GNSS receiver, data storage,154

CPU, Wi-Fi telemetry, power supply, and I/O components necessary for collecting survey-grade155

data. The GNSS receiver is a Novatel OEM7720 and the IMU is an Inertial Labs IMU-P. Dual156

helical GNSS antennas are mounted onto opposing UAS motor arms with 1.54 m separation,157

enabling accurate heading solutions. The IMU and dual GNSS data are post-processed using158

Novatel Inertial Explorer Version 8.90 software to produce a trajectory file for determining sensor159

position and orientation. The Scout-Ultra is controlled separately from the UAS via a Wi-Fi link to160

a second Windows laptop running PLS Spatial Explorer version 6.0.7. The PLS software displays161

real-time point cloud, image preview, and payload telemetry data, and allows for remote activation162

of the lidar and camera sensors. RGB camera images were taken at 1 Hz.163

The Velodyne Ultra Puck lidar was originally developed for the automobile industry and has164

been adapted for surveying and robotics applications. Although it is slightly less accurate than165

fixed lidars previously used in surfzone studies, its low cost, low power, multi-beam scan pattern,166

long-range, small form factor, and light (1 kg) weight make it well-suited for this UAS application.167

The lidar uses a 903 nm laser, which performs better on water surfaces than 1550 nm lasers168

(Wojtanowski et al. 2014; Fiedler et al. 2021). The 32 beams scan over 360◦, on an axis 90◦169

from the nose of the UAS. The beams are organized in a non-linear distribution, with most beams170

concentrated in the center of the vertical field of view, where data resolution is increased, resulting171

in a 40◦ off-axis field of view (-25◦ deg to +15◦). The pulse repetition rate of the sensor is 600,000172
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measurements per second (600 kHz). The programmable frame rate of the instrument ranges from173

5 to 20 Hz. Similar to Feddersen et al. (2023b), we used 10 Hz (600 RPM, ±3 RPM), which gives a174

horizontal angular (azimuthal) resolution of 0.2◦. The maximum measurement range is 200 m with175

a ±3 cm range accuracy. Laser beam divergence is 3.43 mrad on the horizontal axis (crossshore)176

and 1.72 mrad on the vertical axis (alongshore), resulting in a 12.5 cm × 6.6 cm laser footprint177

directly below the scanner when hovering at 33 m above the sea surface. The lidar returns are178

transformed into earth coordinates in Spatial Explorer software using the post-processed position179

and orientation data. The resulting point cloud was exported to a LAS format file. Lidar returns180

were quality controlled to remove points closer than 8 m or farther than 100 m from the lidar.181

c. Hover near the Spotter Wave Buoy182

Most missions had the UAS hovering over locations of pressure sensors for approximately187

10 min at a time. However, we performed one mission where the UAS hovered near the location188

of a Spotter wave buoy (Fig. 1, yellow circle), approximately 250 m from the mean shoreline.189

This hover occurred on 19-July-2022, started at 14:58:12 PDT, and lasted for 692 seconds. At this190

time, the Spotter significant wave height integrated from 0.04–0.5 Hz was 𝐻s = 1.16 m with an191

energy-weighted mean period of 𝑇mean = 5.6 s. During the morning the wind (measured 300 m192

offshore at 4 m above the sea-surface) had been 6 ms−1 blowing onshore (+𝑥 direction). However,193

during the hover, the wind was weaker at 2.5 ms−1 onshore. The UAS was hovering at 33 m194

elevation relative to the sea surface where the wind was likely stronger than measured.195

The hovering UAS was oriented with the nose pointing in the alongshore +𝑌 direction so the196

scanner was oriented for cross-shore scanning. The latitude and longitude of lidar returns are197

converted to the UTM-based local China Rock (𝑋,𝑌 ) coordinates. The vertical locations of the198

lidar returns are in NAVD88 and are demeaned to represent sea-surface elevation. The 2-Hz199

sampled locations of the UAS reveal that the UAS maintained a constant hovering position. The200

position 𝑥 standard deviation 𝜎𝑥 = 0.055 m is small as is the 𝑦-standard deviation 𝜎𝑦 = 0.084 m,201

with maximum position deviation < 0.2 m in 𝑥 and 𝑦. During the hover, the UAS held its orientation202

consistently with a heading standard deviation of 0.3◦, pitch standard deviation of 0.7◦ and roll203

standard deviation of 0.5◦. The mean roll was 2.7◦ allowing the UAS to maintain position in the204

wind.205
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Fig. 3. Lidar return statistics within the sample region versus radius 𝑅: (a) the time-averaged number of

returns within the sample region �̄�𝑝 (b) the mean variance of the sea surface returns within the sample region

𝜎2
[ (1). (c) the fraction of time 𝛿bad as a function of the return cutoff number 𝑁c and the radius 𝑅. The black

dashed line represents 𝑁c = 10.
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An example of a single 10 Hz lidar snapshot is shown in Fig. 2. We define a local coordinate206

system 𝑥 = 𝑋 − �̄� where ( �̄�,𝑌 ) are the mean location of the UAS during the hover. From the207

georectified image, a rough but not whitecapping sea surface is visible with short wavelengths208

≈ 1 m that ride on top of the longer sea and swell. The Velodyne Ultra lidar beams are largely209

oriented along the ±𝑥 direction and lidar returns are largely concentrated at |𝑦 | ≤ 2 m. The number210

of lidar returns at this offshore location was less than farther onshore due to the increased water211
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clarity at this cross-shore location (divers reported 6 m visibility 2 days later). Lidar returns212

indicate that the sea surface [ varies spatially at ±0.5 m at a range of scales.213

3. Lidar Data Processing and Return Statistics214

We define a sampling region as a circle of radius 𝑅 centered on the mean hover location215

