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ABSTRACT: Wave spectra and directional moment measurements are of scientific and engineering

interest and are routinely estimated with wave buoys. Recently, both fixed-location and Uncrewed

Aircraft System (UAS)-mounted lidar have estimated surfzone wave spectra. However, nearshore

wave statistics seaward of the surfzone have not been measured with lidar due to low return number

and nearshore directional moments have not been measured at all. We use a multi-beam scanning

lidar mounted on a gasoline-powered UAS to estimate wave spectra, wave slope spectra, and

directional moments on the inner shelf in ≈ 10 m water depth from an 11-min hover and compare

to a co-located wave buoy. Lidar returns within circular sampling regions with varying radius 𝑅

are fit to a plane and a 2D parabola, providing sea-surface and slope timeseries. Wave spectra

across the sea-swell (0.04–0.4 Hz) are robustly estimated for 𝑅 ≥ 0.8 m. Estimating slope spectra

is more challenging. Large 𝑅 works well in the swell band and smaller 𝑅 work well at higher

frequencies, in good agreement with a wave buoy inferred slope spectrum. Directional Fourier

coefficients, estimated from wave and slope spectra and cross-spectra, are compared to a wave

buoy in the sea-swell band. Larger 𝑅 and the 2D parabola-fit yield better comparison to the wave

buoy. Mean wave angles and directional spreads, functions of the directional Fourier coefficients,

are well reproduced at 𝑅 = 2.4 m and the 2D parabola-fit, within the uncertainties of the wave buoy.

The internal consistency of the UAS-lidar-derived results and their good comparison to the Spotter

wave buoy demonstrate the effectiveness of this tool for estimating wave statistics.
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SIGNIFICANCE STATEMENT: Previously fixed-location or hovering lidar have been used to25

estimate wave spectra in the surf and swash zone where lidar returns are high due to the reflectance26

of foam. We present a methodology to accurately estimate wave spectra and directional properties27

on the inner shelf where waves are not breaking using a hovering Uncrewed Aircraft System with28

a mounted lidar. The estimated wave spectra and directional statistics compare well with a Spotter29

wave buoy, demonstrating the method’s robustness.30

1. Introduction31

Measurements of surface gravity wave statistics are required for both scientific research and32

engineering applications. Wave statistics of interest are the frequency-dependent sea-surface (𝜂)33

elevation spectra 𝑆𝜂 ( 𝑓 ), from which significant wave height 𝐻s, peak and mean periods are based,34

as well as directional moments such as mean wave angle 𝜃1( 𝑓 ) and directional spread 𝜎𝜃 ( 𝑓 ) (Kuik35

et al. 1988). These directional moments are derived from the first four Fourier coefficients of36

the directional spectra and are denoted 𝑎1( 𝑓 ), 𝑏1( 𝑓 ), 𝑎2( 𝑓 ), and 𝑏2( 𝑓 ) (Longuet-Higgins et al.37

1963). Wave spectra and directional moments are typically derived from pitch-and-roll wave buoys38

(e.g., Kuik et al. 1988), co-located pressure sensor and current meter (e.g., Herbers et al. 1999), or39

from Acoustic Doppler Current Profilers (ADCP, e.g., Herbers and Lentz 2010), using spectra and40

cross-spectra of measured variables. More recently, attention has been focused on the development41

of inexpensive wave buoys that are either GPS-based (e.g., Herbers et al. 2012; Raghukumar et al.42

2019) or inertial measurement unit (IMU) based (e.g., Rabault et al. 2022; Feddersen et al. 2023a).43

Lidar (light detection and ranging) is a remote sensing tool with significant potential for studying44

surface gravity waves as a lidar return is a direct measure of the distance to the water surface. An45

aircraft-mounted single-beam scanning (rotating 360◦) lidar measured the sea surface near a wave46

buoy, and the resulting non-directional wave spectra were similar to buoy-estimated spectra (Hwang47

et al. 2000). Since then, aircraft-based lidar wave measurements have advanced significantly48

(e.g., Melville et al. 2016). Assuming a statistically spatially homogeneous wave field, airborne49

lidar observations over 10 km swaths resolved the deep water directional spectrum at frequencies50

from 0.07–0.6 Hz – or wavelengths from 314 to 4 m (Lenain and Melville 2017). An airborne51

single-scanning lidar estimated spatial variations of significant wave height at 1 km resolution at52

the mouth of the Columbia River, allowing study of wave amplification effects (Branch et al. 2018).53
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Airborne lidar with a single scanning beam resolves to the high wavenumber (short wavelength)54

portion of the wave spectrum (Lenain and Melville 2017) allowing wave slope estimation (Lenain55

et al. 2019) as wave slope is dominated by short-waves. Wave slope variability induced by internal56

waves in roughly 80 m water depth was estimated at scales of 50 m (Lenain and Pizzo 2021).57

However, this only included slope contributions at > 0.18 Hz. In the nearshore, wave spectra at58

lower sea-swell frequencies (longer wavelengths) are of interest. Additionally, the nearshore region59

has significant depth variations and rapid wave transformation making the requirement of spatial60

homogeneity challenging.61

Fixed-location lidar-based temporal sea-surface elevation measurements were first performed62

by Irish et al. (2006). They mounted four non-scanning point-beam lidars in a rectangular grid63

with a horizontal spacing of 0.6–2.0 m on the Field Research Facility (FRF, North Carolina USA)64

pier 6–16 m above the water surface. Wave spectra 𝑆𝜂 ( 𝑓 ) and significant wave heights were well65

reproduced, but the array spacing and instrument number were not ideal for estimating directional66

moments. Single-beam scanning lidars mounted on a fixed location have been used to measure the67

temporal (𝑡) and cross-shore (𝑥) varying sea-surface 𝜂(𝑥, 𝑡) in the swashzone on sandy (Blenkinsopp68

et al. 2010) and gravel (Almeida et al. 2013) beaches. Blenkinsopp et al. (2010) showed that swash69

zone 𝜂 estimated from a 905 nm wavelength lidar, matched well with ultrasonic altimeters deployed70

in the swash zone. Using a fixed-location scanning lidar at a 1550 nm wavelength, Brodie et al.71

(2015) showed that lidar-derived wave setup and wave spectra matched those of pressure sensors72

in the inner-surfzone at low grazing angles and distances 25–65 m from the lidar. A fixed-location73

1550 nm lidar scanning a highly-energetic, low-sloped beach compared well to a swash zone74

pressure sensor at ranges of 250-350 m also at low grazing angles (Fiedler et al. 2015). Three75

fixed-location lidars mounted on a pier were used to generate a cross-shore continuous timeseries of76

sea surface elevation across the surfzone (Martins et al. 2017). As these studies used a single-beam77

scanning lidar, only a single spatial direction was resolved, and directional wave information could78

not be estimated.79

The aerated nature of water in the swash and surf zone is ideal for lidar reflections at all80

wavelengths. For non-breaking waves, lidar returns depend on the lidar wavelength. Lidars with81

a wavelength near 900 nm perform far better on water surfaces than lidars at 1550 nm due to the82

order of magnitude smaller absorption coefficient at 905 nm (Wojtanowski et al. 2014). Thus,83
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lidar at a 1550 nm wavelength is more limited in measuring waves seaward of the surfzone where84

the water surface is not aerated. A lidar with a 905 nm wavelength was able to well reproduce85

wavestaff-based wave observations in a laboratory (Blenkinsopp et al. 2012). Detailed observations86

of wave overturning have been made using a multi-beam 905 nm scanning lidar in both field settings87

(O’Dea et al. 2021) and field-scale laboratory settings (Feddersen et al. 2023b; Baker et al. 2023).88

An uncrewed aircraft system (UAS) with RTK-GNSS positioning and video were used to study89

beach profile evolution with structure from motion (Turner et al. 2016), and observe the wave speed90

to estimate bathymetry (Brodie et al. 2019; Lange et al. 2023). As a more direct measurement, lidar91

has advantages and liabilities over video. UAS with a mounted lidar is used in various mapping92

and surveying applications that were enabled by advances in UAS positioning (GPS & IMU), and93

lidar technology. One advantage of a UAS with mounted lidar is the high grazing angles, which are94

more conducive to returns than the low grazing angles of shore-mounted systems. Surface gravity95

waves and tides were estimated at a single location by an 870 nm scanning lidar at a height 6-10 m96

above the surface and were validated against an in situ pressure gauge (Huang et al. 2018). Fiedler97

et al. (2021) extended this work with a 905 nm scanning lidar mounted on a UAS. Wave spectra98

within the surfzone and swash zone were estimated and validated against in situ pressure sensor99

data. However, observations were limited seaward of the surfzone where wave breaking did not100

occur, and no directional information was estimated.101

In contrast to single-beam scanning lidars, multi-beam scanning lidars enable two-dimensional102

