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Abstract14

In the San Diego-Tijuana region, current beach advisory metrics do not account for un-15

treated wastewater flow into the ocean. Existing plume transport models are imprac-16

tical for operational water quality forecasts because the relevant nearshore processes are17

poorly resolved. A 1D wave-driven advection and uniform loss model was developed for18

a 30 km nearshore domain spanning the border region. An along-shore uniform bathymetry19

is used, thus neglecting non-uniformities such as the inlet and shoal near the Tijuana River20

estuary (TJRE) mouth. Nearshore alongshore velocities were estimated using wave prop-21

erties at an offshore location with the small angle, weak current approximation and a22

Rayleigh friction approximation. The 1D model was evaluated using the year-long hourly23

output of a 3D regional hydrodynamic model. Both velocity formulas had similar skill24

reproducing the alongshore-averaged nearshore alongshore velocities from the 3D model,25

but the 1D model run with the Rayleigh friction approximation had much lower skill in26

reproducing tracer. The 1D and 3D models agreed on tracer exceedance above a human27

illness probability threshold for 89% of time steps. Simulated daily beach advisories in28

the 3D model were compared with the 1D model and simulated weekly water quality sam-29

pling. 1D model-informed daily beach advisories agreed with the 3D model on 9% more30

days than simulated weekly sampling, and agreement did not decrease downstream of31

the TJRE inlet and shoal. This demonstrates that a 1D nearshore wave-advection model32

can reproduce nearshore tracer evolution from a 3D model over a range of wave condi-33

tions ignoring bathymetric non-uniformities.34

Plain Language Summary35

In the San Diego-Tijuana region, water quality problems originating from inade-36

quate wastewater treatment are not well predicted by rainfall or weekly water sampling.37

A 1D model of the nearshore ocean was developed to predict how dye (standing in for38

wastewater) is moved along the coastline by wave-driven currents. The 1D model uses39

a straight 30 km shoreline, neglecting complex bathymetry such as that near the mouth40

of the Tijuana River estuary (TJRE). The 1D model was compared to a complex 3D re-41

gional ocean model. First, it was shown that nearshore currents could be accurately cal-42

culated using an offshore wave buoy. Using only wave-driven currents, the 1D model could43

accurately reproduce the dye patterns seen in the 3D model in a fraction of the time.44

The 1D model predicted daily beach advisory conditions on 87% of the same days as the45

3D model, which was a 9% improvement over simulated weekly water sampling. Depend-46

ing on the analysis, the 1D model performance decreased only slightly or not at all down-47

stream of the TJRE. Therefore, a simple, fast, 1D model with a uniform coastline can48
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be used in place of or in concert with complex 3D models in applications where 3D mod-49

els are impractical, such as public health websites.50

1 Introduction51

When nearshore waters are contaminated with pollution, surfers and swimmers can52

ingest waterborne pathogens that cause gastrointestinal illness (Shuval, 2003). Nearshore53

pollution reduces tourism, as beaches are issued advisories or closures when waterborne54

pathogens are detected. Water pollution can originate from non-point sources, such as55

urban and agricultural run-off after rain, or from point sources, such as wastewater in-56

frastructure failure (de Brauwere et al., 2014). The San Antonios de los Buenos Wastew-57

ater Treatment Plant (SABWTP) is an example of a point source of untreated sewage58

in the San Diego-Tijuana region. Of the 50 million gallons per day (mgd) outflow from59

SABWTP, treatment capacity is only 15 mgd and the remaining 35 mgd are untreated60

(ARCADIS, 2019). The SABWTP outfall flows directly onto the beach near Punta Ban-61

dera (PB), 10 km south of the United States-Mexico border. On a straight coastline, pol-62

lution point sources along the beach can contaminate nearshore waters tens of kilome-63

ters away because tracers are transported along coast effectively and exported offshore64

slowly (Grant et al., 2005; Hally-Rosendahl et al., 2015; Feddersen et al., 2016; Grimes65

et al., 2021). The coastline of the San Diego bight has over thirty kilometers of mostly66

straight, sandy beach with bathymetric irregularities only near the Tijuana River Es-67

tuary (TJRE) and coastline curvature at the northern end of the bight near the San Diego68

Bay entrance (Fig. 1).69

In San Diego county, beach advisories are issued when fecal indicator bacteria (FIB)70

are found in weekly beach water quality sampling or after rainfall (San Diego County,71

n. d.). However, beach advisory postings based on weekly testing have been estimated72

to be inaccurate up to 40% of the time because FIB concentrations can change quickly73

and are spatially heterogeneous (J. Kim & Grant, 2004). Further, testing for FIB may74

not be a sufficient indicator of the likelihood of illness for beach goers (Boehm et al., 2009).75

FIB decay faster than other pathogens that live in wastewater and cause illness in swim-76

mers, such as human norovirus (Boehm & Soller, 2020). Norovirus is a leading cause of77

gastrointestinal disease among wastewater pathogens and is plentiful in raw sewage (Boehm78

& Soller, 2020). Rainfall is also an incomplete indicator. Rainfall is commonly used in79

the United States to indicate water quality because stormwater runoff from cities and80

farms is high in FIB from either human or animal sources, or both (Francy, 2009; Stid-81

son et al., 2011; Aguilera et al., 2019). In the San Diego-Tijuana region, rainfall causes82

additional water quality problems because the South Bay International Wastewater Treat-83
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ment Plant closes during rain events and diverts flow to the TJRE to preempt infras-84

tructure clogging (ARCADIS, 2019). However, rainfall does not account for dry weather85

runoff, which is increasingly recognized to have a disproportionate effect on water qual-86

ity at urban coastlines (Rippy et al., 2014). Inadequacy of wastewater treatment plant87

infrastructure, as is the case for SABWTP, is a large source of dry weather runoff. Mi-88

crobial source testing during dry weather has found evidence of the SABWTP wastew-89

ater plume on the shoreline 20 km north of PB (Zimmer-Faust et al., 2021). Coupled90

hydrodynamic and human illness models suggest SABWTP is responsible for exposing91

more beachgoers to wastewater than the rainfall-dependent TJRE (Feddersen et al., 2021).92

To capture SABWTP pollution, current beach advisory criteria should be supplemented93

with dynamical modeling.94

Some models of wastewater plume transport in the San Diego-Tijuana region do95

currently exist, but have drawbacks. A plume tracker model advects particles released96

from the TJRE mouth, PB, and the South Bay ocean outfall using high-frequency radar97

(HFR) currents to make daily water quality predictions (S. Y. Kim et al., 2009). The98

shoreline exposure to FIB in the plume tracker model captured 70% of beach advisories99

from water quality sampling during rain events over four years (S. Y. Kim et al., 2009).100

However, the plume tracker has several issues (e.g., Rogowski et al., 2015). First, pol-101

lution plumes are often located within 1 km of shore (Wu et al., 2020; Grimes et al., 2021)102

where HFR cannot estimate currents. In addition the data coverage on the shelf varies103

spatially and temporally and the uncertainties in the estimated currents are up to 10 cm s−1.104

Lastly, the plume tracker particles are surface trapped and thus dilution due to verti-105

cal mixing is neglected. Currents in the nearshore region are predominately driven by106

wave breaking (Feddersen, 1998; Lentz et al., 1999), and are uncoupled from inner shelf107

currents. A hydrodynamic model of the San Diego-Tijuana coastal ocean that resolves108

both the shelf and the nearshore and tracks plumes from both TJRE and PB (referred109

to as the “SD Bight model”) was built by coupling an ocean model to a wave model us-110

ing the COAWST framework (Wu et al., 2020; Feddersen et al., 2021) (described in Sec-111

tion 2.1). However, the SD Bight model is computationally expensive and currently only112

exists as a hindcast.113

An alternative solution is a model of only the nearshore. Transport through the114

nearshore is dynamically simple. Alongshore momentum is dominated by wave-breaking115

which can be estimated from an offshore wave buoy (Feddersen, 1998; Lentz et al., 1999).116

A nearshore model is appropriate to the problem because the input (SABWTP outflow),117

dynamics (wave-driven advection), and desired output (shoreline exposure) are all lo-118

cated nearshore. Previous nearshore wave-advection models have reduced the problem119
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to a 1D alongshore-uniform grid by cross section-averaging tracer concentrations and along-120

shore transport (Boehm, 2003; Boehm et al., 2005; Grant et al., 2005; Grimes et al., 2021).121

