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Chapter 1

Introduction

The main goal of the SWAN model is to solve the spectral action balance
equation without any a priori restrictions on the spectrum for the evolution
of wave growth. This equation represents the effects of spatial propagation,
refraction, shoaling, generation, dissipation and nonlinear wave-wave inter-
actions. The basic scientific philosophy of SWAN is identical to that of WAM
cycle 3. SWAN is a third-generation wave model and it uses the same for-
mulations for the source terms.

Whereas the WAM model considers problems on oceanic scales, with SWAN
wave propagation is calculated from deep water to the surf zone. Since,
WAM makes use of explicit propagation schemes in geographical and spec-
tral spaces, it requires very small grid sizes in shallow water and is thus un-
suitable for applications to coastal regions. For that reason, SWAN employs
implicit schemes, which are more robust and economic in shallow water than
the explicit ones. Note that SWAN may be less efficient on oceanic scales
than WAM.

1.1 Historical background

Over the past two decades, a number of advanced spectral wind-wave mod-
els, known as third-generation models, has been developed such as WAM
(WAMDI Group, 1988), WAVEWATCH III (Tolman, 1991), TOMAWAC
(Benoit et al., 1996) and SWAN (Booij et al., 1999). These models solve
the spectral action balance equation without any a priori restrictions on the
spectrum for the evolution of wave growth.

1



2 Chapter 1

Based on the wave action balance equation with sources and sinks, the shal-
low water wave model SWAN (acronym for Simulating WAves Nearshore)
is an extension of the deep water third-generation wave models. It incorpo-
rates the state-of-the-art formulations for the deep water processes of wave
generation, dissipation and the quadruplet wave-wave interactions from the
WAM model (Komen et al., 1994). In shallow water, these processes have
been supplemented with the state-of-the-art formulations for dissipation due
to bottom friction, triad wave-wave interactions and depth-induced breaking.
SWAN is fully spectral (in all directions and frequencies) and computes the
evolution of wind waves in coastal regions with shallow water and ambient
current.

SWAN is developed at Delft University of Technology and is freely available
from
http://www.fluidmechanics.tudelft.nl/swan/index.htmhttp://www.fluidmechanics.tudelft.nl/sw
It is used by many goverment authorities, research institutes and consultants
worldwide. The feedback has widely indicated the reliability of SWAN in dif-
ferent experiment and field cases.

Initially, the SWAN cycle 1 was formulated to be able to handle only sta-
tionary conditions on a rectangular grid. Later on, SWAN cycle 2 model has
been developed. This is considered as the second step in the development of
SWAN models. Cycle 2 of SWAN is stationary and optionally non-stationary.
It can compute the wave propagation not only on a regular rectangular grid,
but also on a curvilinear grid. Previous official versions 30.62, 30.75, 40.01
and 32.10 belong to the cycle 2 of SWAN.

This section is under preparation.

1.2 Purpose and motivation

The purpose of this document is to provide relevant information on the math-
ematical models and numerical techniques for the simulation of spectra of
random short-crested, wind-generated waves in coastal regions. Furthermore,
this document explains the essential steps involved in the implementation of
various numerical methods, and thus provides an adequate reference with
respect to the structure of the SWAN program.
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1.3 Readership

This document is, in the first place, addressed to those, who wish to modify
and to extend mathematical and numerical models for shallow wind-wave
problems. However, this material is also useful for those who are interested
in the application of the techniques discussed here. The text assumes the
reader has basic knowledge of analysis, partial differential equations and
numerical mathematics and provides what is needed both in the main text
and in the appendices.

1.4 Scope of this document

SWAN is a third-generation wave model for obtaining realistic estimates of
wave parameters in coastal areas, lakes and estuaries from given wind, bottom
and current conditions. However, SWAN can be used on any scale relevant
for wind-generated surface gravity waves. The model is based on the wave
action balance equation (or energy balance in the absence of currents) with
sources and sinks. Good introductory texts on the background of SWAN are
Young (1999) and Booij et al. (1999).

The following wave propagation processes are represented in SWAN:

• propagation through geographic space,

• refraction due to spatial variations in bottom and current,

• diffraction,

• shoaling due to spatial variations in bottom and current,

• blocking and reflections by opposing currents and

• transmission through, blockage by or reflection against obstacles.

The following wave generation and dissipation processes are represented in
SWAN:

• generation by wind,

• dissipation by whitecapping,
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• dissipation by depth-induced wave breaking,

• dissipation by bottom friction and

• wave-wave interactions in both deep and shallow water.

In addition, the wave-induced set-up of the mean sea surface can be computed
in SWAN. However, wave-induced currents are not computed by SWAN. In
1D cases, computation of wave-induced set-up is based on exact shallow wa-
ter equations, whereas in 2D cases they need to be approximated since the
effects of wave-induced currents are ignored.

Diffraction is modelled in a restrict sense, so the model should be used in
areas where variations in wave height are large within a horizontal scale of
a few wave lengths. However, the computation of diffraction in arbitrary
geophysical conditions is rather complicated and requires considerable com-
puting effort. To avoid this, a phase-decoupled approach, as described in
(Holthuijsen et al., 2003), is employed so that same qualitative behaviour of
spatial redistribution and changes in wave direction is obtained.

SWAN is stationary and optionally non-stationary and can be applied in
Cartesian or curvi-linear (recommended only for small scales) or spherical
(small scales and large scales) co-ordinates. The stationary mode should be
used only for waves with a relatively short residence time in the computa-
tional area under consideration, i.e. the travel time of the waves through
the region should be small compared to the time scale of the geophysical
conditions (wave boundary conditions, wind, tides and storm surge).

1.5 Overview

The remainder of this document is subdivided as follows: In Chapter 2 the
action balance equations used in SWAN are presented. Next, each source
term of the governing equations is in depth described. In Chapter 3 the
main characteristics of the finite difference method for the discretization of
the governing equations in irregular horizontal planes are outlined. Vari-
ous differencing schemes for spatial propagation are reported. Chapter 4 is
concerned with discussing several boundary conditions and their implemen-
tation. Chapter 5 is devoted to the design of the two-dimensional wave set-up
of sea surface. Chapter 6 is devoted to the linear solvers for the solution of
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the resulted linear systems of equations. Chapter 7 deals with some con-
sideration on parallelization of SWAN on distributed memory architectures.
Chapter 8 concludes this document by summarizing the overall solution al-
gorithm of SWAN.

This document, however, is not intended as being complete. Although, this
document describes the essential steps involved in the simulation of wind-
generated waves, so that the user can see which can be modified or extended
to solve a particular problem properly, some issues involved in SWAN are
not included. Below, a list of these issues is given, of which the information
maybe available elsewhere:

• RIAM,

• reflections, and

• diffraction.

1.6 Acknowledgements

The present SWAN team are grateful to the contributors from the very first
days of SWAN which took place at the Delft University of Technology in
Delft, The Netherlands in 1993: Nico Booij and Leo Holthuijsen.

We further want to acknowledge all contributors who helped us to improve
SWAN, reported bugs, and tested SWAN thoroughly: Tim Campbell, John
Cazes, IJsbrand Haagsma, Annette Kieftenburg, Ekaterini Kriezi, Roberto
Padilla-Hernandez, Roeland Ris, Erick Rogers, Andre van der Westhuijsen
and Marcel Zijlema.

Many thanks are due to Gerbrant van Vledder and Noriaki Hashimoto who
provided the source code for exact computation of four wave-wave intera-
tions, XNL and RIAM, respectively.

It was also the important role which SWAN played in several projects, mostly
funded by the Office of Naval Research (USA), which helped a lot to develop
and maintain SWAN. The present version of SWAN is supported by Rijk-
swaterstaat (as part of the Ministry of Transport, Public Works and Water
Management, The Netherlands).
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main Software without which a project like SWAN would be unthinkable:
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Governing equations

2.1 Spectral description of wind waves

Wind generated waves have irregular wave heights and periods, caused by
the irregular nature of wind. Due to this irregular nature, the sea surface is
continually varying, which means that a deterministic approach to describe
the sea surface is not feasible. On the other hand, statistical properties of
the surface, like average wave height, wave periods and directions, appear to
vary slowly in time and space, compared to typical wave periods and wave
lengths. The surface elevation of waves in the ocean, at any location and
any time, can be seen as the sum of a large number of harmonic waves,
each of which has been generated by turbulent wind in different places and
times. They are therefore statistically independent in their origin. According
to linear wave theory, they remain independent during their journey across
the ocean. Under these conditions, the sea surface elevation on a time scale
of one hundred characterstic wave periods is sufficiently well described as a
stationary, Gaussian process. The sea surface elevation in one point as a
function of time can be described as

η(t) =
∑

i

ai cos(σit + αi) (2.1)

with η the sea surface elevation, ai the amplitude of the ith wave component,
σi the relative radian or circular frequency of the ith wave component in
the presence of the ambient current (equals the absolute radian frequency ω
when no ambient current is present) and αi the random phase of the ith wave
component. This is called the random-phase model.

7
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In the presene of the ambient current, it is assumed that it is uniform with
respect to the vertical co-ordinate and the changes in the mean flow within
a wave length are so small that they affect only negligibly the dispersion
relation. The absolute radian frequency ω then equals the sum of the relative
radian frequency σ and the multiplication of the wave number and ambient
current velocity vectors:

ω = σ + ~k · ~u (2.2)

which is the usual Doppler shift. For linear waves, the relative frequency is
given by

σ2 = gk tanh(kd) (2.3)

where g is the acceleration of gravity and d is the water depth.