(2D) sea-surface elevation measurements, allowing for directional wave analysis with a single103

instrument. Here, we use a gasoline-powered UAS with a multi-beam 903 nm wavelength104

scanning lidar payload to estimate directional wave statistics at a point location seaward of the105

surfzone in 10 m water depth and compare to a Spotter wave buoy. Essentially the point-location106

directional wave spectral statistics estimated by the UAS-lidar are those that a wave buoy estimates.107

Estimating similar statistics with a phased array at multiple lags requires a statistically homogeneous108

wave field, which is not the case here. The UAS together with the lidar package, as well as the data109

collection by the co-located Spotter buoy are described in Section 2. Binning regions of different110

radii are defined, and the statistics of lidar returns, as well as the method for fitting the sea surface111

and its slope are described in Section 3. In Section 4, UAS-lidar estimated timeseries of 𝜂 and112

𝜕𝜂/𝜕𝑥, bulk statistics, as well as 𝑆𝜂 and slope spectra 𝑆 |∇𝜂 | are examined as a function of the radius113
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Fig. 1. Bathymetry (𝑧, meters relative to mean sea-level) at the China Rock region as a function of local

cross-shore (𝑋) and alongshore (𝑌 ) coordinates. Magenta dots represent all instrument locations. The yellow

circle represents the location of the Spotter mooring where the hover took place. Regions in white indicate no

bathymetric observations.
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of the binning-region. UAS wave spectra are compared to that of the Spotter wave buoy. UAS slope114

spectra are compared to slope spectra estimated from Spotter wave spectra and the wavenumber115

𝑘 inferred from the linear dispersion relationship. In Section 5, UAS-lidar estimated directional116

Fourier coefficients are estimated as a function of frequency and compared to those of the Spotter117

wave buoy. Directional moments derived from the Fourier coefficients are also compared to the118

Spotter wave buoy. The capability of a UAS with multi-beam lidar to estimate wave and slope119

spectra as well as directional wave quantities is discussed in Section 7.120

2. Methods125

a. Experiment Overview126

The ROXSI field experiment occurred during July 2022 off of China Rock on the Monterey127

Peninsula, CA USA (Fig. 1). The rocky shore off of China Rock has a moderate (1:40) cross-shore128

slope. In water depths ℎ < 20 m, the bathymetry has significant variability, or roughness, at a129
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range of length-scales (Fig. 1). A China Rock cross- and alongshore (𝑋,𝑌 ) coordinate system is130

defined where −𝑋 is directed towards 285◦ N. The shoreline has multiple small headlands about131

250 m apart with embayments that extend 100 m onshore. During the experiment a number of132

instruments, including ADCPs, Spotter wave buoys (Raghukumar et al. 2019), and pressure sensors133

were deployed from the shoreline to 30 m water depth (magenta dots in Fig. 1). At 8 locations, co-134

located Spotter wave buoys and time-synchronized pressure sensors were deployed. Spotter wave135

buoys are GPS-based (Herbers et al. 2012), and are highly effective in capturing wave spectra 𝑆𝜂 ( 𝑓 )136

and directional moments in the sea-swell (0.05 < 𝑓 < 0.3 Hz) frequency band (e.g., Raghukumar137

et al. 2019; Collins et al. 2023). To estimate directional parameters, wave buoys (whether GPS-138

or IMU-based) use displacement or slope cross-spectra to estimate the Fourier coefficients of the139

directional spectra (or directional Fourier coefficients) 𝑎1( 𝑓 ), 𝑎2( 𝑓 ), 𝑏1( 𝑓 ), and 𝑏2( 𝑓 ) (Longuet-140

Higgins et al. 1963; Kuik et al. 1988). For this study, we calculate spectral quantities from141

the Spotter wave buoy for the co-incident 692-s time period of the UAS hover (described below).142

Although only tested out to frequencies ≤ 0.3 Hz (Raghukumar et al. 2019; Collins et al. 2023), the143

Spotter wave buoy reports spectral quantities out to 1 Hz with unknown accuracy from 0.3–1 Hz.144

b. UAS and Lidar-Package Description145

We use an eight-rotor Skyfront Perimeter 81 as the Uncrewed Aircraft System (UAS). The150

Perimeter 8 is powered by a hybrid gasoline-electric propulsion system, consisting of a 32 cc 1-151

cylinder 2-stroke engine that generates electricity to power the UAS. Two Lithium Polymer (LiPo)152

batteries provide startup and emergency backup power. Tip-to-tip, the Perimeter 8 measures 2.31 m153

long by 2.2 m wide by 0.37 m high. The Perimeter 8 weighs ≈ 20 kg with 4 L of fuel and the154

payload gives it a takeoff weight of ≈ 22.5 kg. Fully loaded, the UAS was flown for up to 100 min,155

including takeoff, kinematic alignment maneuvers, transit, hovers, and landing. The Skyfront156

Perimeter 8 uses a proprietary PX4-based flight controller and is remotely operated using a 2.4157

GHz radio remote controller connected to a Windows laptop running the Skyfront Ground Control158

Software (GCS) for both manual and automated waypoint flight. The flight controller navigation159

system was upgraded with a RTK-GNSS module that receives relative position updates from a160

fixed-location base station on shore. This allows the UAS to maintain its position without drifting161

over time. With a team of three people, the lidar UAS can be set up and deployed within 30 min162

1https://skyfront.com/perimeter-8
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Fig. 2. Georectified sea-surface image in offset China Rock (𝑥, 𝑦) coordinates with overlaid lidar-based sea-

surface elevation 𝜂(𝑥, 𝑦) (colored dots) at that specific time. The magenta dot indicates the instantaneous UAS

location, which is offset slightly from the time-averaged UAS location. The solid, dash-dot, and dashed yellow

circles represent radii of 𝑅 = {0.4,1,2.4} m around (𝑥, 𝑦) = (0,0) m. The time is 19-July-2022 14:59:08 PDT.
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of arrival on site. The downtime between each flight to refuel, swap batteries, and resume data163

collection was approximately 20 minutes. External LiPo batteries are used for ground power to164

keep the lidar and GNSS system running without interruption.165

The UAS payload is a Phoenix Lidar Systems (PLS) Scout-Ultra2, consisting of a Velodyne Ultra166

Puck (VLP-32C) lidar, a proprietary PLS NavBox, and a 24 MP Sony A6K-Lite RGB camera. The167

Scout-Ultra NavBox integrates the inertial measurement unit (IMU), GNSS receiver, data storage,168

CPU, Wi-Fi telemetry, power supply, and I/O components necessary for collecting survey-grade169

data. The GNSS receiver is a Novatel OEM7720 and the IMU is an Inertial Labs IMU-P. Dual170

2https://www.phoenixlidar.com/scout-ultra/
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helical GNSS antennas are mounted onto opposing UAS motor arms with 1.54 m separation,171

enabling accurate heading solutions. The IMU and dual GNSS data are post-processed using172

Novatel Inertial Explorer Version 8.90 software to produce a trajectory file for determining sensor173

position and orientation. The Scout-Ultra is controlled separately from the UAS via a Wi-Fi174

link to a second Windows laptop running Phoenix Lidar Systems’ Spatial Explorer version 6.0.7.175

The PLS software displays real-time point cloud, image preview, and payload telemetry data, and176

allows for remote activation of the lidar and camera sensors. RGB camera images were taken at 1177

Hz.178

The Velodyne Ultra Puck lidar was originally developed for the automobile industry and has179

been adapted for surveying and robotics applications. Although it is slightly less accurate than180

fixed-location lidars (3 cm versus 0.75 cm accuracy) previously used in surfzone studies (Brodie181

et al. 2015), its low cost, low power, multi-beam scan pattern, long-range, small form factor, and182

light (1 kg) weight make it well-suited for this UAS application. The lidar uses a 903 nm laser,183

which performs better on water surfaces than 1550 nm lasers (Wojtanowski et al. 2014; Fiedler184

et al. 2021). The 32 beams scan over 360◦, on an axis 90◦ from the nose of the UAS. The beams are185

organized in a non-linear distribution, with most beams concentrated in the center of the vertical186

field of view, where data resolution is increased, resulting in a 40◦ off-axis field of view (-25◦ deg to187

+15◦). The pulse repetition rate of the sensor is 600,000 measurements per second (600 kHz). The188

programmable frame rate of the lidar ranges from 5 to 20 Hz. Similar to Feddersen et al. (2023b),189

we used 10 Hz (600 RPM, ±3 RPM), which gives a horizontal angular (azimuthal) resolution of190

0.2◦. At the 10 Hz frame rate and sampling a 90◦ region below the UAS results in 0.025 s time191

uncertainty of a return, which is insignificant for the analysis on surface gravity wave time-scales.192

The maximum measurement range is 200 m with a ±3 cm range accuracy. Laser beam divergence193

is 3.43 mrad on the horizontal axis (cross-shore) and 1.72 mrad on the vertical axis (alongshore),194

resulting in a 12.5 cm × 6.6 cm footprint of an individual lidar return directly below the scanner195

when hovering at 33 m above the sea surface. The Velodyne Ultra Puck does not provide usable196

metrics to evaluate the quality of a return. The lidar returns are transformed into earth coordinates197

in Spatial Explorer software using the post-processed position and orientation data. The resulting198

point cloud was exported to a LAS format file. Lidar returns were quality controlled to remove199

points closer than 8 m or farther than 100 m from the lidar.200
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Fig. 3. Lidar return statistics within the sample region versus radius 𝑅: (a) the time-averaged number of

returns within the sample region 𝑁̄𝑝 (b) the mean variance of the sea surface returns within the sample region