The effects of pathogen mortality and offshore transport can be represented by loss of122

dye from the 1D domain (Boehm, 2003). Operationally, such a model would be orders123

of magnitude faster than a full hydrodynamic regional model, and therefore more prac-124

tical for daily forecasts and ensemble studies. However, validation of 1D nearshore mod-125

els has been limited by the available observational data. Historical water quality records126

may span decades, but the samples are only taken once per week. This sampling rate127

is too infrequent to capture the propagation of individual plumes along the shoreline.128

Models tuned to historic water quality data such as Boehm (2003) have demonstrated129

ensemble agreement, but cannot demonstrate the reproduction of individual events. Field130

experiments can observe the propagation of individual plumes at high spatial and tem-131

poral resolution, but only span short time periods, for example, 5 hr (Rippy et al., 2013),132

24 hr (Grant et al., 2005), or 30 hr (Grimes et al., 2021). Models validated by field stud-133

ies can reproduce individual plume events well (Grimes et al., 2021), but do not demon-134

strate model performance under a range of wave conditions. Here, we will evaluate per-135

formance of a 1D wave-advection model in reproducing individual plume events over dif-136

ferent seasons using the SD Bight model, which has hourly output for a year.137

The 1D model assumes that wave-driven alongshore advection in the nearshore can138

be calculated from wave properties at an offshore location. On a long, straight coastline,139

the alongshore momentum balance in the nearshore is dominated by bottom stress and140

the cross-shore gradient of the forcing from breaking waves (Longuet-Higgins, 1970; Fed-141

dersen, 1998; Ruessink et al., 2001),142

τb,y = −∂Sxy

∂x
, (1)

where τb,y is the bottom stress in the alongshore direction, Sxy is the off-diagonal com-143

ponent of the radiation stress, y is the alongshore coordinate, and x is the cross-shore144

coordinate. Because wave energy is conserved until breaking, the wave properties rel-145

evant for Sxy can be estimated from properties at an offshore wave buoy (details in Sec-146

tion 2.4). The alongshore current (averaged over several wave periods), v, can be found147

by relating v to the bottom stress, τb,y,148

τb,y = ρCD⟨|u⃗|v⟩, (2)

where ρ is the density of seawater, u⃗ is full velocity vector, CD is a dimensionless drag149

coefficient, and ⟨·⟩ is a time average. Two approximations can be made to calculate ⟨|u⃗|v⟩150

in the nearshore. The first is the weak current approximation, which holds when the cur-151

rent is weaker than the wave orbital velocities, v < σu⃗, where σu⃗ is the total velocity152
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variance, σ2
u⃗ = σ2

u+σ2
v . The second is the small angle approximation, which holds when153

the wave propagation direction is near shorenormal, σv < v. Using the small angle and154

weak current approximations, the bottom stress can be represented (Wright & Thomp-155

son, 1983),156

τb,y = 1.5

√
π

2
ρCDσu⃗v. (3)

Some studies have further approximated bottom stress by assuming a constant σu⃗, also157

known as a linear or Rayleigh friction approximation (Lentz et al., 1999; Feddersen et158

al., 2000; Grimes et al., 2021),159

τb,y = ρµv, (4)

where µ is a constant with dimensions m s−1. Using wave-estimated alongshore currents,160

the nearshore transport of a tracer (such as untreated wastewater) can be modeled. This161

study will compare model skill of 1D models run with alongshore velocities estimated162

using (3) and (4).163

A potential challenge that has not been addressed in previous nearshore transport164

models is the effect of alongshore-variable bathymetry on alongshore transport. Along165

the San Diego-Tijuana shoreline, the TJRE mouth lies between PB and many of the recre-166

ational beaches known to be affected by wastewater from the SABWTP (Fig. 1). Dur-167

ing times when the Tijuana River is flowing, the impact of the TJRE plume on the along-168

shore transport of the wastewater from PB is unknown. Larger buoyant plumes have been169

demonstrated to form a barrier to alongshore transport (Banas et al., 2009). Even though170

the Tijuana River only flows episodically, the estuary mouth is a permanent topographic171

feature that may affect the alongshore transport of untreated wastewater from PB. Tidal172

currents through the estuary mouth may affect alongshore transport through wave-current173

interaction, offshore ejection or by retaining dye in the estuary, a process known as tidal174

trapping. The effect of tidal trapping on alongshore transport is not known, but in es-175

tuarine channels, tidal trapping has been found to disperse the along-estuary distribu-176

tion of salt (Okubo, 1973; MacVean & Stacey, 2011). It is hypothesized, then, that over177

many tidal cycles, tidal trapping of a tracer in the TJRE would disperse the tracer con-178

centrations along the shoreline. Another hypothesized effect of the TJRE would be the179

local acceleration of wave-driven transport over the shoal built of sediment deposited out-180

side the estuary mouth. While this analysis cannot tease out each of these potential mech-181

anisms (i.e., buoyant plume, wave-current interactions, offshore ejection, tidal trapping,182

non-uniform bathymetry), to examine the net effect of the TJRE in this analysis, model183

skill will be compared upstream (south) and downstream (north) of the TJRE.184

In summary, the goal of this study is to use the SD Bight model, with hourly nearshore185

current and tracer concentration data from December 12, 2016 to December 20, 2017 to186
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evaluate the skill of a 1D nearshore transport model. The region of interest is a 30 km187

stretch of coastline from the SABWTP outflow at PB to Hotel del Coronado (HdC) (Fig. 1).188

Comparison with a realistic 3D hydrodynamic model will demonstrate how well regional189

nearshore transport can be modeled neglecting inner shelf circulation and using wave prop-190

erties at a single offshore source using (3) and (4). By doing this, we hope to address the191

following questions:192

1. Can nearshore alongshore transport be well-represented using uniform nearshore193

alongshore velocity estimated from an offshore location (such as from a wave buoy),194

and is a linear bottom stress approximation (4) sufficient for estimating alongshore195

velocity?196

2. Can alongshore tracer distributions be adequately reproduced in a nearshore model197

which neglects shelf circulation?198

3. How does alongshore-variable bathymetry (i.e., the presence of an estuary inlet199

and shoal at the TJRE mouth) impact nearshore model skill?200

The drawbacks of existing dynamic models, including lack of resolution of relevant pro-201

cesses (S. Y. Kim et al., 2009), computational expense (Wu et al., 2020), and lack of cal-202

ibration across different hydrodynamic conditions (Grimes et al., 2021), are well-documented203

obstacles to the implementation of dynamic models for real-time water quality predic-204

tion (Elko et al., 2022). The 1D model developed here offers a solution to these challenges.205

While we are testing this 1D model in a particular region with known water quality prob-206

lems, we expect the results to be applicable broadly to the skill of 1D wave-advection207

models for the transport of other tracers (e.g. sediment, plankton, or microplastics) and208

other coastlines.209

2 Methods210

2.1 3D realistic SD Bight model211

The SD Bight model grid covers a 30 km stretch of coastline from 32.45 N (south212

of PB) to 32.75 (around Point Loma) and extends 10 km offshore (Fig. 1b). This SD Bight213

model has been used in other recent studies investigating the transport of tracers across214

the surf zone and inner shelf in the San Diego-Tijuana region (Wu et al., 2020, 2021a,b,c;215

Feddersen et al., 2021). The model uses the COAWST (Coupled-Ocean-Atmosphere-Wave-216

Sediment-Transport) modeling system (Kumar et al., 2012; Warner et al., 2010). The217

SD Bight model couples Regional Ocean Modeling Systems (ROMS), a 3D hydrostatic218

ocean model with terrain-following vertical coordinates (Shchepetkin & McWilliams, 2005),219

with Simulating WAves Nearshore (SWAN), a spectral wave model (Booij et al., 1999).220
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The resulting model resolves surf zone, estuarine, and shelf dynamics. The SD Bight model221

uses realistic atmospheric forcing (e.g. wind, heating, atmospheric pressure) from NOAA/NAM,222

tides, and river flow from the Tijuana, Otay, and Sweetwater rivers. The oceanic bound-223

ary conditions (temperature, salinity, sea surface height, and currents) are generated by224

a series of three one-way-nested parent grids (Wu et al., 2020). There are 10 vertical lev-225

els. The horizontal grid is rectangular and telescopic, such that the horizontal resolu-226

tion is highest in the surf zone near the TJRE mouth (8 m) and lower offshore over the227

shelf (110 m). The SD Bight model hindcast simulation used here runs from December228