Ocean waves are chaotic and a description in the time domain is rather lim-
ited. Alternatively, many manipulations are more readily described and un-
derstood with the variance density spectrum, which is the Fourier transform
of the auto-covariance function of the sea surface elevation:

E ′(f) =
∫ +∞

−∞
C(τ)e−2πifτdτ (2.4)

with
C(τ) =< η(t)η(t + τ) > (2.5)

where C(τ) is auto-covariance function, <> represents mathematical expec-
tation of random variable and η(t), η(t + τ) represent two random processes
of sea surface elevation, τ represents the time lag.

In the field of ocean wave theory it is conventional to degfine a spectrum
E(f) slightly different from the above one:

E(f) = 2E ′(f) for f ≥ 0 and E(f) = 0 for f < 0 (2.6)

The description of water waves through the defined variance density spectrum
E(f) is called spectral description of water waves. It can be proved that the
variance of the sea surface elevation is given by

< η2 >= C(0) =
∫ +∞

0
E(f)df (2.7)

which indicates that the spectrum distributes the variance over frequencies.
E(f) should therefore be interpreted as a variance density. The dimensions
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of E(f) are m2/Hz if the elevation is given in m and the frequencies in Hz.

The variance < η2 > is equal to the total energy Etot of the waves per unit
surface area if multiplied with a properly chosen coefficient:

Etot =
1

2
ρwg < η2 > (2.8)

The terms variance density spectrum and energy density spectrum will there-
fore be used indiscriminately in this document.

In many wave problems it is not sufficient to define the energy density as
a function of frequency alone. It is mostly required to distribute the wave
energy over directions as well. This spectrum, which distributes the wave
energy over frequencies and directions, will be denoted with E(f, θ). As the
total energy density at a frequency f is dstributed over the directions θ in
E(f, θ), it follows that:

E(f) =
∫ 2π

0
E(f, θ)dθ (2.9)

The energy density spectrum E(f) and E(f, θ) are depicted in Figure 2.1.
Based on the energy density spectrum, the integral wave parameters can be
obtained. These parameters can be expressed in terms of the so-called n−th
moment of the energy density spectrum:

mn =
∫ ∞

0
fnE(f)df (2.10)

So, the variance of the sea surface elevation is given by m0 =< η2 >. Well-
known parameters are the significant wave height:

Hs = 4
√

m0 (2.11)

and some wave periods:

Tm01 =
m0

m1

, Tm02 =

√

m0

m2

, Tm−10 =
m−1

m0

(2.12)

In SWAN, the energy density spectrum E(σ, θ) is generally used. On a larger
scale the spectral energy density function E(σ, θ) becomes a function of space
and time and wave dynamics should be considered to determine the evolution
of the spectrum in space and time. For brevity, the notation E(σ, θ) will still
be used.



10 Chapter 2

Figure 2.1: Illustrations of 1D and 2D wave spectra. (Reproduced from
Holthuijsen (2005) with permission of Cambridge University Press.)

2.2 Propagation of wave energy

2.2.1 Wave kinematics

Using the linear wave theory and the conversion of wave crests, the wave
propagation velocities in spatial space and spectral space can be obtained
from the kinematics of a wave train (Whitham, 1974; Mei, 1983):

d~x

dt
= (cx, cy) = ~cg + ~u =

1

2

(

1 +
2kd

sinh(2kd)

)

σ~k

k2
+ ~u (2.13)

dσ

dt
= cσ =

∂σ

∂d

(

∂d

∂t
+ ~u · ∇~xd

)

− cg
~k · ∂~u

∂s

dθ

dt
= cθ = −1

k

(

∂σ

∂d

∂d

∂m
+ ~k · ∂~u

∂m

)
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where cx, cy are the propagation velocities of wave energy in spatial x−,
y−space, cσ and cθ are the propagation velocities in spectral space σ−,
θ−space, d is water depth, s is the space co-ordinate in the wave propagation
direction of θ and m is a co-ordinate perpendicular to s. Furthermore,

~k = (kx, ky) , ~u = (ux, uy) (2.14)

In addition, the operator d/dt denotes the total derivative along a spatial
path of energy propagation, and is defined as

d

dt
=

∂

∂t
+ (~cg + ~u) · ∇~x (2.15)

2.2.2 Spectral action balance equation

All information about the sea surface is contained in the wave variance spec-
trum or energy density E(σ, θ), distributing wave energy over (radian) fre-
quencies σ (as observed in a frame of reference moving with current velocity)
and propagation directions θ (the direction normal to the wave crest of each
spectral component). Usually, wave models determine the evolution of the
action density N(~x, t; σ, θ) in space ~x and time t. The action density is de-
fined as N = E/σ and is conserved during propagation in the presence of
ambient current, whereas energy density E is not (Whitman, 1974). It is
assumed that the ambient current is uniform with respect to the vertical
co-ordinate and is denoted as ~U .

The evolution of the action density N is governed by the action balance
equation, which reads (e.g., Mei, 1983; Komen et al., 1994):

∂N

∂t
+ ∇~x · [(~cg + ~U)N ] +

∂cσN

∂σ
+

∂cθN

∂θ
=

Stot

σ
(2.16)

The left-hand side is the kinematic part of this equation. The second term
denotes the propagation of wave energy in two-dimensional geographical ~x-
space, with the group velocity ~cg = ∂σ/∂~k following from the dispersion

relation σ2 = g|~k| tanh(|~k|d) where ~k is the wave number vector and d the
water depth. The third term represents the effect of shifting of the radian
frequency due to variations in depth and mean currents. The fourth term
represents depth-induced and current-induced refraction. The quantities cσ

and cθ are the propagation velocities in spectral space (σ, θ). The right-hand



12 Chapter 2

side contains Stot, which is the source/sink term that represents all physical
processes which generate, dissipate, or redistribute wave energy. They are
defined for energy density E(σ, θ). Details are given in Section 2.3.

The second term in Eq. 2.16 can be recasted in Cartesian, spherical or curvi-
linear co-ordinates. For small scale applications the spectral action balance
equation may be expressed in Cartesian co-ordinates as given by

∂N

∂t
+

∂cxN

∂x
+

∂cyN

∂y
+

∂cσN

∂σ
+

∂cθN

∂θ
=

Stot

σ
(2.17)

with
cx = cg,x + Ux , cy = cg,y + Uy (2.18)

With respect to applications at shelf sea or oceanic scales the action balance
equation may be recasted in spherical co-ordinates as follows:

∂N

∂t
+

∂cλN

∂λ
+ cos−1 ϕ

∂cϕ cos ϕN

∂ϕ
+

∂cσN

∂σ
+

∂cθN

∂θ
=

Stot

σ
(2.19)

with longitude, λ and latitude ϕ.

2.3 Sources and sinks

First, in Section 2.3.1 general concepts of the physical processes of generation,
dissipation and non-linear wave-wave interactions that are implemented in
SWAN are outlined. Next, complete expressions for these physical processes
are given in subsequent sections.

2.3.1 General concepts

In shallow water, six processes contribute to Stot:

Stot = Sin + Snl3 + Snl4 + Sds,w + Sds,b + Sds,br . (2.20)

These terms denote, respectively, wave growth by the wind, nonlinear trans-
fer of wave energy through three-wave and four-wave interactions and wave
decay due to whitecapping, bottom friction and depth-induced wave break-
ing. First, a brief summary of the formulations is given below. Next, for
each term complete expressions are outlined.
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Wind input

Transfer of wind energy to the waves is described with a resonance mecha-
nism (Phillips, 1957) and a feed-back mechanism (Miles, 1957).

Resonance with wind-induced pressure fluctations

The pressure distribution induced by wind at the sea surface is random. It
propagates more or less a frozen pattern over the surface with wind speed.
This can be Fourier transformed to produce harmonic pressure waves that
propagate with wind speed. If this harmonic pressure wave remains in phase
with a free harmonic surface wave, then the wind energy is transferred from
the pressure wave to the surface wave. The energy input by this mechanism,
which contributes to the initial stages of wave growth, varies linearly with
time.

Feedback of wave-induced pressure fluctations

When a wave has been generated by the resonance mechanism as explained
above, it will distort the wind profile just above the water surface. This
distortion results in an ’over pressure’ on the wind ward side of the crest of
the wave and an ’under pressure’ at the lee side of the crest. It means that
when the sea surface moves up and down, the pressure also follows the same
movements, therefore transfer energy to the wave. This energy transfer is
proportional to the energy in the wave itself, so the wave grows more as it
gets larger. This effect is found to be exponential in time.

Based on the two wave growth mechanisms, wave growth due to wind com-
monly described as the sum of linear and exponential growth term of a wave
component:

Sin(σ, θ) = A + BE(σ, θ) (2.21)

in which A and B depend on wave frequency and direction, and wind speed
and direction. The effects of currents are accounted for by using the appar-
ent local wind speed and direction. The expression for the term A is due to
Cavaleri and Malanotte-Rizzoli (1981) with a filter to avoid growth at fre-
quencies lower than the Pierson-Moskowitz frequency (Tolman, 1992a). Two
optional expressions for the coefficient B are used in the SWAN model. The
first is taken from an early version of the WAM Cycle 3 model (the WAMDI
group, 1988). It is due to Snyder et al. (1981), rescaled in terms of friction
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velocity U∗ by Komen et al. (1984). The drag coefficient to relate U∗ to
the driving wind speed at 10 m elevation U10 is taken from Wu (1982). The
second expression for B in SWAN is taken from the WAM Cycle 4 model
(Komen et al., 1994). It is due to Janssen (1991a) and it accounts explicitly
for the interaction between the wind and the waves by considering atmo-
spheric boundary layer effects and the roughness length of the sea surface.
The corresponding set of equations is solved (as in the WAM model) with
the iterative procedure of Mastenbroek et al. (1993).