𝜎2
𝜂 (1). (c) The 𝛿bad (fraction of time that the return number are below 𝑁c) as a function of the return cutoff

number 𝑁c and the radius 𝑅. The contour kinks reflect the discrete sampling of 𝑅 and 𝑁c. The black dashed line

represents 𝑁c = 10.
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c. Hover near the Spotter Wave Buoy201

Most missions had the UAS hovering sequentially over locations of pressure sensors located207

mostly in the surfzone of the rocky shoreline for approximately 10 min at a time for flights of 80-208

100 min duration. However, we performed one mission where the UAS hovered near the location209

of a Spotter wave buoy (Fig. 1, yellow circle), approximately 250 m from the mean shoreline.210
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This hover occurred on 19-July-2022, started at 14:58:12 PDT, and lasted for 692 seconds. At this211

time, the Spotter significant wave height integrated from 0.04–0.4 Hz was 𝐻s = 1.17 m with an212

energy-weighted mean period of𝑇 = 6.1 s. During the morning the wind (measured 300 m offshore213

at 4 m above the sea-surface) had been 6 ms−1 blowing onshore (+𝑥 direction). However, during214

the hover, the wind was weaker at 2.5 ms−1 onshore. The UAS was hovering at 33 m elevation215

relative to the sea surface where the wind was likely stronger than measured.216

The hovering UAS was oriented with the nose pointing in the alongshore +𝑌 direction so the lidar217

was oriented for cross-shore scanning. The latitude and longitude of lidar returns are converted to218

the UTM-based local China Rock (𝑋,𝑌 ) coordinates. The vertical locations of the lidar returns219

are in NAVD88 and are demeaned to represent sea-surface elevation. The 2-Hz sampled locations220

of the UAS reveal that the UAS maintained a nearly constant hovering position. The UAS position221

𝑥 standard deviation 𝜎𝑥 = 0.055 m is small as is the 𝑦-standard deviation 𝜎𝑦 = 0.084 m, with222

maximum position deviation < 0.2 m in 𝑥 and 𝑦. During the hover, the UAS held its orientation223

consistently with a heading standard deviation of 0.3◦, pitch standard deviation of 0.7◦ and roll224

standard deviation of 0.5◦. The mean pitch was 0.8◦ and the mean roll was 2.7◦ allowing the UAS225

to maintain position in the wind for this hover. Stronger winds likely result in larger position and226

heading, pitch, and roll variability.227

An example of a single 10 Hz lidar snapshot is shown in Fig. 2. We define a local coordinate228

system 𝑥 = 𝑋 − 𝑋̄ where ( 𝑋̄,𝑌 ) are the mean location of the UAS during the hover. From the229

georectified image, a rough but not whitecapping sea surface is visible with short wavelengths230

≈ 1 m that ride on top of the longer sea and swell. The Velodyne Ultra lidar beams are largely231

oriented along the ±𝑥 direction, also approximately the direction of wave propagation, and lidar232

returns are largely concentrated at |𝑦 | ≤ 2 m. The number of lidar returns at this offshore233

location was significantly less than farther onshore due to the lack of breaking waves and increased234

water clarity at this cross-shore location (divers reported 6 m visibility 2 days later). Lidar returns235

indicate that the sea surface 𝜂 varies spatially at ±0.5 m at a range of scales.236

3. Lidar Data Processing and Return Statistics237

We define a sampling region as a circle of radius 𝑅 centered on the mean hover location238

(𝑥, 𝑦) = (0,0) m. A circle is chosen so as to not bias directional estimates, i.e., all directions have239
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the same sampling region width. We estimate lidar return statistics and sea-surface elevation and240

slopes as a function of 𝑅, which varies from 0.4 m to 2.4 m in 0.2 m increments. An example of241

sampling regions is shown in Fig. 2 with radii of 𝑅 = {0.4,1,2.4} m. The number of lidar returns242

within a sampling region, defined as 𝑁𝑝 (𝑡;𝑅), is higher for larger 𝑅 (Fig. 2). We define two types243

of averaging. The first is averaging over the lidar returns within the sample region, denoted by244

⟨. . .⟩. The second is a time-average over the 692 s of the UAS hover, denoted by an overbar. Thus245

⟨𝜂⟩ is equal to zero.246

The time-averaged number of lidar returns 𝑁̄𝑝 (𝑅) varies from 6 points for 𝑅 = 0.4 m and increases247

quadratically to 𝑁̄𝑝 = 225 for 𝑅 = 2.4 m (Fig. 3a). The ratio 𝑁̄𝑝/𝑅2 is roughly constant at ≈ 40 m−2,248

indicating that the lidar return density is uniform across the 𝑅 range (0.4–2.4 m). At larger 𝑅, this249

ratio decreases due to the lidar beam distribution, and 𝑅 > 2.4 m are thus not considered.250

We estimate the time-average vertical variance of lidar returns within a sample region, 𝜎2
𝜂 (𝑅),251

as252

𝜎2
𝜂 (𝑅) = ⟨𝜂′2⟩, (1)

where 𝜂′
𝑖
(𝑡) = 𝜂𝑖 (𝑡) − ⟨𝜂(𝑡)⟩. Thus, 𝜎2

𝜂 represents a combination of instrument noise and the true253

sea-surface variability. The mean return vertical variance 𝜎2
𝜂 (𝑅) varies in a weakly quadratically254

manner from from 0.005 m2 at 𝑅 = 0.4 m to 0.013 m2 at 𝑅 = 2.4 m (Fig. 3b). Quadratic255

𝜎2
𝜂 variation is consistent with the sea surface primarily being a plane, whereas random and256

independent instrument noise would lead to a 𝜎2
𝜂 (𝑅) constant with 𝑅. Extrapolating the curve to257

𝑅 = 0, yields an instrument (lidar plus orientation/position) 𝜂 noise variance estimate of 0.0035 m2
258

or 0.06 m. The quoted Velodyne Ultra Puck accuracy is 0.03 m, or half of the inferred 𝜂 noise259

standard deviation, suggesting the remainder is due to UAS orientation and position uncertainty.260

The UAS orientation and position uncertainty will be affected by variables such as GNSS quality261

and IMU hardware. That the 𝜂 noise standard deviation is so small relative to the expected wave262

amplitude, gives confidence in the results.263

For a particular time, a minimum number of lidar returns above a cutoff 𝑁c are required264

(i.e., 𝑁𝑝 (𝑡) > 𝑁c) to estimate sea-surface parameters (see below), otherwise interpolation over265

that time is required. We define the fraction of time that data is bad 𝛿bad(𝑅,𝑁c) as the fraction of266

time that 𝑁𝑝 (𝑡;𝑅) < 𝑁c. Small 𝛿bad results in minimal timeseries interpolation prior to estimating267

wave statistics, and the smaller 𝑁c yields smaller 𝛿bad, and less interpolation. Yet small 𝑁c may268
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lead to noisy estimates of 𝜂 and its slope. To determine what 𝑁c to choose, we examine the statistics269

of 𝛿bad as a function of 𝑅 and 𝑁c varying from 𝑁c = 4 to 𝑁c = 20. For 𝑅 > 1.2 m, the fraction of270

bad data 𝛿bad(𝑅,𝑁c) is largely independent of 𝑁c (contour lines in Fig. 3c are largely vertical) and271

𝛿bad < 10−3 for all 𝑁c. For smaller 𝑅 ≤ 0.6 m, 𝛿bad is always > 0.05 and grows rapidly with 𝑁c.272

Thus we do not consider further 𝑅 ≤ 0.6 m. As 𝛿bad only weakly depends on 𝑁c for 𝑅 ≥ 0.8 m,273

we choose an intermediate 𝑁c = 10 for further analysis, resulting in a 𝛿bad < 0.013 for 𝑅 ≥ 0.8 m,274

resulting in minimum interpolation requirement.275

To calculate wave spectra and directional moments, timeseries of 𝜂, 𝜕𝜂/𝜕𝑥, and 𝜕𝜂/𝜕𝑦 at276

(𝑥, 𝑦) = (0,0) m are required. We estimate these parameters using two different least-squares fits:277

(1) a plane-fit and (2) a 2D parabola-fit, which are based on a first or second order Taylor series278

expansion of the sea-surface around (𝑥, 𝑦) = (0,0) m, consistent with the 𝜎2
𝜂 variation largely being279

a plane (Fig. 3b). The fit parameters are estimated over a range of 𝑅 for times when 𝑁c ≥ 10. The280

plane-fit fits a plane to the available lidar returns in the sampling region, i.e.,281