12, 2016 to December 20, 2017. The baroclinic computational time step varied from one229

to two seconds and the wave field was updated every four minutes. SWAN and ROMS230

exchanged wave field and ocean condition information every 12 minutes. Model output231

was saved hourly to resolve tides. This SD Bight model hindcast included a dye tracer232

to simulate the evolution of an untreated wastewater plume (Fig. 1c). The dye tracer233

was input to the model at PB, the location of the SABWTP outfall, at a concentration234

of 0.7 to match the treatment of 15 mgd of the total 50 mgd outflow (ARCADIS, 2019).235

Complete details of the model implementation are in Wu et al. (2020).236

Here, we define the nearshore as the region from the 5-m isobath (contoured in Fig. 1)237

to the shoreline, a definition which spans the surf zone and a portion of the inner shelf.238

The 5-m isobath was chosen because it is the furthest offshore extent of the surf zone239

for range of wave heights observed during the simulation period. This is the region typ-240

ically used by surfers and swimmers who could be harmed by exposure to sewage. The241

location of the 5-m isobath is found for every time step to capture tidal variation. Av-242

erage dye concentrations and alongshore transport in the nearshore region were extracted243

from the SD Bight model from PB to the beach at HdC (red line in Fig. 1b). Alongshore244

distance from PB, y, was calculated following the shoreline, defined such that positive245

y is to the right when facing the sea (roughly north). Dye and velocity were averaged246

vertically and in the cross-shore direction within the nearshore region. Velocity vectors247

were then rotated from grid coordinates into local alongshore and cross-shore coordinates248

using shorenormal angles estimated from the model grid. These shorenormal angles were249

consistent with current principal axes. SD Bight model alongshore velocity was then along-250

shore averaged from PB to HdC to get a representative year-long time series, v̄C(t). Alongshore-251

varying nearshore alongshore velocity and dye extracted from the SD Bight model will252

be referred to as vC(t, y) and CC(t, y) respectively.253
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Figure 1. a) Regional map with study area indicated (star) along United States-Mexico

border (dotted line). b) SD Bight model domain with annotated landmarks. Color indicates

bathymetry. The red line highlights the 29 km stretch of coastline represented in the 1D model.

Magenta triangle indicates the source of wastewater to the surf zone at Punta Bandera (PB). Yel-

low circles represent popular recreational beaches: Playas Tijuana (PTJ), Imperial Beach (IB),

Silver Strand Beach (SS), and Hotel del Coronado (HdC). Blue diamond is location of CDIP

Imperial Beach nearshore wave buoy. The green triangle indicates the head of the Tijuana River

estuary (TJRE). c) Snapshot of surface dye concentrations on a logarithmic scale on July 11,

2017 12:00:00 when a plume from PB was transported up the coast during a long-duration south

swell. Model bathymetry contoured in b) and c) at 5, 10, and 20m isobaths.

2.2 Nearshore 1D tracer advection/loss model254

Here we describe our 1D tracer advection/loss model for a nearshore dye tracer trans-255

ported alongshore by wave-driven currents with loss due to physical (i.e., offshore export256

of dye from the nearshore region) and biological (i.e., pathogen die off) processes. Sim-257

ilar 1D models of dye evolution have been used in studies that consider the transport258

of waterborne pathogens along beaches (Boehm, 2003; Boehm et al., 2005), in lagoons259

(Steets & Holden, 2003), and in streams (Jamieson et al., 2005; Cho et al., 2010), although260

the source of advection differs to fit the appropriate drivers of ambient currents in those261

environments. This model is hereafter referred to as the 1D model. The 1D model solves,262

∂C1D(t, y)

∂t
= −v1D(t)

∂C1D(t, y)

∂y
− (kB + kP )C1D(t, y), (5)

where y is the alongshore coordinate, t is time, C1D is the dye concentration, v1D is the263

wave-driven alongshore current, and kP and kB are constant loss terms parameterizing264

physical and biological processes that reduce nearshore dye concentrations, respectively.265
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Both v1D and loss terms (kP and kB) are assumed alongshore-uniform and effects of shore-266

line curvature are neglected.267

The first loss parameter, kB , represents the inverse timescale of pathogen die-off.268

The 1D model used a 10-day e-folding time scale, kB = 1.6 × 10−6s−1, to match the269

prescribed dye behavior in the SD Bight model (Wu et al., 2020; Feddersen et al., 2021).270

The 10-day timescale used in the SD Bight model corresponds to the mortality of norovirus271

(Boehm et al., 2018). The estimated mean e-folding time scales for other common wastew-272

ater pathogens in seawater range from less than one day (for Campylobacter) to one month273

or more (for Giardia) (Boehm et al., 2018).274

The second linear loss parameter kP represents the cross-shelf tracer exchange be-275

tween the nearshore region and the inner shelf. The kP parameter may be thought of276

as an exchange velocity, uex, divided by the cross shore distance from the shoreline to277

boundary between the nearshore and the shelf, L (Hally-Rosendahl et al., 2014; Grimes278

et al., 2021). This cross-shelf exchange is often driven by rip currents in observations (Hally-279

Rosendahl et al., 2014, 2015; Moulton et al., 2017, 2021) and models (Hally-Rosendahl280

et al., 2014; Suanda & Feddersen, 2015; Kumar & Feddersen, 2017). Studies in the surf281

zone have found that exchange between the surf zone and inner shelf produces a net non-282

zero offshore dye flux (Hally-Rosendahl et al., 2014; Grimes et al., 2021), which can be283

parameterized as a monotonic decay of nearshore dye concentration.284

Dye was added to the 1D model using a Dirichlet boundary condition, constant C0285

at y=0 km. This boundary condition represents the mean dye concentration adjacent286

to the PB outfall considering a persistent flux of 0.7 dye water that dilutes upon enter-287

ing the ocean and is not completely retained in the nearshore. Small plumes partially288

escape being trapped by waves in the nearshore when waves are weak or the tide is high289

(Rodriguez et al., 2018; Kastner et al., 2019). Model output will be compared for y >290

2 km because rapid diffusion occurs near the dye source in the SD Bight model which291

is not represented in the 1D model. The tracer evolution equation (5) was solved numer-292

ically for C1D(y, t) with a first-order upwind advection scheme, which is simple and un-293

conditionally stable (Roe, 1986). The 1D model used a time step, ∆t = 18 s and a grid294

cell size ∆y = 32.85 m. Alongshore diffusivity was neglected (see discussion in Section 4.2).295

2.3 Determining dye parameters kP and C0296

A value for kP was used for all 1D model runs based on dye concentrations from297

the SD Bight model, and C0 was tuned using an iterative search optimization method298

to maximize model performance for each 1D model run. The physical rate of dye loss299
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was determined from kP = k−kB , where k is the total rate of dye loss from the nearshore300

region of the SD Bight model. The rate of dye loss was estimated beginning with the ex-301

ponential decrease in the time-averaged nearshore dye concentrations, ⟨CC⟩, with y. The302

rate of spatial decay is converted into a temporal decay rate using a velocity scale, V (RMS303

of vC),304

k = V
d ln⟨CC⟩

dy
. (6)

The optimal choice for each C0 varied based on the value of kP (and vice versa)305

and the velocity model. Alternative parameter selection methods were considered, in-306

cluding fixing both parameters to estimates from the SD Bight model or a multivariate307

optimization that iteratively tuned both parameters. Fixing one parameter and tuning308

the other was opted for as a hybrid approach. With the hybrid approach, C0 was cho-309

sen as the tuning parameter because the mean value of dye near PB in the SD Bight model310

was sensitive to the location at which it was estimated, and kP had precedence in lit-311

erature available for comparison. Resulting kP using equation (6) and optimized values312

for C0 are listed in Section 3.2.313

2.4 Calculating velocity from wave properties314

The 1D model alongshore-uniform wave-driven nearshore alongshore velocity, v1D(t),315

was estimated from wave properties at an offshore location (32.56957 N, -117.1688 E,316