Dissipation

The dissipation term of wave energy is represented by the summation of
three different contributions: whitecapping Sds,w, bottom friction Sds,b and
depth-induced breaking Sds,br.

Whitecapping is primarily controlled by the steepness of the waves. In
presently operating third-generation wave models, the whitecapping formu-
lations are based on a pulse-based model (Hasselmann, 1974), as adapted by
the WAMDI group (1988):

Sds,w(σ, θ) = −Γσ̃
k

k̃
E(σ, θ) (2.22)

where Γ is a steepness dependent coefficient, k is wave number and σ̃ and
k̃ denote a mean frequency and a mean wave number, respectively (cf. the
WAMDI group, 1988). Komen et al. (1984) estimated the value of Γ by
closing the energy balance of the waves in fully developed conditions. This
implies that this value depends on the wind input formulation that is used.
Since two expressions are used for the wind input in SWAN, also two values
for Γ are used. The first is due to Komen et al. (1984), as in WAM Cy-
cle 3. The second expression is an adaptation of this expression based on
Janssen (1991a), as in WAM Cycle 4 (see Janssen, 1991b; Günther et al.,
1992). Young and Banner (1992) and Banner and Young (1994) have shown
that the results of closing the energy balance in this manner depend critically
on the choice of a high-frequency cut-off frequency above which a diagnostic
spectral tail is used. In SWAN, this cut-off frequency is different from the
one used in the WAM model. Differences in the growth rates between the
WAM model and SWAN are therefore to be expected.

A number of alternative whitecapping expressions have been proposed to im-
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prove the accuracy of SWAN. These range from alternative calibrations of
the Komen et al (1984) expression, e.g. Rogers et al (2003), to alternative
ways of calculating mean spectral steepness, e.g. Van Vledder and Hurdle
(2002). In SWAN, two alternatives are presented.

An alternative formulation for whitecapping is based on the Cumulative
Steepness Method as described in Hurdle and Van Vledder (2004). With
this method dissipation due to whitecapping depends on the steepness of the
wave spectrum at and below a particular frequency.

A second alternative of the whitecapping expression is based on Alves and
Banner (2003). This expression is based on experimental findings that white-
capping dissipation appears to be related to the nonlinear hydrodynamics
within wave groups. This yields a dissipation term that primarily depends on
quantities that are local in the frequency spectrum, as opposed to ones that
are distributed over the spectrum, as in the expression of Komen et al (1984).
However, the final whitecapping expression proposed by Alves and Banner
(2003) features additional dependencies on the spectral mean wavenumber
and steepness, which is problematic in situations of mixed sea and swell of-
ten encountered in the nearshore. Therefore, their whitecapping expression is
applied here without these mean spectral dependencies. This adapted white-
capping expression is used together with a wind input term that is based on
that of Yan (1987). Further information and details can be found in Van der
Westhuysen et al (2006).

In shallow water the orbital motions of the water particles, induced by sur-
face waves, extend down to the sea floor. This gives rise to an interaction
between te surface waves and the bottom. An overview of different wave-
bottom interaction mechanisms and of their relative strengths is given by
Shemdin et al. (1978). They are: scattering on bottom irregularities, motion
of a soft bottom, percolation into a porous bottom and friction in the turbu-
lent bottom boundary layer. The first process results in a local redistribution
of wave energy by scattering of wave components. The last three are dissipa-
tive. Their strength depends on the bottom conditions. For continental shelf
seas with sandy bottoms, the dominant mechanism appears to be bottom
friction (Bertotti and Cavaleri, 1994) which can generally be expressed as:

Sds,b = −Cb
σ2

g2 sinh2 kd
E(σ, θ) (2.23)
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in which Cb is a bottom friction coefficient. A large number of models has
been proposed since the pioneering paper of Putnam and Johnson (1949).
Hasselmann et al. (1973) suggested to use an empirically obtained constant.
It seems to perform well in many different conditions as long as a suitable
value is chosen (typically different for swell and wind sea). A nonlinear for-
mulation based on drag has been proposed by Hasselmann and Collins (1968)
which was later simplified by Collins (1972). More complicated, eddy vis-
cosity models have been developed by Madsen et al. (1988) and by Weber
(1989, 1991a, 1991b). Considering the large variations in bottom conditions
in coastal areas (bottom material, bottom roughness length, ripple height,
etc.), there is no field data evidence to give preference to a particular friction
model (Luo and Monbaliu, 1994). For this reason, the simplest of each of
these types of friction models has been implemented in SWAN: the empir-
ical JONSWAP model of Hasselmann et al. (1973), the drag law model of
Collins (1972) and the eddy-viscosity model of Madsen et al. (1988). The
effect of a mean current on the wave energy dissipation due to bottom fric-
tion is not taken into account in SWAN. The reasons for this are given by
Tolman (1992b) who argues that state-of-the-art expressions vary too widely
in their effects to be acceptable. He found that the error in finding a correct
estimate of the bottom roughness length scale has a much larger impact on
the energy dissipation rate than the effect of a mean current.

When waves propagate towards shore, shoaling leads to an increase in wave
height. When the ratio of wave height over water depth exceeds a certain
limit, waves start to break, thereby dissipating energy rapidly. In extreme
shallow water (surf zone), this process becomes dominant over all other pro-
cesses. The process of depth-induced wave breaking is still poorly understood
and little is known about its spectral modelling. In contrast to this, the to-
tal dissipation (i.e. integrated over the spectral space) due to this type of
wave breaking can be well modelled with the dissipation of a bore applied
to the breaking waves in a random field (Battjes and Janssen, 1978; Thorn-
ton and Guza, 1983). Laboratory observations (e.g., Battjes and Beji, 1992;
Vincent et al. 1994; Arcilla et al., 1994 and Eldeberky and Battjes, 1996)
show that the shape of initially uni-modal spectra propagating across simple
(barred) beach profiles, is fairly insensitive to depth-induced breaking. This
has led Eldeberky and Battjes (1995) to formulate a spectral version of the
bore model of Battjes and Janssen (1978) that conserves the spectral shape.
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Expanding their expression to include directions, the expression reads:

Sds,br(σ, θ) =
Dtot

Etot

E(σ, θ) (2.24)

in which Etot is the total wave energy and Dtot < 0 is the rate of dissi-
pation of the total energy due to wave breaking according to Battjes and
Janssen (1978). Adding a quadratic dependency on frequency as suggested
by Mase and Kirby (1992) and supported by Elgar et al. (1997) seems to
have no noticeable effect on the SWAN results. Chen and Guza (1997) in-
ferred from observations and simulations with a Boussinesq model that the
high-frequency levels are insensitive to such frequency dependency because
an increased dissipation at high frequencies is compensated approximately by
increased nonlinear energy transfer (but they did find the frequency depen-
dency to be relevant in time domain). The value of Dtot depends critically
on the breaking parameter γ = Hmax/d (in which Hmax is the maximum
possible individual wave height in the local water depth d). In SWAN, both
a constant value and a variable value are available. The constant value is
γ = 0.73 found as the mean value of the data set of Battjes and Stive (1985).

Nonlinear wave-wave interactions

The basic properties of wave-wave interactions were discovered during the
fundamental research of Phillips (1960) and Hasselmann (1960, 1962, 1963a,b).
The physical meaning of the interactions is that resonant sets of wave com-
ponents exchange energy, redistributing energy over the spectrum. In deep
and intermediate water, four-wave interactions (so-called quadruplets) are
important, whereas in shallow water three-wave interactions (so-called tri-
ads) become important.

In deep water, quadruplet wave-wave interactions dominate the evolution of
the spectrum. They transfer wave energy from the spectral peak to lower
frequencies (thus moving the peak frequency to lower values) and to higher
frequencies (where the energy is dissipated by whitecapping). In very shallow
water, triad wave-wave interactions transfer energy from lower frequencies
to higher frequencies often resulting in higher harmonics (Beji and Battjes,
1993). Low-frequency energy generation by triad wave-wave interactions is
not considered here.
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A full computation of the quadruplet wave-wave interactions is extremely
time consuming and not convenient in an operational wave model. Never-
theless, SWAN has two options to compute the Boltzmann integral in an
exact manner. The first approach is the so-called FD-RIAM technique as
proposed by Hashimoto et al. (1998). This approach enables to capture
the frequency shift and the spectral shape changes as water depth decreases.
The second approach is the exact method developed by Webb, Tracy and
Resio (WRT) (Resio et al., 2001). This algorithm was reprogrammed by Van
Vledder, bearing the name XNL (Van Vledder and Bottema, 2003). This
method is also enable to capture the frequency shift and the spectral shape
changes as water depth decreases.

A number of techniques, based on parametric methods and approximations
have been proposed to improve computational speed of computing quadru-
plets (see Young and Van Vledder (1993) for a review). In SWAN, the
computations are carried out with the Discrete Interaction Approximation
(DIA) of Hasselmann et al. (1985). This DIA has been found to be quite
successful in describing the essential features of a developing wave spectrum;
see Komen et al. (1994). For uni-directional waves, this approximation is not
valid. In fact, the quadruplet interaction coefficient for these waves is nearly
zero. For finite-depth applications, Hasselmann and Hasselmann (1981) have
shown that for a JONSWAP-type spectrum the quadruplet wave-wave inter-
actions can be scaled with a simple expression. In some cases, the DIA
technique may not be accurate enough. In Hashimoto et al. (2003), it was
demonstrated that the accuracy of the DIA may be improved by increasing
the number of quadruplet configurations. They proposed a Multiple DIA
with up to 6 wave number configurations.