𝜂𝑖 (𝑡, 𝑥𝑖, 𝑦𝑖) =
𝜕𝜂

𝜕𝑥
(𝑡)𝑥𝑖 +

𝜕𝜂

𝜕𝑦
(𝑡)𝑦𝑖 +𝜂(𝑡), (2)

where (𝑥𝑖, 𝑦𝑖) and 𝜂𝑖 are the observed horizontal position and sea-surface elevation of the lidar282

returns (Fig. 2), and there are three fit parameters (𝜂, 𝜕𝜂/𝜕𝑥, and 𝜕𝜂/𝜕𝑦). The 2D parabola-fit fits283

to a 2D parabola, i.e.,284

𝜂𝑖 (𝑡, 𝑥𝑖, 𝑦𝑖) =
1
2
𝜕2𝜂

𝜕𝑥2 (𝑡)𝑥
2
𝑖 +

1
2
𝜕2𝜂

𝜕𝑦2 (𝑡)𝑦
2
𝑖 +

𝜕2𝜂

𝜕𝑦𝜕𝑥
(𝑡)𝑥𝑖𝑦𝑖 +

𝜕𝜂

𝜕𝑥
(𝑡)𝑥𝑖 +

𝜕𝜂

𝜕𝑦
(𝑡)𝑦𝑖 +𝜂(𝑡), (3)

and has three additional fit parameters 𝜕2𝜂/𝜕𝑥2, 𝜕2𝜂/𝜕𝑦2, and 𝜕2𝜂/𝜕𝑥𝜕𝑦. Both fits are performed285

for all times where 𝑁𝑝 > 𝑁c at all 𝑅 ≥ 0.8 m. Any times with 𝑁𝑝 < 𝑁c lidar returns are linearly286

interpolated in time. Based on the time-averaged mean-square fit error and the 𝜎2
𝜂 (𝑅), the overall287

(time-averaged) fit skill is > 0.94 for all 𝑅 ≥ 0.8 and both methods. At occasional times, the fit288

skill can be reduced, but using fit skill to remove parameter estimates had no affect on the results289

and is not performed here.290

The advantage of the plane-fit (2) is that, with fewer fit parameters, their estimates should be more291

stable. The disadvantage is that, for a wavelength 𝜆, an 𝑅 significantly shorter than 𝜆 is required to292

resolve the wave. This places an upper-frequency limit, through the surface gravity wave dispersion293
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Fig. 4. Timeseries of (top, a-b) 𝜂 and (bottom, c-d) 𝜕𝜂/𝜕𝑥 for 𝑅 = 2.4 m (blue) and 𝑅 = 0.8 m (orange-dashed)

and 𝑁c = 10. The left column (a,c) is for the plane-fit and the right column (b,d) is for the 2D parabola-fit.

302

303

relationship (A1), on the estimated parameters. As 𝜆 gets smaller (frequency increases), we expect294

the spectral levels to decrease with larger 𝑅, as the fit essentially acts as a low-pass filter. The295

2D parabola-fit (3) has more fit parameters, which will have more noise than that of the plane-fit.296

However, by including quadratic terms at a fixed 𝑅, a shorter 𝜆 should be resolvable relative to297

the plane-fit, thereby increasing the resolved frequencies. Throughout, we will explore the relative298

merits of both fit methods. At larger 𝜆, other challenges are present that depend on 𝑅. The wave299

slope scales as wave amplitude over wavelength 𝑎/𝜆, and thus these smaller slopes will be harder300

to robustly estimate.301

4. Lidar Observations of Sea Surface and Slope304

a. Timeseries of 𝜂 and 𝜕𝜂/𝜕𝑥305

Short, 40-s, timeseries of the plane-fit and 2D parabola-fit 𝜂 and 𝜕𝜂/𝜕𝑥 for two radii are shown306

in Fig. 4 to illustrate the effects of varying 𝑅 and the fit method. Recall 𝑁c = 10 is fixed. The307
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plane-fit 𝜂 with 𝑅 = 2.4 m varies ±0.5 m with evident variability over 3–8 s periods (Fig. 4a,308

blue curve). The 𝑅 = 0.8 m plane-fit 𝜂 varies similarly but has more high-frequency variability309

(orange-dashed in Fig. 4a). The 2D parabola-fit 𝜂 for 𝑅 = 2.4 m (Fig. 4b, blue curve) is quite310

similar to that of the plane-fit, and the 𝜂 for 𝑅 = 0.8 m also has more high-frequency variability311

with some minor differences relative to the plane-fit 𝜂. The differences in 𝜕𝜂/𝜕𝑥 for the two312

radii are much starker (Fig. 4c,d) than for 𝜂. The plane-fit 𝜕𝜂/𝜕𝑥 for 𝑅 = 2.4 m has a smooth313

curve (Fig. 4c) with variability at time-scales similar to 𝜂 with magnitude ≈ 0.1, indicating weak314

nonlinearity. However, the 𝑅 = 0.8 m plane-fit 𝜂 has significantly more high-frequency variability315

than for 𝑅 = 2.4 m. The 2D parabola-fit 𝜕𝜂/𝜕𝑥 for 𝑅 = 2.4 m (blue curve in Fig. 4d) is similar to316

the plane-fit. However, the 2D parabola-fit with 𝑅 = 0.8 m 𝜕𝜂/𝜕𝑥 has even more high-frequency317

variability than for the plane-fit. For both 𝜂 and 𝜕𝜂/𝜕𝑥, the greater stability and low-pass filtering318

effect of increasing 𝑅 is evident. The pattern with 𝜕𝜂/𝜕𝑦 is similar (not shown).319
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Fig. 5. (a) Fraction of time with bad data 𝛿bad (b) squared significant wave height 𝐻2
s (4), and (c) mean square

surface slope |∇𝜂 |2 (5) versus radius 𝑅 all for 𝑁c = 10. In panels (b)-(c), the blue and orange lines represent the

plane-fit and 2D parabola-fit, respectively.
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b. Time-averaged sea-surface and slope statistics323

To evaluate the 𝜂, 𝜕𝜂/𝜕𝑥, and 𝜕𝜂/𝜕𝑦 from the two fit methods, we examine two bulk statistics,324

squared significant wave height 𝐻2
s and mean square wave slope as a function of 𝑅. Significant325

wave height 𝐻s is defined in a standard manner through sea-surface elevation variance,326

𝐻s = 4𝜂2
1/2

. (4)

Note, this definition includes all frequencies up to the Nyquist frequency of 5 Hz in the estimate of327

𝐻s. The mean-square wave slope |∇𝜂 |2 is328

(
𝜕𝜂

𝜕𝑥

)2
+
(
𝜕𝜂

𝜕𝑦

)2
. (5)

For 𝑅 = 0.4 m and 𝑅 = 0.6 m, 𝛿bad = 0.83 and 𝛿bad = 0.2, respectively (Fig. 5a). With so many329

bad data points, further statistics are not calculated or examined for 𝑅 ≤ 0.6 m. For 𝑅 = 0.8 m,330

𝛿bad = 0.03, and for larger 𝑅 the 𝛿bad is effectively zero. Thus, we examine statistics for 𝑅 ≥ 0.8 m331

only. The plane-fit 𝐻2
s slowly decreases from 1.63 m2 at 𝑅 = 0.8 m to 1.52 m2 at 𝑅 = 2.4 m332

(Fig. 5b). This decrease is consistent with the larger 𝑅, providing more statistical stability and333

acting as a low-pass filter. Relative to the plane-fit, the 2D parabola-fit 𝐻2
s is relatively constant334

with 𝑅 only decreasing slightly from 1.65 m2 to 1.62 m2 over the 𝑅 range. This indicates that for335

this 𝑅 range the 2D parabola-fit with its extra fit parameters reduces the low-pass filter effect. For336

the plane-fit, the mean square slope |∇𝜂 |2 decreases steadily from 0.011 at 𝑅 = 0.8 m to 0.0041 at337

𝑅 = 2.4 m (fig. 5c). For the 2D parabola fit, |∇𝜂 |2 is twice as large as for the plane fit for 𝑅 = 0.8,338

consistent with the 𝜕𝜂/𝜕𝑥 timeseries (Fig. 4d). However, for 𝑅 ≥ 1.2 m, the 2D parabola-fit |∇𝜂 |2339

is similar to that of the plane-fit method (Fig. 5c). The decay with 𝑅 suggests that slope is more340

sensitive to 𝑅 than 𝜂 is for the 2D parabola-fit method.341

c. Spectra of sea-surface elevation and slope348

Sea-surface elevation spectra 𝑆𝜂 ( 𝑓 ) are estimated for both fit-methods with 24 degrees-of-354

freedom (DOF) and frequency resolution of ≈ 0.01 Hz. Slope spectra 𝑆 |∇𝜂 | ( 𝑓 ) are also estimated355
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Fig. 6. UAS-lidar Sea-surface elevation spectra 𝑆𝜂 ( 𝑓 ) versus frequency for the (a) plane-fit and (b) 2D

parabola-fit methods for 𝑅 = {0.8,1.2,1.6,2.0,2.4} m. The black dashed curve is the Spotter wave buoy spectrum

over the same time period (shown out to 1 Hz). The black error bar indicates the 95% spectra confidence limits at

24 DOF for both lidar and wave buoy based spectra. On the top is shown the wavelength 𝜆 associated with select

𝑓 through the linear surface gravity wave dispersion relationship (A1) at a depth of 10 m. The gray vertical lines

demarcate the swell, sea, and chop frequency bands as indicated in (b).