(𝑥, 𝑦) = (0,0) m. A circle is chosen so as to not bias directional estimates, i.e., all directions have216

the same sampling region width. We estimate lidar return statistics and sea-surface elevation and217

slopes as a function of 𝑅, which varies from 0.4 m to 2.4 m in 0.2 m increments. An example of218

sampling regions are shown in Fig. 2 with radii of 𝑅 = {0.4,1,2.4} m. The number of lidar returns219

within a sampling region, defined as 𝑁𝑝 (𝑡;𝑅), is higher for larger 𝑅 (Fig. 2). We define two types220

of averaging. The first is averaging over the lidar returns within the sample region, denoted by221

⟨. . .⟩. The second is a time-average over the 692 s of the UAS hover, denoted by an overbar.222

The time-averaged number of lidar returns �̄�𝑝 (𝑅) varies from 6 points for 𝑅 = 0.4 m and increases223

quadratically to �̄�𝑝 = 225 for 𝑅 = 2.4 m (Fig. 3a). The ratio �̄�𝑝/𝑅2 is roughly constant at ≈ 40,224

indicating that the lidar return density is uniform across this range of 𝑅. At larger 𝑅, this ratio225

decreases due to the lidar beam distribution, and larger 𝑅 are thus not considered.226

We estimate the time-average vertical variance of lidar returns within a sample region, 𝜎2
[ (𝑅),227

as228

𝜎2
[ (𝑅) = ⟨[′2⟩, (1)

where [′
𝑖
(𝑡) = [𝑖 (𝑡) − ⟨[(𝑡)⟩. Thus, 𝜎2

[ represents a combination of instrument noise and the true229

sea-surface variability. The mean return vertical variance 𝜎2
[ (𝑅) varies in a weakly quadratically230

manner from from 0.005 m2 at 𝑅 = 0.4 m to 0.013 m2 at 𝑅 = 2.4 m (Fig. 3b). Quadratic231

𝜎2
[ variation is consistent with the sea surface primarily being a plane, whereas random and232

independent instrument noise would lead to a 𝜎2
[ (𝑅) constant with 𝑅. Extrapolating the curve233

to 𝑅 = 0, yields an instrument (lidar plus orientation/position) noise estimate of 0.0035 m2 or234

0.06 m. The quoted Velodyne Ultra Puck accuracy is 0.03 m, or half of the inferred noise standard235

deviation, suggesting the remainder is due to UAS orientation and position uncertainty.236

For a particular time, a minimum number of lidar returns above a cutoff 𝑁c are required,237

(i.e., 𝑁𝑝 (𝑡) > 𝑁c) to ensure confidence in data quality and robust sea-surface statistics. We238

examine cutoffs that vary from 𝑁c = 4 to 𝑁c = 20. We define 𝛿bad(𝑅,𝑁c) as the fraction of time239
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that 𝑁𝑝 (𝑡;𝑅) < 𝑁c. Small 𝛿bad results in minimal timeseries interpolation prior to estimating240

wave statistics. Yet small 𝑁c may lead to noisy estimates of [ and its slope. We examine the241

statistics of 𝛿bad as a function of 𝑅 and 𝑁c. For 𝑅 > 1.2 m, the fraction of bad data 𝛿bad(𝑅,𝑁c)242

is largely independent of 𝑁c (contour lines in Fig. 3c are largely vertical) and 𝛿bad < 10−3 for all243

𝑁c, indicating minimum timeseries interpolation requirement at these 𝑅. For smaller 𝑅 ≤ 0.6 m,244

𝛿bad also increases strongly with 𝑁c and even for 𝑁c = 4 is always > 0.05. Because of their large245

𝛿bad, we do not consider further 𝑅 ≤ 0.6 m. As 𝛿bad only weakly depends on 𝑁c for 𝑅 ≥ 0.8 m, we246

choose a intermediate 𝑁c = 10 for further analysis.247

To calculate wave spectra and directional moments, timeseries of [, 𝜕[/𝜕𝑥, and 𝜕[/𝜕𝑦 are248

required. At each time where 𝑁c ≥ 10, we estimate these parameters for the range 𝑅 using two249

different least-squares fits: (1) a plane-fit and (2) a 2D parabola-fit. The plane-fit fits a plane to the250

available lidar returns in the sampling region, i.e.,251

[𝑖 (𝑡, 𝑥𝑖, 𝑦𝑖) =
𝜕[

𝜕𝑥
(𝑡)𝑥𝑖 +

𝜕[

𝜕𝑦
(𝑡)𝑦𝑖 +[(𝑡), (2)

where (𝑥𝑖, 𝑦𝑖) and [𝑖 are the observed horizontal position and sea-surface elevation of the lidar252

returns (Fig. 2), and there are three fit parameters ([, 𝜕[/𝜕𝑥, and 𝜕[/𝜕𝑦). The 2D parabola-fit fits253

to a 2D parabola, i.e.,254

[𝑖 (𝑡, 𝑥𝑖, 𝑦𝑖) =
1
2
𝜕2[

𝜕𝑥2 (𝑡)𝑥
2
𝑖 +

1
2
𝜕2[

𝜕𝑦2 (𝑡)𝑦
2
𝑖 +

𝜕2[

𝜕𝑦𝜕𝑥
(𝑡)𝑥𝑖𝑦𝑖 +

𝜕[

𝜕𝑥
(𝑡)𝑥𝑖 +

𝜕[

𝜕𝑦
(𝑡)𝑦𝑖 +[(𝑡), (3)

and has three additional fit parameters 𝜕2[/𝜕𝑥2, 𝜕2[/𝜕𝑦2, and 𝜕2[/𝜕𝑥𝜕𝑦. Any times with 𝑁𝑝 < 𝑁c255

lidar returns are linearly interpolated in time. The advantage of the plane-fit (2) is that with fewer fit256

parameters, their estimates should be more stable. The disadvantage is that, for a wavelength _, an257

𝑅 significantly shorter than _ is required to resolve the wave. This places an upper frequency limit,258

through the surface gravity wave dispersion relationship (A1), on the estimated parameters. As _259

gets smaller (frequency increases), we expect the spectral levels to decrease with larger 𝑅, as the260

fit essentially acts as a low-pass filter. The 2D parabola-fit (3) has more fit-parameters, which will261

have more noise than that of the plane-fit. However, by including quadratic terms at a fixed 𝑅, a262

shorter _ should be resolvable relative to the plane-fit, thereby increasing the resolved frequencies.263

Throughout, we will explore the relative merits of both fit methods. At larger _, other challenges264
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Fig. 4. Timeseries of (top, a-b) [ and (bottom, c-d) 𝜕[/𝜕𝑥 for 𝑅 = 2.4 m (blue) and 𝑅 = 0.8 m (orange-dashed)

and 𝑁c = 10. The left column (a,c) is for the plane-fit and the right column (b,d) is for the 2D parabola-fit.