20-m isobath, Fig. 1), the position of the Imperial Beach Nearshore Buoy operated by317

the Coastal Data Information Program (CDIP). To make use of the established relation-318

ship between surf zone alongshore currents and waves, (1) (Longuet-Higgins, 1970; Fed-319

dersen, 1998; Ruessink et al., 2001), the alongshore currents in the nearshore region are320

presumed to be proportional to surf zone alongshore-mean alongshore currents.321

To estimate v1D, first the right hand side of (1) was simplified using a finite dif-322

ference approximation. Radiation stress begins decreasing in the surf zone where waves323

break, and Sxy decreases to zero at the shoreline. To average this wave forcing across324

the nearshore domain, the change in Sxy to zero is divided by the cross-shore distance325

to the 5-m isobath L,326

∂Sxy

∂x
≈ Sxy(t)

L
. (7)

For simplicity and generalizabilty to locations without well-known bathymetry, (7) was327

evaluated with a constant L, set to the mean of the tidally-varying distance to the 5-m328

isobath. A narrow-banded representation of Sxy is used (Longuet-Higgins, 1970),329

Sxy(t) = E(t)
cg(t)

cp(t)
cos θ′(t) sin θ′(t), (8)
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where E is the wave energy, cg is the group velocity, cp is the phase velocity, and θ′ is330

the difference between the mean wave direction, θ, from shorenormal, θSN. For these es-331

timates of alongshore-uniform wave-driven alongshore velocity, θSN was a constant cho-332

sen to optimize model performance. The wave energy term in (8), E, was determined333

using,334

E(t) =
1

16
ρgHs(t)

2, (9)

where g is gravitational acceleration, ρ is the mean seawater density, and Hs is the sig-335

nificant wave height.336

We evaluated two bottom stress formulas, (3) and (4), resulting in two alongshore337

current estimates. The total velocity variance σu⃗ in (3) can be written out as a function338

of Hs at the 5-m isobath. By definition, Hs = 4ση, where the ση is the standard de-339

viation of the sea surface height (Young, 1999). Because velocity and sea surface height340

have the same frequency, σu⃗ is proportional to ση, using a scale factor of
√

g
h to change341

the dimension (Mei, 1989). The resulting expression for σu⃗ is,342

σu⃗(t) =

√
g

h5m

Hs,5m(t)

4
, (10)

where h is the constant depth of the water column. Hs,5m can be estimated from the sig-343

nificant wave height at the offshore location of the wave buoy, Hs,WB using Snell’s Law344

and the conservation of wave energy flux given the difference in water depths. For this345

data set, Hs,5m = 0.88Hs,WB on average. Combining (1), (3), (7), and (10) gives the346

following equation for v1D,347

v1D(t) = − 8

3LρCD

√
2h5m

πg

Sxy(t)

Hs,5m(t)
, (11)

where CD has flexibility as a fitting parameter. The velocity calculated using the Rayleigh348

friction model will be called v1DR. In the Rayleigh friction velocity model, (4), σu⃗ is con-349

stant. Constant σu⃗ and combining (1), (4), and (7), gives the following formula for v1DR,350

v1DR(t) =
Sxy(t)

ρµL
. (12)

Values for CD and µ, for v1D (11) and v1DR (12) respectively, were calculated using a351

simple linear regression (with intercept fixed to zero) between the wave-estimated ve-352

locity and v̄C.353

1D model performance will depend on the accuracy of the velocity formulas as well354

as on model assumptions such as using a uniform grid which neglects shoreline curva-355

ture and a uniform dye loss parameterization which neglects inner shelf circulation. To356

test the assumptions of the 1D model method not related to the advection calculation,357

(5) was also solved with the alongshore-varying nearshore alongshore velocity extracted358
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from the SD Bight model, vC(t, y). “1DC model” will refer to the run using vC(t, y) with359

dye output C1DC. “1D model” will refer to the model run using v1D(t) (i.e., the small360

angle, weak current approximation, (11)) with dye output C1D. “1DR model” will re-361

fer to the model run using v1DR (i.e., the Rayleigh friction model, (12)) with dye out-362

put C1DR. The 1D grid resolution, time step, and dye loss parameter (kP and kB) were363

the same for all three runs, but the 1DC run used a modified numerical implementation364

that allowed for alongshore-varying alongshore advection. Although the numerical im-365

plementation is modified to allow for alongshore velocity variations, the 1DC model can366

be viewed as an upper-bound on 1D model performance with these assumptions (fixed367

L, uniform dye loss parameters kB and kP , etc.).368

2.5 Performance metrics369

Performance for the 1D models was evaluated by comparing C1D, C1DR, and C1DC370

with CC, the nearshore dye extracted from the SD Bight model. Three performance met-371

rics were used: Pearson’s correlation coefficient (R), the normalized root-mean-square-372

error (NRMSE), and Willmott’s skill score (WSS). To calculate NRMSE, the root-mean-373

square-error was normalized by the time-averaged value of CC for each alongshore lo-374

cation. WSS is a comprehensive model agreement metric that scales the mean square375

error by the potential error for a data set (Willmott, 1981),376

WSS = 1− Σi=N
i=1 (mi − oi)

2

Σi=N
i=1 (|mi − ⟨o⟩|+ |oi − ⟨o⟩|)2

(13)

where m is the 1D model value, o is the SD Bight model value, and N is the number of377

data points. The range of WSS is 0 to 1, with 1 being best. The range of R is −1 to 1,378

with 1 being best. The NRMSE is positive definite, with 0 being best. When describ-379

ing trends in the metrics together, “better” means an increase in WSS and R and a de-380

crease in NMRSE.381

The condition CBAC = 5×10−4 was chosen as a cut off value to determine whether382

dye plume events were significant, referred to as the beach advisory condition. This CBAC383

corresponds to a 10% likelihood of swimmer illness (Feddersen et al., 2021). When dye384

concentrations exceed CBAC, norovirus concentrations in the wastewater plume would385

be sufficient to require posting a beach advisory by EPA standards (U.S. Environmen-386

tal Protection Agency, 2014).387
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3 Results388

3.1 Nearshore current calibration, drag coefficients, and shorenormal389

Both v1D and v1DR were calibrated by fitting Cd and µ using a linear regression390

with v̄C to a slope of 1 with no intercept (Fig. 2d, e). The resulting v1D and v1DR had391

strong agreement (R> 0.8) with v̄C (Fig. 2). The small angle, weak current drag coef-392

ficient was fit to CD = 0.004, consistent with the value of 0.0033 found for the surf zone393

in Feddersen (1998). The Rayleigh friction coefficient was fit to µ = 3.9×10−3 m s−1,394

consistent with Rayleigh friction coefficient values of 5×10−3 in Lentz et al. (1999) and395

2.5×10−3 in Grimes et al. (2021). The resulting wave-driven nearshore alongshore ve-396

locities captured the variations in the nearshore alongshore velocities from the SD Bight397

model (Fig. 2b, c). The Rayleigh friction model v1DR overestimated v̄C when |v̄C| > 20398

cm s−1 and underestimated small v̄C during summertime (Fig. 2c, e). This is consistent399

with previous evaluations of Rayleigh friction which works poorly across a large range400

of v (Feddersen et al., 2000). Both v1D and v1DR overestimated v̄C during the biggest401

southerly waves in winter (spikes between Jan 1 and Mar 1 in Fig. 2b, c).402

The 1D model was sensitive to the choice of θSN because wave direction is often403

near shorenormal, and the sign of θ′ determines the direction of the velocity. Over the404

stretch of shoreline of interest, the mean shorenormal angle is 260◦, varying from 240◦405

to 270◦. Shorenormal angles are closest to 270◦ in center and decrease towards the do-406

main edges. Using uniform shorenormal angle θSN = 263◦ resulted in best R, NRMSE,407

and WSS of v1D out of one hundred θSN values tested in the range 240◦ to 270◦. Over-408

all, v1D performed better than v1DR using all skill metrics. The SD Bight model alongshore-409

varying nearshore alongshore velocities vC(t, y) used in the 1DC model and to derive v̄C(t)410

were locally rotated using alongshore-varying shorenormal angles estimated from the land411

mask in the grid (described in Section 2.1).412

3.2 Dye parameter calibration, kP and C0413

Beginning 5 km north of PB, ⟨CC⟩ decays exponentially with y at an e-folding length414

scale of 7.9 km (Fig. 3). A velocity scale V = 0.1 m s−1, the RMS of v̄C from the SD415