342

343

344

345

346

347

from the spectra of 𝜕𝜂/𝜕𝑥 and 𝜕𝜂/𝜕𝑦,356

𝑆 |∇𝜂 | ( 𝑓 ) = 𝑆𝜂𝑥 ( 𝑓 ) + 𝑆𝜂𝑦 ( 𝑓 ). (6)

We examine UAS-lidar wave spectra 𝑆𝜂 ( 𝑓 ) dependence on radius 𝑅 for both fit-methods and357

compare it to the wave spectra from the co-located Spotter wave buoy (Fig. 6). Hereafter, we define358

three specific frequency bands. First, the swell band spans 0.04 ≤ 𝑓 < 0.1 Hz. The sea band spans359

0.1 ≤ 𝑓 < 0.4 Hz. We also define a “chop” band as 0.4 ≤ 𝑓 < 1 Hz band. The plane-fit 𝑆𝜂 ( 𝑓 ) for360

𝑅 ≥ 0.8 m match well the Spotter wave spectra across the 0.04 < 𝑓 < 0.4 Hz band that encompasses361
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Fig. 7. UAS-lidar sea-surface elevation slope spectra 𝑆 |∇𝜂 | (6) versus frequency for the (a) plane-fits and (b)

2D parabola-fit methods for 𝑅 = {0.8,1.2,1.6,2.0,2.4} m. The black dashed curve is the Spotter estimated slope

spectrum 𝑘2𝑆𝜂 ( 𝑓 ) using the dispersion relationship (A1) and a depth of 10 m. The black error bar indicates

the 95% spectra confidence limits at 24 DOF for the lidar based spectra. On the top is shown the wavelength 𝜆

associated with select 𝑓 through the linear surface gravity wave dispersion relationship at a depth of 10 m.

349

350
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353

the swell and sea bands. In this band, the plane-fit and 2D parabola-fit 𝑆𝜂 ( 𝑓 ) are nearly similar for362

all 𝑅 ≥ 0.8 m. At this location and depth, a frequency of 0.4 Hz corresponds to a wavelength of363

𝜆 ≈ 10 m, with ratio 𝑅/𝜆 being less than 0.25 for all 𝑅, indicating that the fit methods should be364

robust. At frequencies > 0.4 Hz, 𝑆𝜂 ( 𝑓 ) decreases more rapidly for larger 𝑅, consistent with the365

low-pass filter effect with larger 𝑅, and at 0.6 Hz significant 𝑆𝜂 ( 𝑓 ) differences with 𝑅 are evident,366

particularly for the plane-fit (Fig. 6). The 2D parabola-fit 𝑆𝜂 ( 𝑓 ) has less spectral variation with367

𝑅 in the “chop” (0.4–1 Hz) band then the plane-fit, consistent with the 𝐻2
s changes with 𝑅 for368

both methods (Fig. 5b). This is likely a result of the 2D parabola-fit being able to resolve shorter369

wavelengths at a particular 𝑅. For both methods, the spectral noise floor (i.e., flat 𝑆𝜂 ( 𝑓 )) occurs at370
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𝑓 > 1 Hz, corresponding to a wavelength 𝜆 of 1.6 m, with levels that decrease with 𝑅. At 𝑓 = 1 Hz,371

the ratio of 𝑅/𝜆 varies from 0.5 to 1.5. At the larger 𝑅/𝜆 values the fit method will act as a low372

pass filter, as observed in Fig. 6. The noise floor depends on method and 𝑅, but for 𝑅 ≥ 1.2 m is373

< 10−4 m2 s−1. Overall, either method will work well for estimating wave spectra in the sea-swell374

(0.04–0.4 Hz) band.375

We next examine the effect of 𝑅 on slope spectra 𝑆 |∇𝜂 | ( 𝑓 ) (6) for both the plane-fit and 2D376

parabola-fit methods (Fig. 7). The Spotter does not report wave slope, and thus, a direct comparison377

cannot be made. However, from the Spotter wave spectra, we can estimate slope spectra as378

𝑘2( 𝑓 )𝑆𝜂 ( 𝑓 ), where 𝑘 is estimated from the linear dispersion relationship (A1) at each frequency379

at a depth of 10 m. In the swell band ( 𝑓 < 0.1 Hz), the plane-fit and 2D parabola-fit 𝑆 |∇𝜂 | ( 𝑓 ) for380

𝑅 = 0.8 m are elevated, indicating noise contamination. In this band the 𝑆 |∇𝜂 | ( 𝑓 ) converge with381

larger 𝑅 (Fig. 7), suggesting that for 𝑅 ≥ 1.2 m the slope spectra are well estimated. In addition,382

in the swell band, the Spotter inferred 𝑘2𝑆𝜂 ( 𝑓 ) (black dashed in Fig. 7) matches well the slope383

spectra for 𝑅 ≥ 1.6 m, further suggesting 𝑆 |∇𝜂 | ( 𝑓 ) is well estimated in this band. For 𝑅 ≥ 1.6 m,384

the equivalent swell-band wave slope (𝑎𝑘)swell = 0.0085 (A2), corresponding to an angle of 0.49◦,385

is very small.386

In the 0.1 < 𝑓 < 0.4 Hz sea band, the spectra are similar for both methods for all 𝑅 > 0.8 m.387

Consistent with this, the equivalent sea-band wave slopes (𝑎𝑘)sea (A2) are similar in this band388

varying from 0.076 to 0.072. In addition, the inferred Spotter 𝑘2𝑆𝜂 ( 𝑓 ) match well the slope389

spectra, which all together suggests that slope spectra are well estimated in this band. At higher390

frequencies ( 𝑓 > 0.4 Hz), the 𝑆 |∇𝜂 | ( 𝑓 ) separate as a function of 𝑅, are consistent with the reduced391

|∇𝜂 |2 with 𝑅 (Fig. 5c) and the low-pass filter interpretation. Generally at 𝑓 > 2 Hz for both methods,392

a noise floor is reached, whose level is lower for larger 𝑅, also consistent with the low-pass filter393

interpretation. For both methods, at 𝑅 = 0.8 the 𝑆 |∇𝜂 | ( 𝑓 ) has a peak near 𝑓 = 0.6 Hz which only394

weakly decays out to 1 Hz, whereas the slope spectra for larger 𝑅 fall off much more rapidly. In395

the “chop” band (0.4 < 𝑓 < 1 Hz) the equivalent 𝑎𝑘 is similar to that in the sea band, and varies396

from 0.1 to 0.05 for 𝑅 = 0.8 m to 𝑅 = 2.4 m, consistent with Fig. 7. The Spotter inferred slope397

spectra 𝑘2𝑆𝜂 ( 𝑓 ) matches very well the 𝑅 = 0.8 m 2D parabola-fit 𝑆 |∇𝜂 | ( 𝑓 ) in this band, suggesting398

that the slope of waves with wavelength as small as 1.6 m may be well estimated with the parabola399

fit. Similar to |∇𝜂 |2 and 𝐻2
s (Fig. 5b,c), slope spectra 𝑆 |∇𝜂 | ( 𝑓 ) is more sensitive to 𝑅 than 𝑆𝜂 ( 𝑓 )400
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particularly at lower and higher frequencies. Overall, the results suggest that for 𝑅 ≥ 1.2 m, the401

slope spectra are well estimated at 𝑓 < 0.4 Hz.402

5. Directional Fourier Coefficients, and Directional Moments407

Wave-directional Fourier coefficients depend not only on the spectra of 𝜂, 𝜕𝜂/𝜕𝑥, and 𝜕𝜂/𝜕𝑦 but408

also on their cross-spectra (Longuet-Higgins et al. 1963). Here, we estimate the directional Fourier409

coefficients (𝑎1( 𝑓 ), 𝑏1( 𝑓 ), 𝑎2( 𝑓 ), 𝑏2( 𝑓 )) from the UAS-lidar derived spectra and cross-spectra410

using standard methods (Appendix) for 𝑅 ≥ 1.2 m and both fit methods (Fig. 8). The plane-fit411

𝑎1( 𝑓 ) follows the Spotter 𝑎1( 𝑓 ) for 𝑅 ≥ 2 m in the swell band (0.04 < 𝑓 < 0.1 Hz). Most of the412

mismatch occurs near 0.08-0.09 Hz, where the 𝑆𝜂 and slope spectra levels are reduced (Fig. 6, 7).413

The plane-fit 𝑎1( 𝑓 ) matches the Spotter 𝑎1( 𝑓 ) in the sea band (0.1 < 𝑓 < 0.4 Hz) for all 𝑅 (Fig. 8a).414