267

268

are present that depend on 𝑅. The wave slope scales as wave amplitude over wavelength 𝑎/_, and265

thus these smaller slopes will be harder to robustly estimate.266

4. Lidar Observations of Sea Surface and Slope269

a. Timeseries of [ and 𝜕[/𝜕𝑥270

Short, 40-s, timeseries of the plane-fit and 2D parabola-fit [ and 𝜕[/𝜕𝑥 for two radii are shown271

in Fig. 4 to illustrate the effects of varying 𝑅 and the fit method. Recall 𝑁c = 10 is fixed. The272

plane-fit [ with 𝑅 = 2.4 m varies ±0.5 m with evident variability over 3–8 s periods (Fig. 4a,273

blue curve). The 𝑅 = 0.8 m plane-fit [ varies similarly but has more high-frequency variability274

(orange-dashed in Fig. 4a). The 2D parabola-fit [ for 𝑅 = 2.4 m (Fig. 4b, blue curve) is quite275

similar to that of the plane-fit, and the [ for 𝑅 = 0.8 m also has more high-frequency variability276

with some minor differences relative to the plane-fit [. The differences in 𝜕[/𝜕𝑥 for the two277

radii are much starker (Fig. 4c,d) than for [. The plane-fit 𝜕[/𝜕𝑥 for 𝑅 = 2.4 m has a smooth278
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curve (Fig. 4c) with variability at time-scales similar to [ with magnitude ≈ 0.1, indicating weak279

nonlinearity. However, the 𝑅 = 0.8 m plane-fit [ has significantly more high-frequency variability280

than for 𝑅 = 2.4 m. The 2D parabola-fit 𝜕[/𝜕𝑥 for 𝑅 = 2.4 m (blue curve in Fig. 4d) is similar to281

the plane-fit. However, the 𝑅 = 0.8 m 𝜕[/𝜕𝑥 has even more high-frequency variability than for the282

plane-fit. For both [ and 𝜕[/𝜕𝑥, the greater stability and low-pass filtering effect of increasing 𝑅283

is evident. The pattern with 𝜕[/𝜕𝑦 is similar (not shown).284
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Fig. 5. (a) Fraction of time with bad data 𝛿bad (b) squared significant wave height 𝐻2
s (4), and (c) mean square

surface slope |∇[ |2 (5) versus radius 𝑅 all for 𝑁c = 10. In panels (b)-(c), the blue and orange lines represent the

plane-fit and 2D parabola-fit, respectively.

285

286

287

b. Time-averaged sea-surface and slope statistics288

To evaluate the [, 𝜕[/𝜕𝑥, and 𝜕[/𝜕𝑦 from the two fit methods, we examine three bulk statistics,289

squared significant wave height 𝐻2
s and mean square wave slope as a function of 𝑅. Significant290
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wave height 𝐻s is defined in a standard manner through sea-surface elevation variance,291

𝐻s = 4[2
1/2

. (4)

Note, this definition includes all frequencies up to the Nyquist frequency of 5 Hz in the estimate of292

𝐻s. The mean-square wave slope |∇[ |2 is293

(
𝜕[

𝜕𝑥

)2
+
(
𝜕[

𝜕𝑦

)2
. (5)

For 𝑅 = 0.4 m and 𝑅 = 0.6 m, 𝛿bad = 0.83 and 𝛿bad = 0.2, respectively (Fig. 5a). With so many294

bad data points, further statistics are not calculated or examined for 𝑅 ≤ 0.6 m. For 𝑅 = 0.8 m,295

𝛿bad = 0.03, and for larger 𝑅 the 𝛿bad is effectively zero. Thus, we examine statistics for 𝑅 ≥ 0.8 m296

only. The plane-fit 𝐻2
s slowly decreases from 1.63 m2 at 𝑅 = 0.8 m to 1.52 m2 at 𝑅 = 2.4 m297

(Fig. 5b). This decrease is consistent with the larger 𝑅, providing more statistical stability and298

acting as a low-pass filter. Relative to the plane-fit, the 2D parabola-fit 𝐻2
s is relatively constant299

with 𝑅 only decreasing slightly from 1.65 m2 to 1.62 m2 over the 𝑅 range. This indicates that for300

this 𝑅 range the 2D parabola-fit with its extra fit parameters reduces the low-pass filter effect. For301

the plane-fit, the mean square slope |∇[ |2 decreases steadily from 0.011 at 𝑅 = 0.8 m to 0.0041 at302