In very shallow water, triad wave interactions become important for steep
waves. It transfers energy to higher frequencies, resulting in higher harmonics
(Beji and Battjes, 1993). The energy transfer in this process can take place
over relatively short distance and can dramatically change single peaked spec-
tra into multiple peaked spectra, which has frequently been observed in the
field (Arcilla et al., 1994) and in a number of laboratory experiments with a
bar-trough profile (Beji and Battjes, 1993) and a plane beach profile (Nwogu,
1994).

A first attempt to describe triad wave-wave interactions in terms of a spectral
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energy source term was made by Abreu et al. (1992). However, their expres-
sion is restricted to non-dispersive shallow water waves and is therefore not
suitable in many practical applications of wind waves. The breakthrough
in the development came with the work of Eldeberky and Battjes (1995)
who transformed the amplitude part of the Boussinesq model of Madsen and
Sørensen (1993) into an energy density formulation and who parameterized
the bi-phase of the waves on the basis of laboratory observations (Battjes and
Beji, 1992; Arcilla et al., 1994). A discrete triad approximation (DTA) for
co-linear waves was subsequently obtained by considering only the dominant
self-self interactions. Their model has been verified with flume observations of
long-crested, random waves breaking over a submerged bar (Beji and Battjes,
1993) and over a barred beach (Arcilla et al., 1994). The model appeared to
be fairly successful in describing the essential features of the energy transfer
from the primary peak of the spectrum to the super harmonics. A slightly
different version, the so-called Lumped Triad Approximation (LTA) was later
derived by Eldeberky (1996). This LTA technique is employed in SWAN.

2.3.2 Input by wind (Sin)

Wave growth by wind is described by:

Sin(σ, θ) = A + BE(σ, θ) (2.25)

in which A describes linear growth and BE exponential growth. It should be
noted that the SWAN model is driven by the wind speed at 10m elevation U10

whereas it uses the friction velocity U∗. For the WAM Cycle 3 formulation
the transformation from U10 to U∗ is obtained with

U2
∗ = CDU2

10 (2.26)

in which CD is the drag coefficient from Wu (1982):

CD(U10) =

{

1.2875 × 10−3 , for U10 < 7.5m/s
(0.8 + 0.065s/m × U10) × 10−3 , for U10 ≥ 7.5m/s

(2.27)

For the WAM Cycle 4 formulations, the computation of U∗ is an integral part
of the source term.

Linear growth by wind
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For the linear growth term A, the expression due to Cavaleri and Malanotte-
Rizzoli (1981) is used with a filter to eliminate wave growth at frequencies
lower than the Pierson-Moskowitz frequency (Tolman, 1992a)1:

A =
1.5 × 10−3

2πg2
(U∗ max[0, cos(θ−θw)])4H , H = exp

{

−(
σ

σ∗
PM

)−4

}

, σ∗
PM =

0.13g

28U∗

2π

(2.28)
in which θw is the wind direction, H is the filter and σ∗

PM is the peak frequency
of the fully developed sea state according to Pierson and Moskowitz (1964)
as reformulated in terms of friction velocity.

Exponential growth by wind

Two expressions for exponential growth by wind are optionally available in
the SWAN model. The first expression is due to Komen et al. (1984). Their
expression is a function of U∗/cph:

B = max[0, 0.25
ρa

ρw

(28
U∗

cph

cos(θ − θw) − 1)]σ (2.29)

in which cph is the phase speed and ρa and ρw are the density of air and water,
respectively. This expression is also used in WAM Cycle 3 (the WAMDI
group, 1988). The second expression is due to Janssen (1989,1991a). It is
based on a quasi-linear wind-wave theory and is given by:

B = β
ρa

ρw

(

U∗

cph

)2

max[0, cos(θ − θw)]2σ (2.30)

where β is the Miles constant. In the theory of Janssen (1991a), this constant
is estimated from the non-dimensional critical height λ:















β = 1.2
κ2 λ ln4 λ , λ ≤ 1

λ = gze

c2
ph

er , r = κc/|U∗ cos(θ − θw)|
(2.31)

where κ = 0.41 is the Von Karman constant and ze is the effective surface
roughness. If the non-dimensional critical height λ > 1, the Miles constant

1In Eq. (10) of Tolman (1992a) the power of 10−5 should be 10−3; H. Tolman, personal
communication, 1995.
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β is set equal 0. Janssen (1991a) assumes that the wind profile is given by:

U(z) =
U∗

κ
ln[

z + ze − z0

ze

] (2.32)

in which U(z) is the wind speed at height z (10m in the SWAN model) above
the mean water level, z0 is the roughness length. The effective roughness
length ze depends on the roughness length z0 and the sea state through the
wave-induced stress ~τw and the total surface stress ~τ = ρa| ~U∗| ~U∗:

ze =
z0

√

1 − | ~τw|
|~τ |

, z0 = α̂
U2
∗

g
(2.33)

The second of these two equations is a Charnock-like relation in which α̂ is
a constant equal to 0.01. The wave stress ~τw is given by:

~τw = ρw

∫ 2π

0

∫ ∞

0
σBE(σ, θ)

~k

k
dσdθ (2.34)

The value of U∗ can be determined for a given wind speed U10 and a given
wave spectrum E(σ, θ) from the above set of equations. In the SWAN model,
the iterative procedure of Mastenbroek et al. (1993) is used. This set of
expressions (2.30) through (2.34) is also used in WAM Cycle 4 (Komen et al.,
1994).

2.3.3 Dissipation of wave energy (Sds)

Whitecapping: Komen et al (1984) formulation

The processes of whitecapping in the SWAN model is represented by the
pulse-based model of Hasselmann (1974). Reformulated in terms of wave
number (rather than frequency) so as to be applicable in finite water depth
(cf. the WAMDI group, 1988), this expression is:

Sds,w(σ, θ) = −Γσ̃
k

k̃
E(σ, θ) (2.35)

where σ̃ and k̃ denote the mean frequency and the mean wave number, re-
spectively, and the coefficient Γ depends on the overall wave steepness. This
steepness dependent coefficient, as given by the WAMDI group (1988), has
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been adapted by Günther et al. (1992) based on Janssen (1991a) (see also
(Janssen, 1991b)):

Γ = ΓKJ = Cds((1 − δ) + δ
k

k̃
)
(

s̃

s̃PM

)p

(2.36)

For δ = 0 the expression of Γ reduces to the expression as used by the
WAMDI group (1988). The coefficients Cds, δ and p are tunable coefficients,
s̃ is the overall wave steepness, s̃PM is the value of s̃ for the Pierson-Moskowitz
spectrum (1964): s̃PM =

√
3.02 × 10−3. The overall wave steepness s̃ is

defined as:
s̃ = k̃

√

Etot (2.37)

The mean frequency σ̃, the mean wave number k̃ and the total wave energy
Etot are defined as (cf. the WAMDI group, 1988):

σ̃ =
(

E−1
tot

∫ 2π

0

∫ ∞

0

1

σ
E(σ, θ)dσdθ

)−1

(2.38)

k̃ =

(

E−1
tot

∫ 2π

0

∫ ∞

0

1√
k
E(σ, θ)dσdθ

)−2

(2.39)

Etot =
∫ 2π

0

∫ ∞

0
E(σ, θ)dσdθ (2.40)

The values of the tunable coefficients Cds and δ and exponent p in this model
have been obtained by Komen et al. (1984) and Janssen (1992) by closing
the energy balance of the waves in idealized wave growth conditions (both
for growing and fully developed wind seas) for deep water. This implies that
coefficients in the steepness dependent coefficient Γ depend on the wind in-
put formulation that is used. Since two different wind input formulations
are used in the SWAN model, two sets of coefficients are used. For the wind
input of Komen et al. (1984; corresponding to WAM Cycle 3; the WAMDI
group, 1988): Cds = 2.36 × 10−5, δ = 0 and p = 4. Janssen (1992) and
also Günther et al (1992) obtained (assuming p = 4) Cds = 4.10 × 10−5 and
δ = 0.5 (as used in the WAM Cycle 4; Komen et al., 1994).

Whitecapping: CSM formulation

An alternative formulation for whitecapping is based on the Cumulative
Steepness Method as described in Hurdle and Van Vledder (2004). With
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this method dissipation due to whitecapping depends on the steepness of
the wave spectrum at and below a particular frequency. It is defined as
(directionally dependent):

Sst(σ, θ) = Am

∫ σ

0

∫ 2π

0
k2| cos(θ − θ′)|mE(σ, θ)dσdθ (2.41)

with Am the normalisation coefficient as determined by
∫ 2π

0
Am cosm(θ)dθ = 1 (2.42)

In expression (2.41) the coefficient m controls the directional dependence. It
is expected that this coefficient will be order 1 if the straining mechanism is
dominant, m is more than 10 if other mechanism play a role (e.g. instability
that occurs when vertical acceleration in the waves becomes greater than
gravity). Default in SWAN is m = 2. The alternative whitecapping source
term is given by

Sst
wc = −Cst

wc (Sst(σ, θ))p E(σ, θ) (2.43)

with Cst
wc a tuneable coefficient and p a parameter controlling the proportion-

ality of the dissipation rate on the steepness. In SWAN, p = 1 is assumed.