The 2D parabola-fit 𝑎1( 𝑓 ) is overall similar but is closer to the Spotter 𝑎1( 𝑓 ) in the swell band for415

the largest 𝑅 (Fig. 8b). Overall, 𝑏1( 𝑓 ), 𝑎2( 𝑓 ), and 𝑏2( 𝑓 ) also agree well with the Spotter in the sea416

band (0.1 < 𝑓 < 0.4 Hz) for the range of 𝑅 (Fig. 8c–h) for both methods. For both methods, 𝑏1( 𝑓 )417

and 𝑏2( 𝑓 ) match the Spotter’s estimate in the swell band for larger 𝑅 (Fig. 8c,d,g,h). However, for418

𝑎2( 𝑓 ) the comparison is poor in the swell band (Fig. 8e,f). The Spotter 𝑎2( 𝑓 ) is quasi-constant in419

the swell band. For smaller 𝑅, the 𝑎2( 𝑓 ) for both methods varies strongly across the swell band,420

but becomes more constant at larger 𝑅, albeit at a lower value than the Spotter.421

The preceding comparison between estimated directional Fourier coefficients and those of the426

Spotter are qualitative. Here, we make the comparison quantitative with an unweighted mean427

square error metric defined as,428

𝜖𝑎1 =

[(
𝑎1( 𝑓 ) − 𝑎

Sp
1 ( 𝑓 )

)2
]
, (7)

where the [. . .] represents an average over the frequency band 0.04–0.25 Hz and 𝑎
Sp
1 is 𝑎1 from the429

Spotter. This sea-swell frequency band contains the bulk of the wave energy (Fig. 6) and also is430

the range where the Spotter has been validated (Raghukumar et al. 2019). The errors for the other431

directional Fourier coefficients 𝜖𝑏1, 𝜖𝑎2, and 𝜖𝑏2 are similarly defined. These errors are estimated432

for both plane-fit and 2D parabola-fit methods. Consistent with Fig. 8a,b, the mean square error433

𝜖𝑎1 decreases with increasing 𝑅 with smallest error 𝜖𝑎1 ≈ 0.005 at 𝑅 = 2.4 m (Fig. 9a), which is434
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Fig. 8. Directional moments (a,b) 𝑎1( 𝑓 ), (c,d) 𝑏1( 𝑓 ), (e,f) 𝑎2( 𝑓 ), and (g,h) 𝑏2( 𝑓 ) versus frequency for

(left-column) plane-fits and (right-column) 2D parabola-fits for five different sampling region radii of 𝑅 =

{1.2,1.6,2.0,2.4} m. The dashed line is the Spotter wave buoy derived directional moments. Note we limit

comparison to 0.04–0.4 Hz.
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Spotter has been validated.
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424

425

a small error relative to the 𝑎1( 𝑓 ) variability (Fig. 8a). The 2D parabola-fit method has slightly435

lower 𝜖𝑎1 than the plane-fit method. For 𝑏1( 𝑓 ), 𝜖𝑏1 is small for all 𝑅 and largely decreases with 𝑅,436

and the 2D parabola-fit method is marginally better than the plane-fit (Fig. 9b). Consistent with437

Fig. 8e,f, the 𝜖𝑎2 has the largest error of all directional Fourier coefficients (Fig. 9c). For the 2D438

parabola-fit, 𝜖𝑎2 decreases or plateaus with 𝑅 whereas the plane-fit 𝜖𝑎2 is not monotonic, and for439

𝑅 ≥ 2 m is substantially larger than that of the plane-fit. For 𝑏2( 𝑓 ), the error 𝜖𝑏2 is large for small440

𝑅 and largely decreases with 𝑅 (Fig. 9d). As with other directional Fourier coefficients, the 2D441

parabola-fit has smaller 𝜖𝑏2 than the plane-fit, and at 𝑅 = 2.4 is at levels similar to 𝜖𝑎1. Note, an442

energy-weighted error metric gives similar results as (7).443

Accurately estimating directional Fourier coefficients is essential for any directional wave mea-446

surement, whether wave buoy or remote sensing. However, interpreting these directional Fourier447

coefficients can be opaque. For practical interpretation of directional wave properties, the direc-448
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(A10) versus frequency for the (blue) plane-fits, (orange) 2D parabola-fit both at 𝑅 = 2.4 m, and (black) Spotter.

444

445

tional Fourier coefficients are used to estimate directional moments such as the mean wave angle449

𝜃 ( 𝑓 ) and a directional spread 𝜎𝜃 ( 𝑓 ) at each frequency (Kuik et al. 1988, also see the Appendix).450

Alternatively, they are used as inputs for directional spectra estimators such as MEM or IMLE451

(e.g., Oltman-Shay and Guza 1984). Mean wave direction has two definitions 𝜃1( 𝑓 ) (A7) and452

𝜃2( 𝑓 ) (A8) which use (𝑎1, 𝑏1) and (𝑎2, 𝑏2), respectively (Kuik et al. 1988). The mean wave angle453

is defined as the direction of wave propagation in the China Rock coordinate system. Thus, onshore454

propagating waves with a component in the +𝑦 direction have positive 𝜃 and with a component455

in the −𝑦 direction have negative 𝜃. Similarly, wave directional spread has two definitions (Kuik456

et al. 1988), the first 𝜎𝜃 ( 𝑓 ) (A9) utilizing (𝑎1, 𝑏1) only, and 𝜎∗
𝜃
( 𝑓 ) utilizes all directional Fourier457
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coefficients (A10). We estimate directional moments across the swell and sea bands for both458

fit-methods at 𝑅 = 2.4 m, which resulted in the smallest directional Fourier coefficient error. The459

𝑅 = 2.4 m corresponds to 𝑅/𝜆 = 0.24 at the highest sea-band frequency ( 𝑓 = 0.4 Hz), indicating460

the low-pass filter effect is still weak.461

For the two methods, the 𝜃1( 𝑓 ) varies from ≈ 25◦ to 0◦ in the swell band, and, in the sea-band, is462

largely negative and reducing with frequency. The 𝜃1( 𝑓 ) from the two methods largely agrees well463

with the Spotter (Fig. 10a), consistent with the well estimated 𝑎1( 𝑓 ) and 𝑏1( 𝑓 ) (Figs. 8 and 9).464

The largest 𝜃1( 𝑓 ) differences between the two methods and Spotter wave buoy occur in the swell465

band with differences as large as 13◦ for the plane-fit method. Using energy-weighted directional466

Fourier coefficients (Appendix), the 2D parabola-fit swell-band 𝜃1,swell = 28◦ whereas the Spotter467

has a reduced wave angle 𝜃1,swell = 21◦ (Table 1). In the sea-band, the 2D parabola-fit 𝜃1,sea = −9◦468

is quite good with the Spotter 𝜃1,sea = −7◦.469

For both methods, 𝜃2( 𝑓 ) varies from 35◦ to 0◦ in the swell band and steadily decreases in the470

sea band similar to 𝜃1( 𝑓 ) (Fig. 10b). In the sea band, 𝜃2( 𝑓 ) for both methods are nearly identical471

and match well with the Spotter. In the swell band, 𝜃2( 𝑓 ) has a larger magnitude than that of the472

Spotter, with the 2D parabola-fit moderately closer to the Spotter. Even with the relatively large473

𝜖𝑎2 (Fig. 9c), the overall 𝜃2( 𝑓 ) compares well with the Spotter in the swell band.474

For the plane-fit, the first directional spread estimator 𝜎𝜃 ( 𝑓 ) (A9) is ≈ 20◦ at the 𝑓 = 0.06 Hz475

𝑆𝜂 ( 𝑓 ) peak and is larger ≈ 40◦ near 𝑓 = 0.085 Hz where 𝑆𝜂 ( 𝑓 ) is reduced (Fig. 10c). The 2D476

parabola-fit 𝜎𝜃 is moderately closer to that of the Spotter. In the sea band, the two estimators and477

the Spotter 𝜎𝜃 ( 𝑓 ) increase similarly with 𝑓 , where the Spotter is generally larger than the two478

estimators. The second directional spread estimator 𝜎∗
𝜃
( 𝑓 ) (A10) is ≈ 12◦ at the 𝑓 = 0.06 Hz 𝑆𝜂 ( 𝑓 )479

peak and is consistent with the Spotter 𝜎∗
𝜃
= 10◦ (Fig. 10d). At higher swell-band frequencies480

where the energy is low, 𝜎∗
𝜃
( 𝑓 ) increases like that of the Spotter. In the sea band, the estimated481

𝜎∗
𝜃

generally increases from ≈ 13◦ at 𝑓 = 0.1 Hz to ≈ 25◦ at 𝑓 = 0.4 Hz with some fluctuations. In482

this band, the Spotter 𝜎∗
𝜃

has a similar pattern increasing from 17◦ to ≈ 25◦ with less fluctuations.483

Overall, both 𝜎𝜃 ( 𝑓 ) and 𝜎∗
𝜃
( 𝑓 ) compare well with the Spotter, particularly at frequencies where484