𝑅 = 2.4 m (fig. 5c). For the 2D parabola fit, |∇[ |2 is twice as large as for the plane fit for 𝑅 = 0.8,303

consistent with the 𝜕[/𝜕𝑥 timeseries (Fig. 4d). However, for 𝑅 ≥ 1.2 m, the 2D parabola-fit |∇[ |2304

is similar to that of the plane-fit method (Fig. 5c). The decay with 𝑅 suggests that slope is more305

sensitive to 𝑅 than [ is for the 2D parabola-fit method.306

c. Spectra of sea-surface elevation and slope312

Sea-surface elevation spectra 𝑆[ ( 𝑓 ) are estimated for both fit-methods with 24 degrees-of-318

freedom (DOF) and frequency resolution of ≈ 0.01 Hz. Slope spectra 𝑆 |∇[ | ( 𝑓 ) are also estimated319

from the spectra of 𝜕[/𝜕𝑥 and 𝜕[/𝜕𝑦,320

𝑆 |∇[ | ( 𝑓 ) = 𝑆[𝑥 ( 𝑓 ) + 𝑆[𝑦 ( 𝑓 ). (6)
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Fig. 6. Sea-surface elevation spectra 𝑆[ ( 𝑓 ) versus frequency for the (a) plane-fit and (b) 2D parabola-fit

methods for 𝑅 = {0.8,1.2,1.6,2.0,2.4} m. The black dashed curve is the Spotter wave buoy spectrum at the

same time (shown out to 1 Hz). The black error bar indicates the 95% spectra confidence limits at 24 DOF. On

the top is shown the wavelength _ associated with select 𝑓 through the linear surface gravity wave dispersion

relationship (A1) at a depth of 10 m.

307

308

309

310

311

We examine wave spectra 𝑆[ ( 𝑓 ) dependence on radius 𝑅 for both fit-methods and compare it321

to the wave spectra from the co-located Spotter wave buoy (Fig. 6). Hereafter, we define three322

specific frequency bands. First, the swell band spans 0.04 ≤ 𝑓 < 0.1 Hz. The sea band spans323

0.1 ≤ 𝑓 < 0.4 Hz. We also define a “chop” band as 0.4 ≤ 𝑓 < 1 Hz band. The plane-fit 𝑆[ ( 𝑓 ) for324

𝑅 ≥ 0.8 m match well the Spotter wave spectra across the 0.04 < 𝑓 < 0.4 Hz band that encompasses325

the swell and sea bands. In this band, the plane-fit and 2D-parabola fit 𝑆[ ( 𝑓 ) are nearly similar for326

all 𝑅 ≥ 0.8 m. At this depth, a frequency of 0.4 Hz corresponds to a wavelength of ≈ 10 m, more327

than four times larger than the largest 𝑅. At frequencies > 0.4 Hz, 𝑆[ ( 𝑓 ) decreases more rapidly328

for larger 𝑅, consistent with the low-pass filter effect with larger 𝑅, and at 0.6 Hz significant 𝑆[ ( 𝑓 )329
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Fig. 7. Sea-surface elevation slope spectra 𝑆 |∇[ | (6) versus frequency for the (a) plane-fits and (b) 2D parabola-

fit methods for 𝑅 = {0.8,1.2,1.6,2.0,2.4} m. The black dashed curve is the Spotter estimated slope spectrum

𝑘2𝑆[ ( 𝑓 ) using the dispersion relationship (A1) and a depth of 10 m. The black error bar indicates the 95%

spectra confidence limits at 24 DOF. On the top is shown the wavelength _ associated with select 𝑓 through the

linear surface gravity wave dispersion relationship at a depth of 10 m.
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314

315

316

317

differences with 𝑅 are evident, particularly for the plane-fit (Fig. 6). The 2D parabola-fit 𝑆[ ( 𝑓 )330

has less spectral variation with 𝑅 in the “chop” (0.4–1 Hz) band then the plane-fit, consistent with331

the 𝐻2
s changes with 𝑅 for both methods (Fig. 5b). This is likely a result of the 2D parabola-fit332

being able to resolve shorter wavelengths at a particular 𝑅. For both methods, the spectral noise333

floor (i.e., flat 𝑆[ ( 𝑓 )) occurs at 𝑓 > 1 Hz, corresponding to a wavelength of 1.6 m, with levels that334

decrease with 𝑅. Thus, either method will work well for estimating wave spectra in the sea-swell335

(0.04–0.4 Hz) band.336

We next examine the effect of 𝑅 on slope spectra 𝑆 |∇[ | ( 𝑓 ) (6) for both the plane-fit and 2D337

parabola-fit methods (Fig. 7). The Spotter does not report wave slope, and thus, a direct comparison338
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cannot be made. However, from the Spotter wave spectra, we can estimate slope spectra as339

𝑘2( 𝑓 )𝑆[ ( 𝑓 ), where 𝑘 is estimated from the linear dispersion relationship (A1) at each frequency340

at a depth of 10 m. In the swell band ( 𝑓 < 0.1 Hz), the plane-fit and 2D parabola-fit 𝑆 |∇[ | ( 𝑓 ) for341

𝑅 = 0.8 m are elevated, indicating noise contamination. In this band the 𝑆 |∇[ | ( 𝑓 ) converge with342

larger 𝑅 (Fig. 7), suggesting that for 𝑅 ≥ 1.2 m the slope spectra are well estimated. In addition,343

in the swell band, the Spotter inferred 𝑘2𝑆[ ( 𝑓 ) (black dashed in Fig. 7) matches well the slope344

spectra for 𝑅 ≥ 1.6 m, further suggesting 𝑆 |∇[ | ( 𝑓 ) is well estimated in this band. For 𝑅 ≥ 1.6 m,345

the equivalent swell-band wave slope (𝑎𝑘)swell = 0.0085 (A2) is very small.346

In the 0.1 < 𝑓 < 0.4 Hz sea band, the spectra are similar for both methods for all 𝑅 > 0.8 m.347

Consistent with this, the equivalent sea-band wave slopes (𝑎𝑘)sea (A2) are similar in this band348

varying from 0.076 to 0.072. In addition, the inferred Spotter 𝑘2𝑆[ ( 𝑓 ) match well the slope349

spectra, which all together suggests that slope spectra are well estimated in this band. At higher350

frequencies ( 𝑓 > 0.4 Hz), the 𝑆 |∇[ | ( 𝑓 ) separate as a function of 𝑅, are consistent with the reduced351

|∇[ |2 with 𝑅 (Fig. 5c) and the low-pass filter interpretation. Generally at 𝑓 > 2 Hz for both methods,352

a noise floor is reached, whose level is lower for larger 𝑅, also consistent with the low-pass filter353

interpretation. For both methods, at 𝑅 = 0.8 the 𝑆 |∇[ | ( 𝑓 ) has a peak near 𝑓 = 0.6 Hz which only354

weakly decays out to 1 Hz, whereas the slope spectra for larger 𝑅 fall off much more rapidly. In the355