Whitecapping: saturation-based model

The whitecapping formulation used in SWAN is an adapted form of the
expression of Alves and Banner (2003), which is based on the apparent rela-
tionship between wave groups and whitecapping dissipation. This adaption
is due to the fact that it can also be applied to mixed sea-swell conditions
and in shallow water. This was done by removing the dependencies on mean
spectral steepness and wavenumber in the original expression, and by apply-
ing source term scaling arguments for its calibration (see below). This led to
the following expression for whitecapping dissipation

Sds,w(σ, θ) = −Cds

(

B(k)

Br

)p/2

(tanh(kh))(2−p0)/4
√

gkE(σ, θ) (2.44)

in which the density function B(k) is the azimuthal-integrated spectral sat-
uration, which is positively correlated with the probability of wave group-
induced breaking. It is calculated from frequency space variables as follows

B(k) =
∫ 2π

0
cgk

3E(σ, θ)dθ (2.45)
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and Br is a threshold saturation level. When B(k) > Br, waves break and
the exponent p is set equal to a calibration parameter p0. For B(k) ≤ Br

there is no breaking, but some residual dissipation proved necessary. This is
obtained by setting p = 0. A smooth transition between these two situations
is achieved by (Alves and Banner, 2003);

p =
p0

2
+

p0

2
tanh



10





√

B(k)

Br

− 1







 (2.46)

The wind input expression used in saturation-based model is based on that
by Yan (1987). This expression embodies experimental findings that for
strong wind forcing, u∗/c > 0.1 say, the wind-induced growth rate of waves
depends quadratically on u∗/c (e.g. Plant 1982), whereas for weaker forcing,
u∗/c < 0.1 say, the growth rate depends linearly on u∗/c (Snyder et al, 1981).
Yan (1987) proposes an analytical fit through these two ranges of the form:

βfit = D
(

u∗

c

)2

cos(θ − α) + E
(

u∗

c

)

cos(θ − α) + F cos(θ − α) + H (2.47)

where D,E,F and H are coefficients of the fit. Yan imposed two constraints:

βfit ≈ βSnyder for
U5

c
≈ 1 (or

u∗

c
≈ 0.036) (2.48)

and

lim
u∗/c→∞

βfit = βPlant (2.49)

in which βSnyder and βPlant are the growth rates proposed by Snyder et al
(1981) and Plant (1982), respectively. Application of Eqs. (2.48) and (2.49)
led us to parameter values of D = 4.0×10−2,E = 5.52×10−3,F = 5.2×10−5

and H = −3.02 × 10−4, which are somewhat different from those proposed
by Yan (1987). We found that our parameter values produce better fetch-
limited simulation results in the Pierson and Moskowitz (1964) fetch range
thant the original values of Yan (1987).

Finally, the choice of the exponent p0 in Eqs. (2.44) and (2.46) is made by
requiring that the source terms of whitecapping (Eq. 2.44) and wind input
(Eq. 2.47) have equal scaling in frequency, after Resio et al (2004). This
leads to a value of p0 = 4 for strong wind forcing (u∗/c > 0.1) and p0 = 2 for
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weaker forcing (u∗/c < 0.1). A smooth transition between these two limits,
centred around u∗/c = 0.1, is achieved by the expression

p0(σ) = 3 + tanh
[

w
(

u∗

c
− 0.1

)]

(2.50)

where w is a scaling parameter for which a value of w = 26 is used in SWAN.
In shallow water, under strong wind forcing (p0 = 4), this scaling condi-

tion requires the additional dimensionless factor tanh(kh)−1/2 in Eq. (2.44),
where h is the water depth.

Bottom friction

The bottom friction models that have been selected for SWAN are the em-
pirical model of JONSWAP (Hasselmann et al., 1973), the drag law model
of Collins (1972) and the eddy-viscosity model of Madsen et al. (1988). The
formulations for these bottom friction models can all be expressed in the
following form:

Sds,b = −Cb
σ2

g2 sinh2 kd
E(σ, θ) (2.51)

in which Cb is a bottom friction coefficient that generally depends on the
bottom orbital motion represented by Urms:

U2
rms =

∫ 2π

0

∫ ∞

0

σ2

g2 sinh2 kd
E(σ, θ)dσdθ (2.52)

Hasselmann et al. (1973) found from the results of the JONSWAP experi-
ment Cb = CJON = 0.038m2s−3 for swell conditions. Bouws and Komen
(1983) selected a bottom friction coefficient of CJON = 0.067m2s−3 for fully
developed wave conditions in shallow water. Both values are available in
SWAN.

The expression of Collins (1972) is based on a conventional formulation for
periodic waves with the appropriate parameters adapted to suit a random
wave field. The dissipation rate is calculated with the conventional bottom
friction formulation of Eq. (2.26) in which the bottom friction coefficient is
Cb = CfgUrms with Cf = 0.015 (Collins, 1972)2.

2Collins (1972) contains an error in the expression due to an erroneous Jacobian trans-
formation. See page A-16 of Tolman (1990).
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Madsen et al. (1988) derived a formulation similar to that of Hasselmann and
Collins (1968) but in their model the bottom friction factor is a function of
the bottom roughness height and the actual wave conditions. Their bottom
friction coefficient is given by:

Cb = fw
g√
2
Urms (2.53)

in which fw is a non-dimensional friction factor estimated by using the for-
mulation of Jonsson (1966) cf. Madsen et al. (1988):

1

4
√

fw

+ log10(
1

4
√

fw

) = mf + log10(
ab

KN

) (2.54)

in which mf = −0.08 (Jonsson and Carlsen, 1976) and ab is a representative
near-bottom excursion amplitude:

a2
b = 2

∫ 2π

0

∫ ∞

0

1

sinh2 kd
E(σ, θ)dσdθ (2.55)

and KN is the bottom roughness length scale. For values of ab/KN smaller
than 1.57 the friction factor fw is 0.30 (Jonsson, 1980).

Depth-induced wave breaking

To model the energy dissipation in random waves due to depth-induced
breaking, the bore-based model of Battjes and Janssen (1978) is used in
SWAN. The mean rate of energy dissipation per unit horizontal area due to
wave breaking Dtot is expressed as:

Dtot = −1

4
αBJQb(

σ̃

2π
)H2

max = αBJQbσ̃
H2

max

8π
(2.56)

in which αBJ = 1 in SWAN, Qb is the fraction of breaking waves determined
by:

1 − Qb

ln Qb

= −8
Etot

H2
max

(2.57)

in which Hmax is the maximum wave height that can exist at the given depth
and σ̃ is a mean frequency defined as:

σ̃ = E−1
tot

∫ 2π

0

∫ ∞

0
σE(σ, θ)dσdθ (2.58)
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The fraction of depth-induced breakers (Qb) is determined in SWAN with

Qb =































0 , for β ≤ 0.2

Q0 − β2 Q0−exp (Q0−1)/β2

β2−exp (Q0−1)/β2 , for 0.2 < β < 1

1 , for β ≥ 1

(2.59)

where β = Hrms/Hmax. Furthermore, for β ≤ 0.5, Q0 = 0 and for 0.5 < β ≤
1, Q0 = (2β − 1)2.

Extending the expression of Eldeberky and Battjes (1995) to include the
spectral directions, the dissipation for a spectral component per unit time is
calculated in SWAN with:

Sds,br(σ, θ) =
Dtot

Etot

E(σ, θ) = −αBJQbσ̃

β2π
E(σ, θ) (2.60)

The maximum wave height Hmax is determined in SWAN with Hm = γd, in
which γ is the breaker parameter and d is the total water depth (including the
wave-induced set-up if computed by SWAN). In the literature, this breaker
parameter γ is often a constant or it is expressed as a function of bottom
slope or incident wave steepness (see e.g., Galvin, 1972; Battjes and Janssen,
1978; Battjes and Stive, 1985; Arcilla and Lemos, 1990; Kaminsky and Kraus,
1993; Nelson, 1987, 1994). In the publication of Battjes and Janssen (1978)
in which the dissipation model is described, a constant breaker parameter,
based on Miche’s criterion, of γ = 0.8 was used. Battjes and Stive (1985)
re-analyzed wave data of a number of laboratory and field experiments and
found values for the breaker parameter varying between 0.6 and 0.83 for
different types of bathymetry (plane, bar-trough and bar) with an average of
0.73. From a compilation of a large number of experiments Kaminsky and
Kraus (1993) have found breaker parameters in the range of 0.6 to 1.59 with
an average of 0.79.

2.3.4 Nonlinear wave-wave interactions (Snl)

Quadruplets

In this section two methods are described for the computation of non-linear
interactions at deep water. The first method is called the DIA method and is
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relatively crude in the approximation of the Boltzmann integral. The second
one is called the XNL approach and is implemented in SWAN by G. Ph. van
Vledder.

DIA

The quadruplet wave-wave interactions are computed with the Discrete In-
teraction Approximation (DIA) as proposed by Hasselmann et al. (1985).
Their source code (slightly adapted by Tolman, personal communication,
1993) has been used in the SWAN model. In the DIA two quadruplets of
wave numbers are considered, both with frequencies:

σ1 = σ2 = σ , σ3 = σ(1 + λ) = σ+ , σ4 = σ(1 − λ) = σ− (2.61)

where λ is a constant coefficient set equal to 0.25. To satisfy the resonance
conditions for the first quadruplet, the wave number vectors with frequency
σ3 and σ4 lie at an angle of θ1 = −11.5o and θ2 = 33.6o to the two identical
wave number vectors with frequencies σ1 and σ2. The second quadruplet is
the mirror of this first quadruplet (the wave number vectors with frequency
σ3 and σ4 lie at mirror angles of θ3 = 11.5o and θ4 = −33.6o.