Bight model (Fig. 2), was used to estimate k. The resulting kP = k − kB was 1.3 ×416

10−5 s−1, slightly lower than the estimate of 5×10−5 determined for the region between417

the 4-m isobath and the surf zone edge in Grimes et al. (2021). This kP is an order of418

magnitude greater than kB . The optimal Dirichlet boundary conditions for the 1D mod-419

els were found to be C0 = 0.008 for the 1D model, C0 = 0.01 for the 1DR model, and420

C0 = 0.011 for the 1DC model (where 0.01 is 1 part dye to 100 parts water).421
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Figure 2. a) SD Bight model alongshore-varying alongshore velocity, vC, as a function of time

and y, with alongshore beach locations on right side (compare with Fig. 1). b) Time series of

v̄C (black) with v1D (blue), c) Time series of v̄C with v1DR (green), d) scatter plot of hourly v̄C

vs v1D, best fit line (black dashed line) has slope = 1.02, intercept = −0.0022, and R = 0.89, e)

scatter plot of v̄C vs v1DR, best fit line (black dashed) has slope = 1.02, intercept = −0.0015, and

R = 0.82. One-to-one line (magenta) for comparison with best fit in d) and e). RMS of v̄C is 0.1

m s−1.

3.3 Reproducing event-scale nearshore dye422

An example of a south swell event occurred in the SD Bight model in early July,423

2017, when dye was present along the entire alongshore span of the nearshore region (snap-424

shot at July 11, 2017 12:00:00 in Fig. 1c). To demonstrate the evolution of this event425

in the SD Bight model and the 1D model, the nearshore currents and dye concentrations426

were examined for the four days leading up to that snapshot (Fig. 4). For this demon-427

stration, we do not depict the 1DR or 1DC models because 1D model results are typ-428

ical. On July 8, before the swell, CC < 10−4 north of y = 2 km and nearshore cur-429
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Figure 3. Nearshore dye concentrations averaged over the year 2017 as a function of y for the

SD Bight model (solid black line) and the 1D (blue), 1DR (green), and 1DC (orange) models.

The 1D, 1DR, and 1DC models used the same kB and kP but different C0. An e-folding decay

length scale of 7.9 km was derived using a linear fit to the log of ⟨CC⟩ from y = 5 to 29 km

(dashed black line), implying a decay rate of kP = 1.4 × 10−5s−1. Dashed green line is location of

TJRE mouth and beaches are marked as on other figures.

10-4 10-3
Time-averaged nearshore dye

5

10

15

20

25

30

y 
(k

m
)

〈
CC

〉〈
C1D

〉〈
C1DR

〉〈
C1DC

〉

TJRE

PTJ

SS

HdC

IB

rents were near zero. Over three days, a steady wave-driven current over 10 cm s−1 ad-430

vected the plume 10 km per day until the plume front reached HdC (Fig. 4a, b). Dye431

concentrations were highest near PB (CC ≈ 10−2) and became more dilute downstream432

(CC ≈ 10−4 at HdC) (Fig. 4b). The wave-driven nearshore alongshore current, v1D, was433

very similar in magnitude and timing to v̄C (Fig. 4a), consistent with the high skill over434

the course of the year (Fig. 2b). The 1D model, using v1D, reproduced the plume event.435

The plume front moved up the coast at the same rate, from C1D < 10−4 on July 8, 2017436

to C1D > 10−4 found at y >20 km on July 11, 2017 (Fig. 4c). The 1D model, com-437

posed of solely wave-driven advection and loss, could largely reproduce the July 11, 2017438

snapshot from the SD Bight model.439

3.4 Comparison of dye performance using different velocity estimates440

Here we compare the performance of the 1D model with the 1DR model. The two441

models use the same numerical scheme but different formulas for the nearshore along-442

shore velocity (see Section 2.4). The rate of dye loss k = kP + kB was the same, but443

the dye input, C0, was optimized for separate runs (see Section 2.2).444

The dye from the 1D model, C1D, and the 1DR model, C1DR, were compared with445

CC for the alongshore region y > 0 km over the entire year (Fig. 5). Seasonal patterns446
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Figure 4. a) Time series of v̄C (black) and v1D (blue). Evolution as a function of y and t of

b) CC and c) C1D. Black dashed line indicates July 11, 2017 12:00:00, time of the snapshot in

Fig. 1c. Dashed contour CBAC = 5× 10−4 in a) and c).

in CC were reproduced in both C1D and C1DR. More dye was transported northward dur-447

ing summer months (between June 1 and October 1) than non-summer months in all mod-448

els. Both CC and C1D reached y > 20 km most frequently in summer (Fig. 5a,b). Dye449

plumes that reached y > 20 km during summer exceeded CBAC for many days, often450

up to a week. The example plume from July 11 (Fig. 4) reached y > 20 km in all three451

models and concentrations remained above CBAC for 3.5 days in the 1DR model, 6 days452

in the 1D model, and 8 days in the SD Bight model. For comparison, during a plume453

that reached y > 20 km in all three models beginning February 28, concentrations ex-454

ceeded CBAC for just 2 days in all three models, typical for winter conditions. In the SD455

Bight model, CC remained longer than C1D at intermediate concentrations between 10−8
456

and CBAC because dye could recirculate back into the nearshore from offshore, which was457

not possible in the 1D or 1DR models (Fig. 5a). More dye was transported northward458

during summertime because alongshore nearshore velocity was persistently northward,459

even though the fastest alongshore velocities occurred in winter (Fig. 2b, c). In winter,460

northwesterly waves drive predominantly southward nearshore alongshore currents re-461

sulting in less dye transport in all models, despite episodic south swells driving nearshore462

alongshore currents greater than 0.5 m s−1. The 1DR model transported less dye in sum-463

mertime than the 1D model because v1DR underestimated summertime northward cur-464
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rents (Fig. 2d). Between June 1 and October 1, the 1D model transported 6.6 times more465

dye north of y = 20 km than the 1DR model.466

Figure 5. Dye concentration, C(t, y), for y > 0 km and for the entire year from a) the SD

Bight model, b) the 1D model, and c) the 1DR model. Dashed contour is CBAC.

The three performance metrics (R, NRMSE, and WSS) as a function of y statis-467

tically quantified the ability of the 1D, 1DR, and 1DC model runs to reproduce the nearshore468

dye concentrations from the SD Bight model (Fig. 6). The 1DC model run (orange line469

in Fig. 6) used the exact alongshore velocity from the SD Bight model, demonstrating470

an upper limit on performance for the 1D and 1DR models, which used wave-driven ve-471

locities. The 1DC model performance did not drop at the TJRE, but remained approx-472

imately constant with alongshore distance until y = 27 km. North of y = 27 km, 1DC473

model skill decreased because the shoreline curvature increases (Fig. 6). The 1D model474

performed much better than the 1DR model (compare blue line with green in Fig. 6).475

The 1D model had an approximately constant WSS = 0.75 south of the TJRE (Fig. 6c).476
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Both the 1D and 1DR models decrease in skill at the TJRE, with a drop in R and WSS477

of about 0.15 (Fig. 6a, c). The 1DR model performed the worst, decaying rapidly with478

y. All further analyses will consider only the 1D model.479

Figure 6. Model performance metrics comparing C1D (blue), C1DR (green) and C1DC (orange)

with CC as a function of y. a) R, b) NRMSE, c) WSS. Green dashed line is location of TJRE.