“chop” band (0.4 < 𝑓 < 1 Hz) the equivalent 𝑎𝑘 is similar to that in the sea band, varying and varies356

from 0.1 to 0.05 for 𝑅 = 0.8 m to 𝑅 = 2.4 m, consistent with Fig. 7. The Spotter inferred slope357

spectra 𝑘2𝑆[ ( 𝑓 ) matches very well the 𝑅 = 0.8 m 2D parabola-fit 𝑆 |∇[ | ( 𝑓 ) in this band, suggesting358

that the slope of waves with wavelength as small as 1.6 m may be well estimated with the parabola359

fit. Similar to |∇[ |2 and 𝐻2
s (Fig. 5b,c), slope spectra 𝑆 |∇[ | ( 𝑓 ) is more sensitive to 𝑅 than 𝑆[ ( 𝑓 )360

particularly at lower and higher frequencies.361

5. Directional Fourier Coefficients, and Directional Moments366

The results suggest that for 𝑅 ≥ 1.2 m, the slope spectra are well estimated at 𝑓 < 0.4 Hz. However,367

wave-directional Fourier coefficients depend not only on the spectra of [, 𝜕[/𝜕𝑥, and 𝜕[/𝜕𝑦 but368

also on their cross-spectra (Longuet-Higgins et al. 1963). Here we estimate the directional Fourier369

coefficients (𝑎1( 𝑓 ), 𝑏1( 𝑓 ), 𝑎2( 𝑓 ), 𝑏2( 𝑓 )) from the UAS-lidar derived spectra and cross-spectra370

using standard methods (Appendix) for 𝑅 ≥ 1.2 m and both fit methods (Fig. 8). The plane-fit371
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Fig. 8. Directional moments (a,b) 𝑎1( 𝑓 ), (c,d) 𝑏1( 𝑓 ), (e,f) 𝑎2( 𝑓 ), and (g,h) 𝑏2( 𝑓 ) versus frequency for
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{1.2,1.6,2.0,2.4} m. The dashed line is the Spotter wave buoy derived directional moments. Note we limit

comparison to 0.04–0.4 Hz.

362

363

364

365

19



0

0.02

0.04

0.06

0

0.02

0.04

0.06

1 1.5 2 2.5
0

0.02

0.04

0.06

1 1.5 2 2.5
0

0.02

0.04

0.06

Fig. 9. Directional Fourier coefficient errors versus radius 𝑅 for (a) 𝜖𝑎1, (b) 𝜖𝑏1, (c) 𝜖𝑎2, and (d) 𝜖𝑏2 based on

(7). The solid curve is from the plane-fit, and the dashed is from the 2D parabola-fit. The error metric (7) is

integrated over the frequency band from 0.04 to 0.25 Hz containing the majority of wave energy and where the

Spotter has been validated.

383

384

385

386

𝑎1( 𝑓 ) follows the Spotter 𝑎1( 𝑓 ) for 𝑅 ≥ 2 m in the swell band (0.04 < 𝑓 < 0.1 Hz). Most of the372

mismatch occurs near 0.08-0.09 Hz, where the 𝑆[ and slope spectra levels are reduced (Fig. 6, 7).373

The plane-fit 𝑎1( 𝑓 ) matches the Spotter 𝑎1( 𝑓 ) in the sea band (0.1 < 𝑓 < 0.4 Hz) for all 𝑅 (Fig. 8a).374

The 2D parabola-fit 𝑎1( 𝑓 ) is overall similar but is closer to the Spotter 𝑎1( 𝑓 ) in the swell band for375

the largest 𝑅 (Fig. 8b). Overall, 𝑏1( 𝑓 ), 𝑎2( 𝑓 ), and 𝑏2( 𝑓 ) also agree well with the Spotter in the sea376

band (0.1 < 𝑓 < 0.4 Hz) for the range of 𝑅 (Fig. 8c–h) for both methods. For both methods, 𝑏1( 𝑓 )377

and 𝑏2( 𝑓 ) match the Spotter’s estimate in the swell band for larger 𝑅 (Fig. 8c,d,g,h). In the sea378

band, 𝑎2( 𝑓 ) from both methods is similar to the Spotter (Fig. 8e,f). However, in the swell band,379

the comparison is poor. The Spotter 𝑎2( 𝑓 ) is quasi-constant in the swell band. For smaller 𝑅, the380

𝑎2( 𝑓 ) for both methods varies strongly across the swell band, but becomes more constant at larger381

𝑅, albeit at a lower value than the Spotter.382
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The preceding comparison between estimated directional Fourier coefficients and those of the387

Spotter are qualitative. Here, we make the comparison quantitative with an unweighted mean388

square error metric defined as,389

𝜖𝑎1 =

[(
𝑎1( 𝑓 ) − 𝑎

Sp
1 ( 𝑓 )

)2
]
, (7)

where the [. . .] represents an average over the frequency band 0.04–0.25 Hz and 𝑎
Sp
1 is 𝑎1 from the390

Spotter. This sea-swell frequency band contains the bulk of the wave energy (Fig. 6) and also is391

the range where the Spotter has been validated (Raghukumar et al. 2019). The errors for the other392

directional Fourier coefficients 𝜖𝑏1, 𝜖𝑎2, and 𝜖𝑏2 are similarly defined. These errors are estimated393

for both plane-fit and 2D parabola-fit methods. Consistent with Fig. 8a,b, the mean square error394