Within this discrete interaction approximation, the source term Snl4(σ, θ) is
given by:

Snl4(σ, θ) = S∗
nl4(σ, θ) + S∗∗

nl4(σ, θ) (2.62)

where S∗
nl4 refers to the first quadruplet and S∗∗

nl4 to the second quadruplet (the
expressions for S∗∗

nl4 are identical to those for S∗
nl4 for the mirror directions)

and:
S∗

nl4 = 2δSnl4(α1σ, θ) − δSnl4(α2σ, θ) − δSnl4(α3σ, θ) (2.63)

in which α1 = 1, α2 = (1 + λ) and α3 = (1 − λ). Each of the contributions
(i = 1, 2, 3) is:

δSnl4(αiσ, θ) = Cnl4(2π)2g−4
(

σ

2π

)11
[

E2(αiσ, θ)

{

E(αiσ
+, θ)

(1 + λ)4
+

E(αiσ
−, θ)

(1 − λ)4

}

−2
E(αiσ, θ)E(αiσ

+, θ)E(αiσ
−, θ)

(1 − λ2)4

]

(2.64)

with constant Cnl4 = 3×107. Following Hasselmann and Hasselmann (1981),
the quadruplet interaction in finite water depth is taken identical to the
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quadruplet transfer in deep water multiplied with a scaling factor:

Sfinite depth
nl4 = R(kpd)Sdeep water

nl4 (2.65)

where R is given by:

R(kpd) = 1 +
Csh1

kpd
(1 − Csh2kpd)eCsh3kpd (2.66)

in which kp is the peak wave number of the JONSWAP spectrum for which
the original computations were carried out. The values of the coefficients
are: Csh1 = 5.5, Csh2 = 6/7 and Csh3 = −1.25. In the shallow water limit,
i.e., kp → 0 the nonlinear transfer tends to infinity. Therefore, a lower limit
of kp = 0.5 is applied (cf. WAM Cycle 4; Komen et al., 1994), resulting in
a maximum value of R(kpd) = 4.43. To increase the model robustness in
case of arbitrarily shaped spectra, the peak wave number kp is replaced by
kp = 0.75k̃ (cf. Komen et al., 1994).

XNL (G. Ph. van Vledder)

The second method for calculating the nonlinear interactions in SWAN is
the so-called Webb-Resio-Tracy method (WRT), which is based on the orig-
inal six-dimensional Boltzmann integral formulation of Hasselmann (1962,
1963a,b), and additional considerations by Webb (1978), Tracy and Resio
(1982) and Resio and Perrie (1991). A detailed description of the WRT
method and its implementation in discrete spectral wave models like SWAN
is given in Van Vledder (2006). An overview of computational methods for
computing the exact non-linear transfer rate is given in Benoit (2005).

The Boltzmann integral describes the rate of change of action density of a
particular wave number due to resonant interactions between pairs of four
wave numbers. To interact these wave numbers must satisfy the following
resonance conditions

~k1 + ~k2 = ~k3 + ~k4

σ1 + σ2 = σ3 + σ4

}

. (2.67)

The rate of change of action density N1 at wave number ~k1 due to all quadru-
plet interactions involving ~k1 is given by

∂N1

∂t
=

∫ ∫ ∫

G
(

~k1, ~k2, ~k3, ~k4

)

δ
(

~k1 + ~k2 − ~k3 − ~k4

)

δ (σ1 + σ2 − σ3 − σ4)

× [N1N3 (N4 − N2) + N2N4 (N3 − N1)] d~k2 d~k3 d~k4 , (2.68)
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where the action density N is defined in terms of the wave number vector ~k,
N = N(~k). The term G is a complicated coupling coefficient for which an
explicit expression has been given by Herterich and Hasselmann (1980). In
the WRT method a number of transformations are made to remove the delta
functions. A key element in the WRT method is to consider the integration
space for each (~k1, ~k3) combination

∂N1

∂t
= 2

∫

T
(

~k1, ~k3

)

d~k3 , (2.69)

in which the function T is given by

T
(

~k1, ~k3

)

=
∫ ∫

G
(

~k1, ~k2, ~k3, ~k4

)

δ
(

~k1 + ~k2 − ~k3 − ~k4

)

× δ (σ1 + σ2 − σ3 − σ4) θ
(

~k1, ~k3, ~k4

)

× [N1N3 (N4 − N2) + N2N4 (N3 − N1)] d~k2 d~k4 , (2.70)

in which

θ
(

~k1, ~k3, ~k4

)

=
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∣

∣

∣

~k1 − ~k3

∣

∣

∣ ≤
∣

∣

∣

~k1 − ~k4

∣

∣

∣

0 when
∣

∣

∣

~k1 − ~k3

∣

∣

∣ >
∣

∣

∣

~k1 − ~k4

∣

∣

∣

(2.71)

The delta functions in Eq. (2.70) determine a region in wave number space
along which the integration should be carried out. The function θ determines
a section of the integral which is not defined due to the assumption that ~k1

is closer to ~k3 than ~k2. The crux of the Webb method consists of using a
local coordinate system along a so-named locus, that is, the path in ~k space
that satisfies the resonance conditions for a given combination of ~k1 and ~k3.
To that end the (kx, ky) coordinate system is replaced by a (s, n) coordinate
system, where s (n) is the tangential (normal) direction along the locus.
After some transformations the transfer integral can then be written as a
closed line integral along the closed locus

T
(

~k1, ~k3

)

=
∮

G J θ(~k1, ~k3, ~k4)

× [N1N3 (N4 − N2) + N2N4 (N3 − N1)] ds , (2.72)

in which G is the coupling coefficient and J is the Jacobian term of a function
representing the resonance conditions. The Jacobian term is a function of
the group velocities of interacting wave numbers

J = |~cg,2 − ~cg,4|−1 (2.73)
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Numerically, the Boltzmann integral is computed as the finite sum of many
line integrals T for all discrete combinations of ~k1 and ~k3. The line integral
(2.72) is solved by dividing the locus in typically 40 pieces, such that it’s
discretized version is given as:

T
(

~k1, ~k3

)

≈
ns
∑

i=1

G(si)J(si)P (si) ∆si , (2.74)

in which P (si) is the product term for a given point on the locus, ns is the
number of segments, si is the discrete coordinate along the locus, and ∆si is
the stepsize. Finally, the rate of change for a given wave number ~k1 is given
by

∂N(~k1)

∂t
≈

nk
∑

ik3=1

nθ
∑

iθ3=1

T (~k1, ~k3) ∆kik3
∆θiθ3

(2.75)

where nk and nθ are the discrete number of wave numbers and directions in
the computational spectral grid, respectively. Note that although the spec-
trum is defined in terms of the vector wave number ~k, the computational
grid in a wave model is more conveniently defined in terms of the absolute
wave number and wave direction (k, θ) to assure directional isotropy of the

calculations. Taking all wave numbers ~k1 into account produces the complete
source term due to nonlinear quadruplet wave-wave interactions. Details of
the computation of a locus for a given combination of the wave numbers ~k1

and ~k3 can be found in Van Vledder (2006).

It is noted that these exact interaction calculations are extremely expensive,
typically requiring 103 to 104 times more computational effort than the DIA.
Presently, these calculations can therefore only be made for highly idealized
test cases involving a limited spatial grid.

The nonlinear interactions according to the WRT method have been imple-
mented in SWAN using portable subroutines. In this implementation, the
computational grid of the WRT method is based to the discrete spectral
grid of SWAN. The WRT method uses a (~k, θ) grid which is based on the
(σ, θ) grid of SWAN. In addition, the WRT routines inherit the power of the
parametric spectral tail as in the DIA. Choosing a higher resolution than
the computational grid of SWAN for computing the nonlinear interactions is
possible in theory, but this does not improve the results and is therefore not
implemented.
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Because nonlinear quadruplet wave-wave interactions at high frequencies are
important, it is recommended to choose the maximum frequency of the wave
model about six times the peak frequency of the spectra that are expected to
occur in a wave model run. Note that this is important as the spectral grid
determines the range of integration in Eq. (2.75). The recommended num-
ber of frequencies is about 40, with a frequency increment factor 1.07. The
recommended directional resolution for computing the nonlinear interactions
is about 10◦. For specific purposes other resolutions may be used, and some
testing with other resolutions may be needed.