Markers on the right indicate alongshore locations of beaches seen in Fig. 1.
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The 1D model and SD Bight model had similar counts of time steps when dye ex-480

ceeded CBAC, but the SD Bight model had more time steps when dye concentrations were481

between 10−8 and CBAC (Fig. 7). Dye in the 1D model was more often near zero than482

between 10−8 and CBAC (Fig. 7). Intermediate dye concentrations between 10−8 and CBAC483

in the SD Bight model may be partly due to dye recirculation from the inner shelf, a pro-484

cess not included in the 1D model. Some of the error in 1D model performance is then485

accounted for by these missing intermediate dye concentrations. However, intermediate486

concentrations are below the beach advisory condition threshold by definition, so the ab-487

sence of intermediate dye concentrations in the 1D model is not a significant concern for488

potential public health applications.489

3.5 Model binary performance using a cutoff value490

Dye plume events were counted using the CBAC threshold in a time series of C1D491

and CC at IB (Fig. 8). This first analysis focuses only on the summer months, June 1492

to October 1, when beach tourism is elevated and SABWTP plume occurrences are most493
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Figure 7. Horizontally stacked, normalized histogram of occurrences of dye values in a) the

1D model and b) the SD Bight model. Color represents dye concentration bins (colormap similar

to dye colormap in previous figures but with added distinction between values greater than or

less than 10−8). Contours delineate three bins (less than 10−8, 10−8 to CBAC = 5 × 10−4, and

greater than CBAC = 5× 10−4).
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frequent (Feddersen et al., 2021). Four conditions are defined using a binary logic cri-494

teria of dye greater than CBAC, taking CC as the true result,495

1. True Positive: both C1D > CBAC and CC > CBAC496

2. False Positive: C1D > CBAC but CC < CBAC497

3. False Negative: C1D < CBAC but CC > CBAC498

4. True Negative: both C1D < CBAC and CC < CBAC499

If a plume is True Positive at any time during its stay, it was counted as a True Posi-500

tive plume even if it had adjacent periods of False Positive or False Negative. Using this501

binary analysis, eight distinct summertime plumes are counted at IB (Fig. 8). There were502

four True Positive plumes (beginning July 11, July 16, July 31, and August 2), two False503

Positive plumes (beginning June 23 and July 4), and two False Negative plumes (begin-504

ning June 8 and August 18) (Fig. 8). The True Positive plumes were sometimes preceded505

by a brief False Negative period and followed by a brief False Positive period, because506

the plumes in the SD Bight model arrived earlier and retreated earlier.507
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Figure 8. Dye concentrations at Imperial Beach (yellow circle labelled IB in Fig. 1) over three

summer months from the SD Bight model (black solid line) and 1D model (blue solid line). The

dashed red line indicates CBAC = 5 × 10−4. Colored bars at top of figure depict True Positive,

(purple), False Positive (orange), False Negative (blue), or True Negative (white). Four condi-

tions defined in text.
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Next, the binary analysis was extended to all shoreline locations and all time steps508

(Fig. 9). Agreement was defined as the combined number of hourly time steps that had509

True Positive or True Negative conditions, and disagreement was either False Positive510

or False Negative conditions. The 1D model and SD Bight model were in agreement for511

89% of all time steps at all alongshore locations (Fig. 9c). The most common condition512

was True Negative, accounting for 75% of all hourly time steps at all locations. True Pos-513

itives were 14%, False Positives were 7%, and False Negatives were 4%. Disagreement514

was seasonal. During summer, False Negatives were more likely, rising to account for 14%515

of time steps between June 1 and October 1. During all other months, however, False516

Negatives and False Positives were equally likely, occurring in between 4 to 5% of non-517

summer time steps. The percent of time steps in agreement increased with y (Fig. 9c),518

in contrast to the pattern in model skill (Fig. 6). This increase is due to an increase in519

True Negatives with y (Fig. 9b). True Negatives accounted for 95% of time steps north520

of y > 20 km because dye concentrations exceeding CBAC rarely reached y > 20 km521

in either model.522
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Figure 9. a) Time series comparing the binary conditions CC > CBAC and C1D > CBAC as a

function of y for model year 2017, b) horizontal stacked bar plot of percentage of occurrences of

the four conditions as a function of y, c) percent of all time steps that are True Positive or True

Negative as a function of y. Four conditions defined in text.

3.6 Daily beach advisories: comparing 1D model forecast with simulated523

weekly sampling524

The previous analysis considered hourly agreement in the binary analysis, but in525

practice, agreement on a daily time scale would be most relevant for beach managers be-526

cause beach advisories are issued daily. Currently, daily beach advisories in San Diego527

are informed in part by weekly sampling for FIB performed at major beaches (San Diego County,528

n. d.). Samples are sent to labs for analysis and if FIB are found, beach advisories can529

be issued the next day (Francy, 2009). A weekly sampling schedule is currently the min-530

imum frequency recommended for water quality monitoring at heavily used urban beaches531

by the U.S. Environmental Protection Agency (U.S. Environmental Protection Agency,532

2014). However, a study on FIB sampling frequency at beaches in Los Angeles, CA, found533
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that a weekly testing schedule missed up to 75% of FIB exceedances, which frequently534

lasted only one day (Leecaster & Weisberg, 2001). Further, a probabilistic model esti-535

mated that up to 40% of beach advisories at Huntington Beach, CA, are incorrectly posted536

(J. Kim & Grant, 2004). Although here dye was modeled with the 10-day decay rate of537

norovirus, weekly sampling is still likely to misrepresent dye presence because dye con-538

centrations were determined primarily by alongshore advection, which acted on shorter539

time scales. We compared the accuracy of daily beach advisories informed by hourly 1D540

model predictions with a simulation of a weekly sampling schedule using the SD Bight541

model. For this experiment, the ideal daily beach advisory was issued at an alongshore542

location if CC > CBAC for at least one hour during that day. A 1D model-informed daily543

beach advisory was issued at an alongshore location if C1D > CBAC for at least one hour544

during that day. To simulate weekly sampling, CC was checked at one time step once545

per week. If that sample exceeded CBAC, a daily beach advisory was issued the follow-546

ing day (to match the time lag required to process samples) and remained in place for547

the next seven days until the next sample was processed. Accuracy was determined by548

checking if the 1D model-informed and simulated weekly sampling-informed daily beach549

advisories matched the ideal beach advisory. The magnitude and shape of the curve for550

1D model-informed daily beach advisory accuracy (Fig. 10) were consistent with the hourly551

agreement between binary metrics CC > CBAC and C1D > CBAC (Fig. 9b). The range552

of accuracy of simulated weekly sampling-informed daily beach advisories found here (Fig. 10)553

was consistent with the range of 0–40% inaccuracy in daily beach advisories estimated554

for Huntington Beach, CA (J. Kim & Grant, 2004). The 1D model-informed daily beach555

advisories were more accurate than simulated weekly sampling at all locations, averag-556

ing 87% accuracy over all time steps and 10% improvement over simulated weekly sam-557

pling (Fig. 10). Similar to the hourly count, accuracy for both 1D model-informed and558

simulated weekly sampling-informed daily beach advisories increased with y as distance559

from the point source, and thus true positives decreased.560

4 Discussion561

There is a growing understanding of the need to supplement in situ sampling with562

predictive modeling nowcasts (Francy, 2009). Although predictive modeling of water-563

borne pathogens has been a concern for decades, the majority of operational predictive564

water quality models are regressive rather than mechanistic (Elko et al., 2022). Regres-565

sive models predict FIB concentrations using statistically correlated factors, such as rain-566

fall (de Brauwere et al., 2014). The San Diego-Tijuana region nearshore is frequently con-567

taminated with untreated sewage from SABWTP transported by wave-driven currents568

(ARCADIS, 2019), producing a swimmer illness hazard than must be modeled mecha-569
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Figure 10. Percent agreement with ideal daily beach advisories (days when CC > CBAC for

any hourly time step) of simulated weekly sampling-informed daily beach advisories (pink) and

1D model-informed daily beach advisories (blue).
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nistically. Here, we demonstrated that a simple tracer advection model using only wave-570

driven alongshore currents does a good job of reproducing nearshore transport of a tracer571

from a 3D hydrodynamic model of the San Diego-Tijuana coastline. A simple 1D nearshore572

transport model could improve existing shoreline exposure modeling that uses only HFR-573

derived shelf currents (S. Y. Kim et al., 2009; Rogowski et al., 2015) and could be tuned574

and operational as a forecast much more quickly than a 3D hydrodynamic model (Wu575

et al., 2020). Nearshore momentum has been observed to be dominated by wave-forcing576