𝜖𝑎1 decreases with increasing 𝑅 with smallest error 𝜖𝑎1 ≈ 0.005 at 𝑅 = 2.4 m (Fig. 9a), which is395

a small error relative to the 𝑎1( 𝑓 ) variability (Fig. 8a). The 2D parabola-fit method has slightly396

lower 𝜖𝑎1 than the plane-fit method. For 𝑏1( 𝑓 ), 𝜖𝑏1 is small for all 𝑅 and largely decreases with 𝑅,397

and the 2D parabola-fit method is marginally better than the plane-fit (Fig. 9b). Consistent with398

Fig. 8e,f, the 𝜖𝑎2 has the largest error of all directional Fourier coefficients (Fig. 9c). For the 2D399

parabola-fit, 𝜖𝑎2 decreases or plateaus with 𝑅 whereas the plane-fit 𝜖𝑎2 is not monotonic, and for400

𝑅 ≥ 2 m is substantially larger than that of the plane-fit. For 𝑏2( 𝑓 ), the error 𝜖𝑏2 is large for small401

𝑅 and largely decreases with 𝑅 (Fig. 9d). As with other directional Fourier coefficients, the 2D402

parabola-fit has smaller 𝜖𝑏2 than the plane-fit, and at 𝑅 = 2.4 is at levels similar to 𝜖𝑎1.403

Accurately estimating directional Fourier coefficients is essential for any directional wave mea-406

surement, whether wave buoy or remote sensing. However, interpreting these directional Fourier407

coefficients can be opaque. For practical interpretation of directional wave properties, the direc-408

tional Fourier coefficients are used to estimate directional moments such as the mean wave angle409

\ ( 𝑓 ) and a directional spread 𝜎\ ( 𝑓 ) at each frequency (Kuik et al. 1988, also see Appendix).410

Alternatively, they are used as inputs for directional spectra estimators such as MEM or IMLE411

(e.g., Oltman-Shay and Guza 1984). Mean wave direction has two definitions \1( 𝑓 ) (A7) and412

\2( 𝑓 ) (A8) which use (𝑎1, 𝑏1) and (𝑎2, 𝑏2), respectively (Kuik et al. 1988). The mean wave angle413

is defined as the direction of wave propagation in the China Rock coordinate system. Thus, onshore414

propagating waves with a component in the +𝑦 direction have positive \ and with a component415
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(A10) versus frequency for the (blue) plane-fits, (orange) 2D parabola-fit, and (black) Spotter.

404

405

in the −𝑦 direction have negative \. Similarly, wave directional spread has two definitions (Kuik416

et al. 1988), the first 𝜎\ ( 𝑓 ) (A9) utilizing (𝑎1, 𝑏1) only, and 𝜎∗
\
( 𝑓 ) utilizes all directional Fourier417

coefficients (A10).418

For the two methods, the \1( 𝑓 ) varies from ≈ 25◦ to 0◦ in the swell band, and, in the sea-419

band, is largely negative and reducing with frequency. Using energy-weighted directional Fourier420

coefficients (Appendix), the swell-band \̄1,swell = 28◦ and the sea-band \̄1,sea = −9◦ for the 2D421

parabola-fit. The \1( 𝑓 ) from the two methods largely agrees well with the Spotter (Fig. 10a),422

consistent with the well estimated 𝑎1( 𝑓 ) and 𝑏1( 𝑓 ) (Figs. 8, 9). The agreement is quite good in the423

sea band where \̄1,sea = −12◦. In the swell band, although the functional form is similar, the Spotter424
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has consistently reduced wave angle relative to the two methods, with swell-band \̄1,swell = 13◦. For425

both methods, \2( 𝑓 ) varies from 35◦ to 0◦ in the swell band and steadily decreases in the sea band426

similar to \1( 𝑓 ) (Fig. 10b). In the sea band, \2( 𝑓 ) for both methods are nearly identical and match427

well with the Spotter. In the swell band, \2( 𝑓 ) has a larger magnitude than that of the Spotter, with428

the 2D parabola-fit somewhat closer to the Spotter. Even with the relatively large 𝜖𝑎2 (Fig. 9c), the429

overall \2( 𝑓 ) compares well with the Spotter in the swell band.430

The first directional spread estimator 𝜎\ ( 𝑓 ) (A9) is ≈ 20◦ at the 𝑓 = 0.06 Hz 𝑆[ ( 𝑓 ) peak and431

is larger ≈ 40◦ near 𝑓 = 0.085 Hz where 𝑆[ ( 𝑓 ) is reduced (Fig. 10c). The 2D parabola-fit 𝜎\ is432

somewhat closer to that of the Spotter. In the sea band, the two estimators and the Spotter 𝜎\ ( 𝑓 )433

increase similarly with 𝑓 , where the Spotter is generally larger than the two estimators. The second434

directional spread estimator 𝜎∗
\
( 𝑓 ) (A10) is ≈ 12◦ at the 𝑓 = 0.06 Hz 𝑆[ ( 𝑓 ) peak and is consistent435

with the Spotter 𝜎∗
\
= 10◦ (Fig. 10d). At higher swell-band frequencies where the energy is low,436

𝜎∗
\
( 𝑓 ) increases like that of the Spotter. In the sea band, the estimated 𝜎∗

\
generally increases from437

≈ 13◦ at 𝑓 = 0.1 Hz to ≈ 25◦ at 𝑓 = 0.4 Hz with some fluctuations. In this band, the Spotter 𝜎∗
\

438

has a similar pattern increasing from 17◦ to ≈ 25◦ with less fluctuations. Overall, both 𝜎\ ( 𝑓 ) and439