𝑆𝜂 ( 𝑓 ) is energetic (Fig. 6), with the 2D parabola-fit performing slightly better. In sum, the results485

in Figs. 8 and 10 demonstrate the effectiveness of this method in estimating directional properties486

from a UAS with a mounted multi-beam scanning lidar.487
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UAS Lidar Spotter Wave Buoy

𝐻s (m) 1.24 1.17

𝑇p (s) 17.0 17.0

𝑇̄ (s) 6.2 6.1

𝜃 (deg) 2◦ 1◦

𝜎̄∗
𝜃

(deg) 25◦ 21◦

𝜃1,sea (deg) −9◦ −7◦

𝜎̄∗
𝜃,sea (deg) 20◦ 19◦

𝜃1,swell (deg) 28◦ 21◦

𝜎̄∗
𝜃,swell (deg) 16◦ 11◦

Table 1. Energy-weighted bulk wave statistics for the UAS-Lidar and Spotter wave buoy: UAS Lidar statistics

are for 𝑅 = 2.4 m and the 2D parabola-fit method. Shown are wave statistics over the sea-swell (0.04–0.4 Hz)

band: Significant height 𝐻s, peak period 𝑇p, energy-weighted mean period 𝑇 , mean direction 𝜃, and directional

spread 𝜎̄∗
𝜃
. Sea (0.1–0.4 Hz) and swell (0.04–0.1 Hz) mean direction (𝜃1,sea, 𝜃1,swell) and directional spread

(𝜎̄∗
𝜃,sea, 𝜎̄∗

𝜃,swell) are also shown. Energy-weighted statistics are described in the Appendix.

488

489

490

491

492

6. Energy-Weighted (Bulk) Wave Statistics Comparison493

In Sections 4c and 5, we focused on frequency dependent quantities such as spectra and directional494

Fourier coefficients. Here, we focus on energy-weighted (or bulk) wave statistics averaged across495

the sea-swell (0.04-0.4 Hz) band (Table 1). For UAS-lidar statistics, the 2D parabola-fit with496

𝑅 = 2.4 m is used. Over the sea-swell band, the UAS-lidar 𝐻s = 1.24 m is slightly larger than the497

Spotter wave buoy 𝐻s = 1.17 m, reflecting the slightly lower Spotter wave spectrum (Fig. 6). The498

UAS-lidar and Spotter peak period are identical at 𝑇p = 17.0 s. The energy weighted UAS-lidar499

mean period 𝑇 = 6.2 s is nearly identical to the Spotter 𝑇 = 6.1 s, reflecting the good agreement500

between the two spectra (Fig. 6). The UAS-lidar sea-swell mean direction 𝜃 = 2◦ is also very close501

to that of the Spotter 𝜃 = 1◦ (Table 1). The UAS-lidar directional spread in the sea-swell band502

𝜎̄∗
𝜃
= 25◦ is slightly larger than that for the Spotter 𝜎̄∗

𝜃
= 21◦, consistent with the differences in the503

𝜎∗
𝜃
( 𝑓 ) (Fig. 10d). We also examine the directional moments individually in the sea (0.1–0.4 Hz)504

and swell (0.04–0.1 Hz) bands. The sea-band UAS-lidar 𝜃1,sea = −9◦ and 𝜎̄∗
𝜃,sea = 20◦ are similar to505

the Spotter 𝜃1,sea = −7◦ and 𝜎̄∗
𝜃,sea = 19◦, consistent with the similar sea-band 𝜃1( 𝑓 ) and 𝜎∗

𝜃
( 𝑓 ) for506

UAS-lidar and Spotter (Fig. 10a,d). The differences in swell-band directional moments between507

UAS-lidar and Spotter are larger than the sea-band differences, also reflective of the swell-band508

𝜃1( 𝑓 ) and 𝜎∗
𝜃
( 𝑓 ) UAS-lidar and Spotter differences. The swell-band UAS-lidar 𝜃1,swell = 28◦509
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is larger than the Spotter 𝜃1,swell = 21◦ (Table 1) and similarly the UAS-lidar 𝜎̄∗
𝜃,swell = 16◦ is510

moderately larger than the Spotter 𝜎̄∗
𝜃,swell = 11◦. The energy-weighted directional moments have511

much reduced differences between UAS-lidar and Spotter, as the frequency-averaging reduces the512

noise in the directional Fourier coefficients. Overall, the good comparison of energy weighted513

wave statistics between the UAS-lidar and the Spotter wave buoy demonstrate that the UAS-lidar514

is an effective tool for estimating wave statistics.515

7. Summary and Discussion516

Here, we have developed and tested a method for estimating directional wave properties analogous517

to a wave buoy from a UAS with mounted multi-beam scanning lidar. The method was tested with518

an 11-minute hover at the location of a Spotter wave buoy on the rocky inner shelf in 10-m water519

depth offshore of the Monterey Peninsula. For this hover, the UAS can effectively maintain a520

relatively fixed hover location. The lidar beams were oriented onshore/offshore approximately in521

the direction of wave propagation. Given the density and distribution of lidar returns even for the522

largest 𝑅 = 2.4 m (Fig. 2), directional wave properties are likely not sensitive to lidar orientation523

relative to wave propagation. The method fits either a plane or a 2D parabola to lidar returns524

within a circular sampling region of radius 𝑅 varying from 0.8–2.4, resulting in estimates of the525

sea surface and its slope. Requiring at least 𝑁𝑝 = 10 points within the sampling region leads us to526

consider radii with 𝑅 ≥ 0.8 m. Return and wave statistics are examined as a function of the radius527

of the sampling region and two methods. Results depend on 𝑅 and weakly on the method.528

Overall, the sea-surface elevation spectrum 𝑆𝜂 ( 𝑓 ) comparison between the Spotter and the UAS-529

lidar is quite good for 𝑅 ≥ 0.8 m. This is similar to the accurate wave spectra estimated in the swash530

zone (Brodie et al. 2015) and across the surfzone (Fiedler et al. 2021). However, our observations531

are on the inner shelf, seaward of the surfzone, where the lack of foam reduces the number of532

returns. In addition, the water was unturbid and had a diver-reported visibility of 6 m. Unturbid533

water also inhibits lidar returns. That 𝑆𝜂 ( 𝑓 ) and directional parameters were so well estimated534

suggests that the return number was sufficient in this case. It also suggests that this methodology535

can also be applied to many other ocean regions where waves are not breaking. For tropical waters536

with 30+ m visibility, the number of lidar returns are likely substantially less and this method may537
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be less useful. A spectral noise floor of 10−4 m2 s−1 (Fig. 6) implies that a sea-swell band 𝐻s of538

≥ 0.03 m can be measured.539

The convergence of the slope spectra 𝑆 |∇𝜂 | ( 𝑓 ) at larger 𝑅 and the good comparison with an540

inferred slope from the Spotter wave buoy indicates that the wave slope is well estimated in the541

swell band for 𝑅 ≥ 1.6 m and in the sea band for all 𝑅. Overall, the slope spectra 𝑆 |∇𝜂 | ( 𝑓 ) are542

more sensitive to 𝑅 than 𝑆𝜂 ( 𝑓 ) particularly at the lower and higher frequencies. For 𝑅 ≥ 1.6 m,543

the swell-band equivalent wave slope (𝑎𝑘)swell = 0.0085 (A2) is very small. This demonstrates the544

challenge of estimating slope in the swell band and also speaks to the accuracy of the georeferenced545

lidar data and the ability of the method to accurately fit slopes for larger radii. The swell-band546

(0.04-0.1 Hz) waves have wavelength varying from 245 to 96 m. For normally-incident waves, the547

array width 2𝑅 is < 5 m, indicating that swell-band wave slope can still be accurately estimated with548

such a small array width. At a particular frequency, wavelengths are longer in deep water, so larger549

radii may be needed in the swell band. This may potentially bias directional estimates due to the550

lidar beam distribution. The sea-band wave slope (𝑎𝑘)sea ≈ 0.075 is an order of magnitude larger551

than that of the swell band and is similar for all 𝑅, suggesting that it is well estimated in this band.552