(Lentz et al., 1999; Feddersen, 1998), and a wave-only model has the advantage of the577

availability of wave forecasts at existing wave buoys. Previous 1D tracer advection mod-578

els of the nearshore environment have been used to estimate the transport of wastew-579

ater (Boehm, 2003) and dye (Grimes et al., 2021), but these have been evaluated over580

limited conditions. With the spatial and temporal resolution of the SD Bight model hind-581

cast for 2017, we could produce a detailed evaluation of the 1D model performance for582

both velocity and dye across a variety of seasonal forcing conditions and realistic shore-583

line features. A binary analysis of presence or absence of tracer concentrations in the 1D584

model above a cut off relevant for human health, CBAC = 5×10−4, was in agreement585

with the SD Bight model for 89% of all hourly time steps over all y. Here we summa-586

rize and expand upon our results and discuss applicability to other locations.587
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4.1 Comparison of velocity formulas588

Nearshore alongshore velocity was modeled with two different bottom stress for-589

mulas using wave properties at an offshore wave buoy location. The first, v1D, used the590

small angle, weak current approximation (Wright & Thompson, 1983) and the second,591

v1DR, used a further simplified linear Rayleigh friction (Lentz et al., 1999; Feddersen et592

al., 2000). The scaling difference between the formulas is that v1D ∝ H−1
s,5mSxy (11) and593

v1DR ∝ Sxy (12). Once tuned for their respective drag coefficients, both modeled ve-594

locities had good agreement (R > 0.8) with the alongshore-mean nearshore alongshore595

velocity, v̄C, extracted from the SD Bight model. The velocity estimated using Rayleigh596

friction, v1DR, had an R value 0.07 lower than v1D. Rayleigh friction models do not cap-597

ture extremes well, underestimating slow currents and overestimating fast currents (Fed-598

dersen et al., 2000), as found here where the 1DR model velocity, v1DR, underestimated599

slow summertime alongshore nearshore velocities (Fig. 2c). Due to this underestimate,600

the 1DR model could not reproduce summer dye plumes when transport was most fre-601

quently northward (Fig. 5c). Re-tuning v1DR to fit only summertime nearshore along-602

shore velocities would likely improve overall performance of the 1DR model dye trans-603

port, but we wanted to demonstrate the results of tuning to available data without a pri-604

ori assumptions about the relative importance of seasonal conditions for model perfor-605

mance. Lentz et al. (1999) found good agreement between Rayleigh friction-estimated606

wave-driven velocities and observations, but they did not attempt to model tracer trans-607

port. Even though the decrease in velocity correlation was small, the decrease in dye trans-608

port skill was substantial (compare blue line with green line in Fig. 6). Errors in Lagrangian609

quantities are magnified from errors in velocity because instantaneous velocity is inte-610

grated in space and time. Grimes et al. (2021) had success with a Rayleigh friction model,611

however they only modeled dye transport over a 30 hour time period during which Hs612

was approximately constant. Other bottom stress formulas that include strong current613

limits were tested (Wright & Thompson, 1983; Feddersen et al., 2000), but did not cap-614

ture the extreme winter events better than v1D. Further model improvement to reduce615

the overestimation of nearshore alongshore velocities during large southerly swells may616

not improve model transport much overall because northward currents are typically weak.617

Only wave-driven velocities were included here to optimize performance with sim-618

plicity. However, model performance would likely be further increased by including wind619

stress in the velocity formulas. Wind stress has been observed to be the second leading-620

order term in the nearshore alongshore momentum balance, after wave forcing (Fedder-621

sen, 1998; Lentz et al., 1999). The improvement in model performance by including wind622

here is likely to be small since winds in this region were light, with subtidal wind speeds623
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less than 2 ms−1 in 2017 (not shown). However, wind stress may be more important for624

nearshore transport in other regions. For example, in Melbourne Beach, FL, where hur-625

ricanes are common, the correlation of wind stress with waves explained net sediment626

transport better than waves alone (Burnette & Dally, 2018).627

4.2 Skill in reproducing tracer distributions628

For the problem of nearshore alongshore transport of SABWTP wastewater in the629

San Diego-Tijuana region, a 1D grid has been demonstrated to be an effective alterna-630

tive to a realistic 3D hydrodynamic model. Grimes et al. (2021) found that differenti-631

ating and including re-circulation between the surf zone and the inner-shelf (i.e., a 2 box632

model in the cross-shore direction) increased the performance of a 1D wave-advection633

model in reproducing the transport of a single dye plume through the surf zone over 30634

hours. In contrast, here exchange with the inner shelf was parameterized as monotonic635

loss, but the time scale considered was expanded to include dozens of plume events over636

the course of a year. Even with this simplified parameterization of exchange (i.e., loss637

only, no re-circulation) with the shelf, the 1D dye advection-loss model could reproduce638

SD Bight model nearshore dye concentrations with considerable skill (Fig. 6). The 1DC639

model demonstrated that, with perfect knowledge of nearshore currents, a uniform 1D640

grid and simple dye loss parameterization could reproduce nearshore tracer concentra-641

tions from the SD Bight model with a WSS = 0.9, and with no reduction of WSS around642

the TJRE (Fig. 6c). The 1DC model performance decreased in all metrics for y > 27643

km (Fig. 6) where shoreline curvature increases (Fig. 1) and nearshore alongshore ve-644

locity slows (Fig. 2). Tracer advection in this region may be underestimated by not in-645

cluding angular acceleration along the curving shoreline. Alternatively, slower nearshore646

alongshore advection of tracer may be compensated for in the SD Bight model by inner647

shelf tracer steered back into the nearshore along the more tightly-curved 10- and 20-648

m isobaths (Fig. 1), a process missing from the 1DC model. Using a wave-driven, alongshore-649

uniform, nearshore alongshore velocity, the 1D model WSS was only 10% less than the650

1DC model on average (Fig. 6). The 1D and 1DR model performances were lower down-651

stream of the TJRE (Fig. 6). This decreased performance may be attributed to low dye652

concentrations which are less likely to be a public health concern than high dye concen-653

trations. This explanation is supported by analysis of 1D and SD Bight model dye us-654

ing the binary condition of dye exceeding CBAC. In the binary analysis, agreement be-655

tween the 1D model and the SD Bight model increased with y (Fig. 9). These low dye656

concentrations missing from the 1D model may arise from tidal trapping diffusion or re-657

circulation of dye into the nearshore from the inner shelf. Recirculation is likely a less658

significant contributor of low dye concentrations than tidal trapping, since recirculation659
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was not included in the 1DC model which did not decrease in performance downstream660

of the TJRE mouth. Future work is needed to explicitly explore the dynamical role of661

inlets and shoals on nearshore alongshore tracer transport.662

The 1D model equation used here (5) did not include alongshore diffusivity, un-663

like similar 1D models of nearshore alongshore advection (e.g., Grant et al., 2005; Grimes664

et al., 2021). This is because numerical alongshore diffusivity arising from the upwind665

advection scheme provided adequate alongshore diffusivity expected for this environment.666

The numerical alongshore diffusivity, K∗
yy, was estimated using a scale analysis,667

K∗
yy ≈ V∆y

2
(14)

where ∆y was the grid cell length. For this 1D model, the numerical K∗
yy = 1.5 m2s−1.668

Estimation of expected alongshore diffusivity follows Spydell et al. (2009), who calcu-669

lated nearshore alongshore diffusivity using drifters at Huntington Beach, CA and Tor-670

rey Pines, CA over a nearshore domain which extended beyond the surf zone to an off-671

shore distance of 160 m. Spydell et al. (2009) used two scaling estimates of Kyy. The672

first calculation used mixing length arguments (Tennekes & Lumley, 1972),673

Kyy ≈ γV L, (15)

where V = 0.1 m s−1 was used as a typical velocity scale (RMS of v̄C, see Fig. 2) and674

γ is a fitting parameter, found in Spydell et al. (2009) to be γ = 0.52±0.08. The sec-675

ond calculation used shear dispersion in a pipe (Taylor, 1953; Spydell et al., 2007),676

Kyy ≈ V 2T0, (16)

where T0 is the timescale of mixing, found in Spydell et al. (2009) to be T0 = 154 ±677