An important feature of most algorithms for the evaluation of the Boltz-
mann integral is that the integration space can be pre-computed. In the
initialization phase of the wave model the integration space, consisting of
the discretized paths of all loci, together with the interaction coefficients and
Jacobians, are computed and stored in a binary data file. For each discrete
water depth such a data file is generated and stored in the work directory.
The names of these data files consist of a keyword, ”xnl4v5”, followed by the
keyword ”xxxxx”, with xxxxx the water depth in a certain unit (meters by
default), or 99999 for deep water. The extension of the binary data file is
”bqf” (of Binary Quadruplet File). If a BQF file exists, the program checks
if this BQF file has been generated with the proper spectral grid. If this is
not the case, a new BQF file is generated and the existing BQF file is over-
written. During a wave model run with various depths, the optimal BQF is
used, by looking at the ’nearest’ water depth dN for which a valid BQF file
has been generated. In addition, the result is rescaled using the DIA scaling
(2.66) according to

Sd
nl4 = SdN

nl4

R(kpd)

R(kpdN)
. (2.76)

Triads

The Lumped Triad Approximation (LTA) of Eldeberky (1996), which is a
slightly adapted version of the Discrete Triad Approximation (DTA) of El-
deberky and Battjes (1995) is used in SWAN in each spectral direction:

Snl3(σ, θ) = S−
nl3(σ, θ) + S+

nl3(σ, θ) (2.77)
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with

S+
nl3(σ, θ) = max[0, αEB2πccgJ

2| sin β|
{

E2(σ/2, θ) − 2E(σ/2, θ)E(σ, θ)
}

]

(2.78)
and

S−
nl3(σ, θ) = −2S+

nl3(2σ, θ) (2.79)

in which αEB is a tunable proportionality coefficient. The bi-phase β is
approximated with

β = −π

2
+

π

2
tanh(

0.2

Ur
) (2.80)

with Ursell number Ur:

Ur =
g

8
√

2π2

HsTm01
2

d2
(2.81)

The triad wave-wave interactions are calculated only for 0 ≤ Ur ≤ 1. The
interaction coefficient J is taken from Madsen and Sørensen (1993):

J =
k2

σ/2(gd + 2c2
σ/2)

kσd(gd + 2
15

gd3k2
σ − 2

5
σ2d2)

(2.82)

2.4 The influence of ambient current on waves

Waves are subject to the influence of ambient current, when they propa-
gate on it. The ambient current can be tidal current, ocean current, local
wind generated current, river current and wave generated current. It has
been observed that current affects the growth and decay of waves (Yu, 1952;
Hedges et al., 1985; Lia et al., 1989). The observations have shown that
in a strong opposite current the wave steepness and wave height increase
significantly. These changes take place rapidly where the waves are blocked
by the current, often accompanied with current-induced whitecapping and
wave reflections. Moreover, at the blocking frequency action is also partially
transferred away from the blocking frequency to higher and lower frequencies
by nonlinear wave-wave interactions (Ris, 1997).

It was Longuet-Higgins and Stewart (1960, 1961, 1962) who founded the the-
oretical description of wave-current interactions. Since then, many additional
results of wave-current interactions have been published. If waves propagate
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in the presence of ambient current, action density is conserved whereas en-
ergy density is not. Therefore, in SWAN the action balance equation has
been adopted.

2.5 Modelling of obstacles

SWAN can estimate wave transmission through a (line-)structure such as a
breakwater (dam). Such an obstacle will affect the wave field in two ways,
first it will reduce the wave height locally all along its length, and second
it will cause diffraction around its end(s). In irregular, short-crested wave
fields, however, it seems that the effect of diffraction is small, except in a
region less than one or two wavelengths away from the tip of the obstacle
(Booij et al., 1993). Therefore the model can reasonably account for waves
around an obstacle if the directional spectrum of incoming waves is not too
narrow. Since obstacles usually have a transversal area that is too small
to be resolved by the bottom grid in SWAN, an obstacle is modelled as a
line. If the crest of the breakwater is at a level where (at least part of the)
waves can pass over, the transmission coefficient Kt (defined as the ratio
of the (significant) wave height at the downwave side of the dam over the
(significant) wave height at the upwave side) is a function of wave height and
the difference in crest level and water level. The expression is taken from
Goda et al. (1967):

Kt = 0.5(1 − sin(
π

2α
(
F

Hi

+ β))) , −β − α <
F

Hi

< α − β (2.83)

where F = h − d is the freeboard of the dam and where Hi is the incident
(significant) wave height at the upwave side of the obstacle (dam), h is the
crest level of the dam above the reference level (same as reference level of
the bottom), d the mean water level relative to the reference level, and the
coefficients α, β depend on the shape of the dam (Seelig, 1979) as given
in Table 2.1. Expression (2.83) is based on experiments in a wave flume,
so strictly speaking it is only valid for normal incidence waves. Since there
are no data available on oblique waves, it is assumed that the transmission
coefficient does not depend on direction. Another phenomenon that is to be
expected is a change in wave frequency. Since often the process above the
dam is highly nonlinear. Again there is little information available, so in
SWAN it is assumed that the frequencies remain unchanged over an obstacle
(only the energy scale of the spectrum is affected and not the spectral shape).
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Table 2.1: Parameters for transmission according to Goda et al. (1967).
case α β
vertical thin wall 1.8 0.1
caisson 2.2 0.4
dam with slope 1:3/2 2.6 0.15

2.6 Wave-induced set-up

In a (geographic) 1D case the computation of the wave induced set-up is
based on the vertically integrated momentum balance equation which is a
balance between the wave force (gradient of the wave radiation stress normal
to the coast) and the hydrostatic pressure gradient (note that the component
parallel to the coast causes wave-induced currents but no set-up).

dSxx

dx
+ ρgH

dη

dx
= 0 (2.84)

where d is the total water depth (including the wave-induced set-up) and η
is the mean surface elevation (including the wave-induced set-up) and

Sxx = ρg
∫

[n cos2 θ + n − 1

2
]Edσdθ (2.85)

is the radiation stress tensor.

Observation and computations based on the vertically integrated momentum
balance equation of Dingemans et al. (1987) show that the wave-induced
currents are mainly driven by the divergence-free part of the wave forces
whereas the set-up is mainly due to the rotation-free part of these forces.
To compute the set-up in 2D, it would then be sufficient to consider the
divergence of the momentum balance equation. If the divergence of the
acceleration in the resulting equation is ignored, the result is:

∂Fx

∂x
+

∂Fy

∂y
− ∂

∂x
(ρgH

∂η

∂x
) − ∂

∂y
(ρgH

∂η

∂y
) = 0 (2.86)

2.7 Modelling of diffraction

To accommodate diffraction in SWAN simulations, a phase-decoupled refraction-
diffraction approximation is suggested (Holthuijsen et al., 2003). It is ex-



36 Chapter 2

pressed in terms of the directional turning rate of the individual wave com-
ponents in the 2D wave spectrum. The approximation is based on the mild-
slope equation for refraction and diffraction, omitting phase information. It
does therefore not permit coherent wave fields in the computational domain.

In a simplest case, we assume there are no currents. This means that cσ = 0.
Let denotes the propagation velocities in geographic and spectral spaces for
the situation without diffraction as: cx,0, cy,0 and cθ,0. These are given by:

cx,0 =
∂ω

∂k
cos θ , cy,0 =

∂ω

∂k
sin θ , cθ,0 = −1

k

∂ω

∂h

∂h

∂n
(2.87)

where k is the wave number and n is perpendicular to the wave ray. We
consider the following eikonal equation

K2 = k2(1 + δ) (2.88)

with δ denoting the diffraction parameter as given by:

δ =
∇(ccg∇

√
E)

ccg

√
E

(2.89)

where E(x, y) is the total energy of the wave field (∼ H2
s ). Due to diffraction,

the propagation velocities are given by:

cx = cx,0δ , cy = cy,0δ , cθ = cθ,0δ −
∂δ

∂x
cy,0 +

∂δ

∂y
cx,0 (2.90)

where

δ =
√

1 + δ (2.91)

In early computations, the wave fields often showed slight wiggles in geo-
graphic space with a wavelength of about 2∆x in x−direction. These unduly
affected the estimations of the gradients that were needed to compute the
diffraction parameter δ. The wave field was therefore smoothed with the
following convolution filter:

En
i,j = En−1

i,j − 0.2[Ei−1,j + Ei,j−1 − 4Ei,j + Ei+1,j + Ei,j+1]
n−1 (2.92)
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where i, j is a grid point and the superscript n indicates iteration number
of the convolution cycle. The width of this filter (standard deviation) in
x−direction εx, when applied n times is

εx ≈ 1

2

√
3n∆x (2.93)

By means of computations, n = 6 is found to be an optimum value (cor-
responding to spatial resolution of 1/5 to 1/10 of the wavelength), so that
εx ≈ 2∆x. For the y−direction, the expressions are identical, with y replac-
ing x. Note that this smoothing is only applied to compute the diffraction
parameter δ. For all other computations the wave field is not smoothed.
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Chapter 3

Numerical approaches

3.1 Introduction

The accuracy with which physical processes for wave growth are approxi-
mated numerically is of crucial importance in assessing the predictive realism
of spectral wave models. There is a need to separate these numerical errors
from errors due to physical modelling. Third-generation wave models pose
a numerical difficulty caused by the presence of multiple time scales. This
is a reflection of the physical nature of wind waves, which consist of a wide
range of frequencies. The ratio of the largest to the smallest time scale of
spectral components is often substantially larger than one. When this is the
case, the action balance equation is called stiff (Press et al., 1993)1. Taking
proper account of these time scales is a necessary condition for numerical
accuracy. This would require the use of a very small time step in a nu-
merical algorithm, which may be impractical. Moreover, the action balance
equation is usually so stiff that its numerical implementation combined with
economically large time steps often prevent a stable solution. In this respect,
nonlinear four-wave interaction usually poses the biggest problem, since this
process is associated with high sensitivity to spectral change.

In a number of papers concerning spectral wave computation, numerical mea-
sures are proposed to achieve stable model results economically. WAMDI
Group (1988) suggest to use a semi-implicit time integration scheme with

1The equivalent situation for such an equation is to have eigenvalues of very different
magnitudes.

39
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a time step that matches the time scale of low-frequency waves. However,
numerically stable solution of the resulting sytem of equations can not be
guaranteed (Hargreaves and Annan, 2001). The ratio of the largest eigen-
value to the smallest eigenvalue of the stiff system of equations, called the
condition number, can be so large that even a fully-implicit method combined
with large time steps precludes a stable solution. For counterexamples, see
Hargreaves and Annan (2001). The only remedy is time step reduction or
under-relaxation so that the modified system of equations has a spectrum of
eigenvalues with a more favourable condition number.