𝜎∗
\
( 𝑓 ) compare well with the Spotter, particularly at frequencies where 𝑆[ ( 𝑓 ) is energetic, with440

the 2D parabola-fit performing slightly better. In sum, the results in Figs. 8 and 10 demonstrate441

the effectiveness of this method in estimating directional properties from a UAS with a mounted442

multi-beam scanning lidar.443

6. Summary and Discussion444

Previously, wave statistics seaward of the surf zone have not been estimated with a lidar due to445

lower number of returns, and directional wave moments have not been estimated with a lidar in any446

region. Here, we have developed and tested a method for estimating directional wave properties447

analogous to a wave buoy from a UAS with mounted multi-beam scanning lidar. The method was448

tested with an 11-minute hover at the location of a Spotter wave buoy on the rocky inner shelf449

in 10-m water depth offshore of the Monterey Peninsula. The UAS can effectively maintain a450

relatively fixed hover location. The method fits either a plane or a 2D parabola to lidar returns451

within a circular sampling region of varying radius 𝑅, resulting in estimates of the sea surface and452

its slope. Requiring at least 𝑁𝑝 = 10 points within the sampling region leads us to consider radii453
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with 𝑅 ≥ 0.8 m. Return and wave statistics are examined as a function of the radius of the sampling454

region and two methods. Results depend on 𝑅 and weakly on the method.455

Overall, the sea-surface elevation spectrum 𝑆[ ( 𝑓 ) comparison between the Spotter and the UAS-456

lidar is quite good for 𝑅 ≥ 0.8 m. This is similar to the accurate wave spectra estimated in the swash457

zone (Brodie et al. 2015) and across the surfzone (Fiedler et al. 2021). However, our observations458

are on the inner shelf, seaward of the surfzone, where the lack of foam reduces the number of459

returns. In addition, the water was unturbid and had a diver-reported visibility of 6 m. Unturbid460

water also inhibits lidar returns. That 𝑆[ ( 𝑓 ) was so well estimated suggests that this methodology461

can also be applied to other ocean regions where waves are not breaking.462

The convergence of the slope spectra 𝑆 |∇[ | ( 𝑓 ) at larger 𝑅 and the good comparison with an463

inferred slope from the Spotter wave buoy indicates that the wave slope is well estimated in the464

swell band for 𝑅 ≥ 1.6 m and in the sea band for all 𝑅. Overall, the slope spectra 𝑆 |∇[ | ( 𝑓 ) are465

more sensitive to 𝑅 than 𝑆[ ( 𝑓 ) particularly at the lower and higher frequencies. For 𝑅 ≥ 1.6 m,466

the swell-band equivalent wave slope (𝑎𝑘)swell = 0.0085 (A2) is very small. This demonstrates the467

challenge of estimating slope in the swell band and also speaks to the accuracy of the georeferenced468

lidar data and the ability of the method to accurately fit slopes for larger radii. The swell-band469

(0.04-0.1 Hz) waves have wavelength varying from 245 to 96 m. For normally-incident waves, the470

array width 2𝑅 is < 5 m, indicating that swell-band wave slope can still be accurately estimated with471

such a small array width. At a particular frequency, wavelengths are longer in deep water, so larger472

radii may be needed in the swell band. This may potentially bias directional estimates due to the473

lidar beam distribution. The sea-band wave slope (𝑎𝑘)sea ≈ 0.075 is an order of magnitude larger474

than that of the swell band and is similar for all 𝑅, suggesting that it is well estimated in this band.475

The relatively small (𝑎𝑘)sea also suggests nonlinearities are weak in this band. In the sea band,476

the ratio 2𝑅/_ is always < 0.5 indicating that the wave slope should not be aliased. In the “chop”477

band frequencies (0.4–1 Hz), the 𝑅 = 0.8 m 2D parabola-fit matches well the wave-buoy inferred478

slope (Fig. 7b), whereas wave slopes for larger 𝑅 are reduced substantially due to the low-pass479

filter effect (or aliasing). Although this comparison is indirect, it suggests that the high-frequency480

fluctuations in the [ and 𝜕[/𝜕𝑥 timeseries for 𝑅 = 0.8 m (Fig. 4) are real and not noise. If the481

wave-buoy-derived slope is accurate in the ”chop” band, this suggests that the georeferenced lidar482

data and this methodology may be useful in inferring wave properties also in the chop band.483
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Directional Fourier coefficients are computed from 𝑆[ ( 𝑓 ), the individual components of slope484

spectra, and their cross-spectra. All four coefficients compared well to the Spotter in the sea band,485

and only 𝑎2( 𝑓 ) did not perform well in the swell band. This is likely due to the functional form of486

𝑎2( 𝑓 ) which depends on the difference in the 𝑥 and 𝑦 slope spectra 𝑆[𝑥 ( 𝑓 ) − 𝑆[𝑦 ( 𝑓 ) (A5). In the487

swell band, slopes are very small, and thus the noise floor is likely elevated, which when subtracted488

(A5) could bias low 𝑎2( 𝑓 ) in the swell band. From 0.04-0.25 Hz, the 2D-parabola fit at the largest489

𝑅 = 2.4 m gave the best results. In the sea band, the comparison of directional moments (Fig. 10)490

was quite good. In the swell band, the magnitude of the mean wave angle and the directional491

spreads were larger than that of the Spotter.492

In the discussion between UAS-lidar derived and Spotter quantities, we have not explicitly493

considered the errors of the Spotter wave buoy. The Spotter wave buoy has only been compared494

to Datawell wave buoys across from 0.05-0.3 Hz (Raghukumar et al. 2019), although we show495

Spotter wave buoy results out to 1 Hz. Thus, any conclusions based on comparison with Spotter496

between 0.3 Hz and 1 Hz are tentative. The differences in wave spectra between Spotter and497

Datawell Waverider buoys (Raghukumar et al. 2019) are consistent with the differences observed498

here (Fig. 6). Mean wave direction (energy weighted from 0.05-0.3 Hz) have rms differences to499

a Waverider buoy of ≈ 5◦, consistent with the differences observed here in the sea band. More500

recently, wave buoys were compared to a fixed pressure sensor array over a 3 month period (Collins501

et al. 2023). This comparison was performed across a low-frequency (0.035-0.065 Hz), a mid band502

(0.065–0.165 Hz) and a high band (0.165-0.26 Hz). Overall, the Spotter wave height and wave503

direction compared well to that of the pressure sensor array in the mid to high-frequency bands.504