The relatively small (𝑎𝑘)sea also suggests nonlinearities are weak in this band. In the sea band,553

the ratio 2𝑅/𝜆 is always < 0.5 indicating that the wave slope should not be aliased. In the “chop”554

band frequencies (0.4–1 Hz), the 𝑅 = 0.8 m 2D parabola-fit matches well the wave-buoy inferred555

slope (Fig. 7b), whereas wave slopes for larger 𝑅 are reduced substantially due to the low-pass556

filter effect (or aliasing). Although this comparison is indirect, it suggests that the high-frequency557

fluctuations in the 𝜂 and 𝜕𝜂/𝜕𝑥 timeseries for 𝑅 = 0.8 m (Fig. 4) are real and not noise. If the558

wave-buoy-derived slope is accurate in the ”chop” (0.4–1 Hz) band, the georeferenced lidar data559

and this methodology may also be useful in inferring wave properties in the chop band. In560

regions where wave fronts are very steep, such as surfzone bores, this method for estimating slope561

spectra may have errors.562

Directional Fourier coefficients are computed from 𝑆𝜂 ( 𝑓 ), the individual components of slope563

spectra, and their cross-spectra, all of which have signal and noise. All four coefficients compared564

well to the Spotter in the sea band, and only 𝑎2( 𝑓 ) did not perform well in the swell band. This565

is likely due to the functional form of 𝑎2( 𝑓 ) which depends on the difference in the 𝑥 and 𝑦 slope566

spectra 𝑆𝜂𝑥 ( 𝑓 ) −𝑆𝜂𝑦 ( 𝑓 ) (A5), which if the signal-to-noise ratio is low, would bias 𝑎2( 𝑓 ) low. Only567
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𝑎2( 𝑓 ) has a difference in the numerator (A3–A6), and thus only 𝑎2( 𝑓 ) is expected to have this bias568

due to low signal-to-noise ratio. In the swell band, slopes are very small, and thus the spectral569

signal-to-noise ratio is reduced, which when subtracted (A5) could bias 𝑎2( 𝑓 ) low in the swell570

band. Generally, the signal-to-noise ratio of the spectra depend on the particular wave conditions.571

From 0.04-0.25 Hz, the 2D parabola-fit at the largest 𝑅 = 2.4 m gave the best results. In the sea572

band, the comparison of directional moments (Fig. 10) was quite good. In the swell band, the573

magnitude of the mean wave angle and the directional spreads were larger than that of the Spotter.574

In the discussion between UAS-lidar derived and Spotter quantities, we have not explicitly575

considered the errors of the Spotter wave buoy. The Spotter wave buoy has only been compared to576

Datawell wave buoys across from 0.05-0.3 Hz (Raghukumar et al. 2019), although we show Spotter577

wave buoy results out to 1 Hz. Thus, any conclusions based on comparison with Spotter between578

0.3 Hz and 1 Hz are tentative. The differences in wave spectra between Spotter and Datawell579

Waverider buoys (Raghukumar et al. 2019) are consistent with the differences observed here580

(Fig. 6). Mean wave direction (energy Weighted 0.05-0.3 Hz) have rms differences to a Waverider581

buoy of ≈ 5◦, consistent with the differences observed here in the sea band. More recently, wave582

buoys were compared to a fixed-location pressure sensor array over a 3 month period (Collins et al.583

2023). This comparison was performed across a low-frequency (0.035-0.065 Hz), a mid band584

(0.065–0.165 Hz) and a high band (0.165-0.26 Hz). Overall, the Spotter wave height and wave585

direction compared well to that of the pressure sensor array in the mid to high-frequency bands.586

This is consistent with our good comparison in the sea band. However, in the low-frequency587

band the Spotter wave buoy had significant differences in wave height and wave angles relative to588

the pressure sensor array. In particular root-mean-square wave angle errors were 8◦ (Collins et al.589

2023), which is consistent with the swell-band 𝜃1,swell differences of 7◦ between the UAS-lidar and590

Spotter (Table 1 and Fig. 10a,b). It is thus unclear whether the UAS-lidar or Spotter wave angle591

more accurate is in the swell band. Overall, the internal consistency of the UAS-lidar-derived592

results and their good comparison to the Spotter wave buoy demonstrate that this is an effective593

tool for estimating wave statistics.594
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APPENDIX608

Dispersion Relationship, Directional Fourier Coefficients, and Directional Moments609

For reference, the linear dispersion relationship for surface gravity waves is610

𝜔 =
√︁
𝑔𝑘 tanh(𝑘ℎ) (A1)

where 𝜔 = 2𝜋 𝑓 is the wave radian frequency, 𝑔 is gravity, 𝑘 is the wavenumber, and ℎ is the still611

water depth. In wave theory, the monochromatic wave slope 𝑎𝑘 is a standard measure of wave612

nonlinearity. From the slope spectra, an equivalent swell- and sea-band 𝑎𝑘 is calculated as613

(𝑎𝑘)swell =

√︄
2
∫

swell
𝑆 |∇𝜂 | d 𝑓 (A2)

where the swell band is 0.04 ≤ 𝑓 < 0.1 Hz. Similarly, (𝑎𝑘)sea is defined over the 0.1 ≤ 𝑓 < 0.4 Hz614

band and (𝑎𝑘)chop is defined over the 0.4 ≤ 𝑓 < 1 Hz band.615

We define the directional moments used to calculate the mean wave angle 𝜃 ( 𝑓 ) and directional616

spread 𝜎𝜃 ( 𝑓 ). As in the text, sea-surface elevation spectra are given by 𝑆𝜂 ( 𝑓 ) and cross-shore and617

alongshore slope spectra are given by 𝑆𝜂𝑥 ( 𝑓 ) and 𝑆𝜂𝑦 ( 𝑓 ), respectively. The co-spectrum (real part618

of the cross-spectrum) between 𝜂𝑥 and 𝜂𝑦 is given by 𝐶𝜂𝑥𝜂𝑦 ( 𝑓 ). The quad-spectrum (imaginary619

part of the cross-spectrum) between 𝜂 and 𝜂𝑥 is defined as 𝑄𝜂𝜂𝑥 ( 𝑓 ) and similarly between 𝜂 and620
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𝜂𝑦. With these definitions the directional moments are (e.g., Longuet-Higgins et al. 1963; Kuik621

et al. 1988; Herbers et al. 1999),622

𝑎1( 𝑓 ) =
∫ 𝜋

−𝜋 cos(𝜃)𝐸 ( 𝑓 , 𝜃)d𝜃∫ 𝜋

−𝜋 𝐸 ( 𝑓 , 𝜃)d𝜃
=

−𝑄𝜂𝜂𝑥 ( 𝑓 )
[𝑆𝜂 ( 𝑓 ) (𝑆𝜂𝑥 ( 𝑓 ) + 𝑆𝜂𝑦 ( 𝑓 ))]1/2 , (A3)

𝑏1( 𝑓 ) =
∫ 𝜋

−𝜋 sin(𝜃)𝐸 ( 𝑓 , 𝜃)d𝜃∫ 𝜋

−𝜋 𝐸 ( 𝑓 , 𝜃)d𝜃
=

−𝑄𝜂𝜂𝑦 ( 𝑓 )
[𝑆𝜂 ( 𝑓 ) (𝑆𝜂𝑥 ( 𝑓 ) + 𝑆𝜂𝑦 ( 𝑓 ))]1/2 , (A4)

𝑎2( 𝑓 ) =
∫ 𝜋

−𝜋 cos(2𝜃)𝐸 ( 𝑓 , 𝜃)d𝜃∫ 𝜋

−𝜋 𝐸 ( 𝑓 , 𝜃)d𝜃
=
𝑆𝜂𝑥 ( 𝑓 ) − 𝑆𝜂𝑦 ( 𝑓 )
𝑆𝜂𝑥 ( 𝑓 ) + 𝑆𝜂𝑦 ( 𝑓 )

, (A5)

𝑏2( 𝑓 ) =
∫ 𝜋

−𝜋 sin(2𝜃)𝐸 ( 𝑓 , 𝜃)d𝜃∫ 𝜋

−𝜋 𝐸 ( 𝑓 , 𝜃)d𝜃
=

2𝐶𝜂𝑥𝜂𝑦 ( 𝑓 )
𝑆𝜂𝑥 ( 𝑓 ) + 𝑆𝜂𝑦 ( 𝑓 )

. (A6)

The directional moments, such as mean wave angle and directional spread are functions of the623

Fourier coefficients (e.g., Kuik et al. 1988)624

𝜃1( 𝑓 ) = tan−1
(
𝑏1( 𝑓 )
𝑎1( 𝑓 )

)
, (A7)

𝜃2( 𝑓 ) = 0.5tan−1
(
𝑏2( 𝑓 )
𝑎2( 𝑓 )

)
, (A8)

𝜎𝜃 ( 𝑓 ) =
√︃

2[1− 𝑎1( 𝑓 ) cos(𝜃1( 𝑓 )) − 𝑏1( 𝑓 ) sin(𝜃1( 𝑓 ))], (A9)

𝜎∗
𝜃 ( 𝑓 ) =

√︃
0.5[1− 𝑎2( 𝑓 ) cos(2𝜃1( 𝑓 )) − 𝑏2( 𝑓 ) sin(2𝜃1( 𝑓 ))], (A10)

These directional moments are in radians and converted to degrees. We also estimate the mean wave625

angle averaged over the sea and swell band from energy-weighted directional Fourier coefficients,626

i.e., for the swell-band 𝑎̄1,swell,627

𝑎̄1,swell =

∫
swell 𝑎1( 𝑓 )𝑆( 𝑓 ) d 𝑓∫

swell 𝑆( 𝑓 ) d 𝑓
(A11)

and similarly for the other Fourier coefficients. The mean wave angle in the swell (or sea) band is628

then defined as629

𝜃1,swell = tan−1
(
𝑏̄1,swell

𝑎̄1,swell

)
. (A12)
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