13 s. Using V and L in this study results in Kyy estimates of 10 and 1.5 m2s−1 for the678

mixing length and pipe shear dispersion arguments, respectively. This range is consis-679

tent with the range of Kyy = 1 − 10 m2s−1 estimated in Grimes et al. (2021). Grant680

et al. (2005) found significantly higher estimates of Kyy = 40−80 m2s−1 in their field681

observations at Huntington Beach, CA (same study location as Spydell et al., 2009), but682

Grant et al. (2005) considered only the well-mixed region of the surf zone extending to683

50 m offshore. The numerical diffusivity K∗
yy falls within the range of expected along-684

shore diffusivity found here, Kyy = 1.5−10 m2s−1. Inclusion of additional prescribed685

alongshore diffusivity was tested using Kyy ranging from 1 to 10 m2s−1, but model per-686

formance metrics varied by at most 3% of their original values. This justified neglect-687

ing additional alongshore diffusivity beyond numerical alongshore diffusivity.688
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4.3 Impact of non-uniform bathymetry on alongshore transport689

Model skill was hypothesized to decrease downstream of the TJRE because com-690

plex dynamics near the TJRE mouth could not be represented in a simple 1D advection691

model. The 1DC model did not decrease in skill at the TJRE (Fig. 6), likely because the692

velocities extracted from the SD Bight model already incorporate modulations caused693

by the estuary presence (both bathymetric steering and tidal currents). The 1D and 1DR694

models did have small performance drops of 0.15 in R and WSS at the TJRE (kinks in695

blue and green solid lines at green dashed line Fig. 6). Together, these results suggest696

the TJRE produces an anomaly in the wave-driven alongshore velocity. The TJRE is697

a site of persistent divergence in the alongshore-varying nearshore alongshore velocity698

time series, most pronounced in non-summer months (Fig. 2a). The divergence arises699

between the TJRE and IB, where there is the shoal (visible north of the TJRE mouth700

in 10-m isobath contour in Fig. 1). The shoal affects wave-driven currents but may also701

steer alongshore flow. Divergence may also arise when there is flow out of the TJRE mouth,702

either from the episodically-flowing Tijuana River or ebb tides. Importantly, there was703

no decrease at the TJRE in agreement in the binary analysis comparing time steps with704

dye concentrations exceeding CBAC in the 1D model with the SD Bight model (Fig. 9b).705

This suggests that discrepancies in small dye concentrations (less than CBAC) account706

for the decrease in R and WSS in the 1D model downstream of the TJRE (Fig. 6a, c).707

4.4 Application for water quality prediction in San Diego-Tijuana re-708

gion709

The 1D model was able to reproduce the concentration of a tracer from a point source710

throughout a 30 km nearshore region from the SD Bight model, a much more complex711

COAWST model which includes the alongshore-variable bathymetry and shelf circula-712

tion. These model-model comparisons demonstrate the viability of a 1D wave-advection713

model in predicting individual wastewater plumes over a range of seasonal wave condi-714

tions, not only the recreation of specific events. The methods used here to tune nearshore715

alongshore advection and dye concentrations to SD Bight model values could be applied716

to historical wave, current, and FIB observations in the San Diego-Tijuana region to build717

an operational water quality forecast with minimal adjustments. Velocity could be tuned718

using wave data from the CDIP Imperial Nearshore buoy and observed nearshore cur-719

rents. To calibrate tracer transport, we could use available historic water sampling data.720

Only data from the dry season would be used for calibration to isolate the wastewater721

plume from SABWTP from other pathogen sources, such as the TJRE or storm water722

runoff (as in Zimmer-Faust et al., 2021). Dye decay parameters could be adapted to match723

–28–



manuscript submitted to JGR: Oceans

the pathogens tested for in water sampling. Here we used norovirus, but historic water724

sampling has tested for FIB, E. Coli, and Enterococcus (San Diego County, n. d.), all725

of which decay more rapidly than norovirus. The average measured e-folding time scale726

of E. Coli is 2–3 days (Boehm et al., 2018). The decay rate of Enterococcus is modu-727

lated by UV exposure, with populations decreasing by 90% in 81 minutes when exposed728

to midday sunlight (Davies-Colley et al., 1994), but in darker, colder environments the729

decay timescale can lengthen to a few days (Byappanahalli et al., 2012). To reproduce730

the rate of dye loss for Enterococcus, the decay rate would require programmed sunlight731

dependence.732

The 1D model could be used in concert with the existing plume tracker model to733

improve performance (S. Y. Kim et al., 2009; Rogowski et al., 2015). The offline parti-734

cle tracking algorithm which currently uses observed shelf currents to model transport735

of FIB could implement a nested 1D wave-driven nearshore transport model when par-736

ticles are found within 200 m of the shoreline.737

4.5 Applications to other regions and tracers738

The 1D wave-advection model tested here was motivated by the problem of wastew-739

ater transport in the San Diego-Tijuana nearshore region, but the dynamics of this nearshore740

region are not unique. This method could be adapted to model the nearshore transport741

of other tracers on other mostly straight, wave-dominated coastlines using wave buoys.742

For example, the modeling method could be applied to predict the wave-driven nearshore743

transport of microplastics (Kerpen et al., 2020). Although here we used a persistent flux744

of polluted waters, a time-dependent source term could represent transient sources of pol-745

lution to wave-dominated coastlines. For example, FIB levels are elevated in rivers in746

the days following hurricanes in North Carolina (Humphrey et al., 2019; Neville et al.,747

2021). Those polluted rivers form buoyant plumes at the coast which are partially trapped748

in the nearshore (Rodriguez et al., 2018; Kastner et al., 2019), and the 1D model could749

be used to model the wave-driven fate of those plumes along the shoreline. Because the750

1D model presented here is simple, it could be coupled to models that currently only use751

shelf circulation. Offline particle tracking algorithms used to model transport of harm-752

ful algal blooms (Giddings et al., 2014) or larvae (Brasseale et al., 2019) using shelf cur-753

rents could implement a nested nearshore 1D wave-driven transport model as described754

above for the plume tracker model (S. Y. Kim et al., 2009; Rogowski et al., 2015). With755

the inclusion of wind stress, this approach could be used to model sediment transport756

during storms on sandy coastlines, such as hurricanes on the Atlantic coast of Florida757

(Burnette & Dally, 2018), Nortes on the Yucatan peninsula in Mexico (Medellin et al.,758
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2021; Torres-Freyermuth et al., 2021), and monsoons on the Nha Trang beach in Viet-759

nam (Tran et al., 2021). Similar to discussed above, some tracers would require addi-760

tional decay/loss terms such as due to sunlight dependence (e.g., Enterococcus) or sink-761

ing (e.g., sediment).762

5 Conclusions763

A 1D transport-decay model has been shown to reproduce the mean alongshore cur-764

rents and nearshore concentrations of a tracer from a 3D hydrodynamic model of the San765

Diego-Tijuana coastal ocean. This demonstrates the viability of simple 1D models for766

nearshore water quality prediction and transport of other tracers such as larvae, sedi-767

ment, or microplastics. Two wave-derived velocity formulas were tested using wave prop-768

erties from an offshore location. Given the range of wave properties in this region over769

the twelve-month model period, nearshore tracer evolution could be estimated well us-770

ing the small angle, weak current approximation, but not with the linear friction approx-771

imation. Running the same 1D model using a linear friction model for velocity produced772

dye distributions with considerably less model skill than the small angle, weak current773

model. The effect of a small inlet and shoal at the TJRE on alongshore transport was774

examined. However, model performance was unaffected by the TJRE for values of dye775

that were above a beach advisory threshold, CBAC = 5 × 10−4. Only when small (in-776

consequential from a human health perspective) dye concentrations were considered did777

model performance decrease by 10% north of the TJRE. Because this 1D wave-advection778

model can be run with a wave buoy or a wave forecast model, it could be used for real-779

time or forecasts of tracer transport in other coastal regions. The simplicity, speed, and780

accuracy of this 1D nearshore model are evidence that a similar modeling technique could781

be implemented in place of or in concert with a full hydrodynamic model for public health782

websites and ensemble studies where full hydrodynamic models may be impractical. More-783

over, it can be combined with other existing tracer transport models that focus on shelf-784

circulation to better represent the fate of tracers along the shoreline.785
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