This is consistent with our good comparison in the sea band. However, in the low-frequency band505

the Spotter wave buoy had significant differences in wave height and wave angles. In particular506

root-mean-square wave angle errors were 8◦, which is consistent with the wave angle differences507

between the UAS-lidar and Spotter (Fig. 10a,b). Another consideration is that we have performed508

a single comparison utilizing 11 min of UAS-lidar observations that overlapped within one hour509

of Spotter observations. An evolving wave field over this hour would also lead to differences in510

wave statistics. Overall, the internal consistency of the UAS-lidar-derived results and their good511

comparison to the Spotter wave buoy demonstrate that this is an effective tool for estimating wave512

statistics, particularly in regions near cliffs and rocky coasts.513
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APPENDIX526

A1. Dispersion Relationship, Directional Fourier Coefficients, and Directional Moments527

For reference, the linear dispersion relationship for surface gravity waves is528

𝜔 =
√︁
𝑔𝑘 tanh(𝑘ℎ) (A1)

where 𝜔 = 2𝜋 𝑓 is the wave radian frequency, 𝑔 is gravity, 𝑘 is the wavenumber, and ℎ is the still529

water depth. In wave theory, the monochromatic wave slope 𝑎𝑘 is a standard measure of wave530

nonlinearity. From the slope spectra, an equivalent swell- and sea-band 𝑎𝑘 is calculated as531

(𝑎𝑘)swell =

√︄
2
∫

swell
𝑆 |∇[ | d 𝑓 (A2)

where the swell band is 0.04 ≤ 𝑓 < 0.1 Hz. Similarly, (𝑎𝑘)sea is defined over the 0.1 ≤ 𝑓 < 0.4 Hz532

band and (𝑎𝑘)chop is defined over the 0.4 ≤ 𝑓 < 1 Hz band.533

We define the directional moments used to calculate the mean wave angle \ ( 𝑓 ) and directional534

spread 𝜎\ ( 𝑓 ). As in the text, sea-surface elevation spectra are given by 𝑆[ ( 𝑓 ) and cross-shore and535

alongshore slope spectra are given by 𝑆[𝑥 ( 𝑓 ) and 𝑆[𝑦 ( 𝑓 ), respectively. The co-spectrum (real part536
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of the cross-spectrum) between [𝑥 and [𝑦 is given by 𝐶[𝑥[𝑦 ( 𝑓 ). The quad-spectrum (imaginary537

part of the cross-spectrum) between [ and [𝑥 is defined as 𝑄[[𝑥 ( 𝑓 ) and similarly between [ and538

[𝑦. With these definitions the directional moments are (e.g., Longuet-Higgins et al. 1963; Kuik539

et al. 1988; Herbers et al. 1999),540

𝑎1( 𝑓 ) =
∫ 𝜋

−𝜋 cos(\)𝐸 ( 𝑓 , \)d\∫ 𝜋

−𝜋 𝐸 ( 𝑓 , \)d\
=

−𝑄[[𝑥 ( 𝑓 )
[𝑆[ ( 𝑓 ) (𝑆[𝑥 ( 𝑓 ) + 𝑆[𝑦 ( 𝑓 ))]1/2 , (A3)

𝑏1( 𝑓 ) =
∫ 𝜋

−𝜋 sin(\)𝐸 ( 𝑓 , \)d\∫ 𝜋

−𝜋 𝐸 ( 𝑓 , \)d\
=

−𝑄[[𝑦 ( 𝑓 )
[𝑆[ ( 𝑓 ) (𝑆[𝑥 ( 𝑓 ) + 𝑆[𝑦 ( 𝑓 ))]1/2 , (A4)

𝑎2( 𝑓 ) =
∫ 𝜋

−𝜋 cos(2\)𝐸 ( 𝑓 , \)d\∫ 𝜋

−𝜋 𝐸 ( 𝑓 , \)d\
=
𝑆[𝑥 ( 𝑓 ) − 𝑆[𝑦 ( 𝑓 )
𝑆[𝑥 ( 𝑓 ) + 𝑆[𝑦 ( 𝑓 )

, (A5)

𝑏2( 𝑓 ) =
∫ 𝜋

−𝜋 sin(2\)𝐸 ( 𝑓 , \)d\∫ 𝜋

−𝜋 𝐸 ( 𝑓 , \)d\
=

2𝐶[𝑥[𝑦 ( 𝑓 )
𝑆[𝑥 ( 𝑓 ) + 𝑆[𝑦 ( 𝑓 )

. (A6)

The directional moments, such as mean wave angle and directional spread are functions of the541

Fourier coefficients (e.g., Kuik et al. 1988)542

\1( 𝑓 ) = tan−1
(
𝑏1( 𝑓 )
𝑎1( 𝑓 )

)
, (A7)

\2( 𝑓 ) = 0.5tan−1
(
𝑏2( 𝑓 )
𝑎2( 𝑓 )

)
, (A8)

𝜎\ ( 𝑓 ) =
√︁

2[1− 𝑎1( 𝑓 ) cos(\1( 𝑓 )) − 𝑏1( 𝑓 ) sin(\1( 𝑓 ))], (A9)

𝜎∗
\ ( 𝑓 ) =

√︁
0.5[1− 𝑎2( 𝑓 ) cos(2\1( 𝑓 )) − 𝑏2( 𝑓 ) sin(2\1( 𝑓 ))], (A10)

These directional moments are in radians and converted to degrees. We also estimate the mean wave543

angle averaged over the sea and swell band from energy-weighted directional Fourier coefficients,544

i.e., for the swell-band �̄�1,swell,545

�̄�1,swell =

∫
swell 𝑎1( 𝑓 )𝑆( 𝑓 ) d 𝑓∫

swell 𝑆( 𝑓 ) d 𝑓
(A11)
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and similarly for the other Fourier coefficients. The mean wave angle in the swell (or sea) band is546

then defined as547

\̄1,swell = tan−1
(
�̄�1,swell

�̄�1,swell

)
. (A12)
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