To guarantee numerical stability at relatively large time steps, the so-called
action density limiter has been introduced in WAM in the early 1980’s (Hers-
bach and Janssen, 1999). This limiter restricts the rate of change of the
energy spectrum at each time step. Because low-frequency waves carry the
most energy, it is desirable to solve the balance equation in this part of
the spectrum accurately without intervention by the limiter, whereas for
high-frequency waves using an equilibrium level is sufficient. Although this
approach lacks a rigorous foundation and is not generally applicable or valid,
it appears to guarantee numerical stability at relatively large time steps even
when these do not match the time scales of wave growth. Moreover, it is
believed that the limiter will not affect the stationary solution when con-
vergence is reached. This assumption is widely employed as a justification
for the use of limiters. For an overview, we refer to Hersbach and Janssen
(1999) and Tolman (2002) and the references quoted therein. Tolman (1992)
proposes an alternative to the action density limiter in which the time step
is dynamically adjusted where necessary to ensure accurate wave evolution.
The calculation of this optimal time step is related to the action density lim-
iter. Further details can be found in Tolman (1992, 2002). .

The steady-state solution in the SWAN model is obtained in an iterative
manner, which can be regarded as a time marching method with a pseudo
time step. This pseudo time step generally does not match the relatively
small time scale in frequency space and consequently, divergence will occur.
Therefore, SWAN makes use of the action density limiter to stabilize the
iteration process (Booij et al., 1999). However, experience with SWAN has
revealed that the limiter acts not only in the equilibrium space, but also in
the energy-containing part of the wave spectrum. This finding is also con-
firmed by Tolman (2002). Furthermore, the limiter appears to be active over
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almost all spectra in the geographical domain and during the entire iteration
process. This activity has been associated with poor convergence behaviour,
such as small-amplitude oscillation in frequency space. Ris (1999) demon-
strated that stationary SWAN results are influenced by the settings of the
action limiter while De Waal (2001) suspects that the limiter acts as a hidden
sink in the source term balance under equilibrium conditions. The question
to what extent this limiter adversely affects the stationary solution of SWAN
has not been addressed previously, and is considered here.

An alternative way to restrict the high rate of change at higher frequencies
is under-relaxation, i.e. making smaller updates by means of a much smaller
(pseudo) time step (Ferziger and Perić, 1999). Consequently, a limiter may
no longer be needed. Although this approach may be suitable to SWAN,
it slows down convergence significantly. In this paper, we propose a new
method that finds a compromise between fast convergence on the one hand
and minimizing the role of the limiter in the energetic part of the spectrum
on the other. The key idea to achieve this is to link the extent of updating to
the wave frequency—the larger the frequency, the smaller the update. This
approach is therefore called frequency-dependent under-relaxation.

The second objective of this paper concerns the formulation and the use of
termination criteria required by the iteration procedure in SWAN. In princi-
ple, the iterative process should be stopped if the convergence error defined
as the difference between the current iterate and the stationary solution is
smaller than a prescribed tolerance. At present, the stopping criteria in
SWAN make use of the difference between successive iterates as a measure of
the error in the converged solution. Experiences in the application of SWAN
have shown that the iteration process is often more erratic and typically
much slower than reported by Booij et al. (1999). As a result, the current
stopping criteria often lead to premature termination of simulations. This is
characterised by the fact that, due to the relatively low rate of convergence,
the convergence error is larger than the difference between the successive
iterates. A stopping criterion is proposed that uses the second derivative or
curvature of the series of successive iterates of the calculated wave height.
The premise is that this curvature approaches zero upon full convergence.
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3.2 Discretization

Discretization of (2.17) is carried out using the finite difference method. The
homogeneous part of equation (2.17) is given by

∂N

∂t
+

∂cxN

∂x
+

∂cyN

∂y
+

∂cσN

∂σ
+

∂cθN

∂θ
. (3.1)

We choose a rectangular grid with constant mesh sizes ∆x and ∆y in x−
and y−direction, respectively. The spectral space is divided into elementary
bins with a constant directional resolution ∆θ and a constant relative fre-
quency resolution ∆σ/σ (resulting in a logarithmic frequency distribution).
We denote the grid counters as 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ l ≤ Nσ and
1 ≤ m ≤ Nθ in x−, y−, σ− and θ−spaces, respectively. All variables are
located at points (i, j, l,m). Time discretization takes place with the implicit
Euler technique. We obtain the following approximation of (3.1):

Nn − Nn−1

∆t
|i,j,l,m +

[cxN ]i+1/2 − [cxN ]i−1/2

∆x
|nj,l,m +

[cyN ]j+1/2 − [cyN ]j−1/2

∆y
|ni,l,m +

[cσN ]l+1/2 − [cσN ]l−1/2

∆σ
|ni,j,m +

[cθN ]m+1/2 − [cθN ]m−1/2

∆θ
|ni,j,l , (3.2)

where n is a time-level with ∆t a time step. Note that locations in between
consecutive counters are reflected with the half-indices.

Since, the unknown N and the propagation velocities are only given in points
(i, j, l,m), further approximation is needed. In the present paper, we employ
a first order upwind scheme in geographical space, since it is sufficient ac-
curate for nearshore applications and fully monotone, i.e. it can not to give
rise to spurious oscillations. It should be noted, however, that in applica-
tions at oceanic scales, a higher order upwind scheme should be employed. In
the current SWAN version, two alternatives to this scheme are implemented,
namely the second order SORDUP and the third order Stelling/Leendertse
schemes. See also Rogers et al. (2002) and Stelling and Leendertse (1992).

The fluxes cxN at (i + 1/2, j, l,m) and cyN at (i, j + 1/2, l,m) are approxi-
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mated in the following way:

cxN |i+1/2,j,l,m =

{

cxN |i,j,l,m , cx|i,j,l,m > 0
cxN |i+1,j,l,m , cx|i+1,j,l,m < 0

(3.3)

and

cyN |i,j+1/2,l,m =

{

cyN |i,j,l,m , cy|i,j,l,m > 0
cyN |i,j+1,l,m , cy|i,j+1,l,m < 0

. (3.4)

The fluxes at (i − 1/2, j, l,m) and (i, j − 1/2, l,m) are obtained from (3.3)
and (3.4), respectively, by decreasing the indices by 1 in appropriate manner.
Note that the combination of the time and geographic space discretizations
in (3.2), (3.3) and (3.4) is also known as the first order, backward space,
backward time (BSBT) scheme.

SORDUP

For the SORDUP scheme which is the default scheme for stationary computations,
the two terms in Eqs. (3.3) and (3.4) representing x− and y−derivatives are
replaced by

(

1.5(cxN)ix − 2(cxN)ix−1 + 0.5(cxN)ix−2

∆x

)it,n

iy ,iσ ,iθ

(3.5)

and
(

1.5(cyN)iy − 2(cyN)iy−1 + 0.5(cyN)iy−2

∆y

)it,n

ix,iσ ,iθ

(3.6)

In the neighboorhood of open boundaries, land boundaries and obstacles
(i.e., the last two grids adjoining such grid points for the SORDUP scheme),
SWAN will revert to the first order upwind BSBT scheme. This scheme has
a larger numerical diffusion but that is usually acceptable over the small dis-
tances involved.

Stelling and Leendertse scheme

For the Stelling and Leendertse scheme which is the default scheme for non-stationary computations,
the two terms in Eqs. (3.3) and (3.4) representing x− and y−derivatives are
replaced by
(

5
6
(cxN)ix − 5

4
(cxN)ix−1 + 1

2
(cxN)ix−2

1
12

(cxN)ix−3

∆x

)it,n

iy ,iσ ,iθ

+

(

(cxN)ix+1 − (cxN)ix−1

4∆x

)it−1

iy ,iσ ,iθ

(3.7)



44 Chapter 3

and
(

5
6
(cyN)iy − 5

4
(cyN)iy−1 + 1

2
(cyN)iy−2

1
12

(cyN)iy−3

∆y

)it,n

ix,iσ ,iθ

+

(

(cyN)iy+1 − (cyN)iy−1

4∆y

)it−1

ix,iσ ,iθ

(3.8)
In the neighboorhood of open boundaries, land boundaries and obstacles (i.e.,
the last three grids adjoining such grid points for the Stelling and Leendertse
scheme), SWAN will revert to the first order upwind BSBT scheme.

Usually, the numerical diffusion of the Stelling and Leendertse scheme is
so small that the so-called garden-sprinkler effect (GSE) may show up if
propagation over very large distances is considered. This effect is due to the
spectral resolution (see Booij and Holthuijsen (1987)). It can be counteracted
by a diffusion term that has been explicitly added to the numerical scheme.
Its value depends on the spectral resolution and the propagation time of the
waves.

The diffusion applied in the propagation direction is

Dss =
∆c2T

12
(3.9)

where T is the wave age. The diffusion normal to the propagation direction
is

Dnn =
c2∆θ2T

12
(3.10)

From these, diffusion coefficients are calculated as

Dxx = Dss cos2 θ+Dnn sin2 θ , Dyy = Dss sin2 θ+Dnn cos2 θ , Dxy = (Dss−Dnn) cos θ sin θ
(3.11)

The diffusion terms are computed at the time level it−1. The diffusion terms
are computed as follows

Dxx

(

(N)ix+1 − 2(N)ix + (N)ix−1

∆x2

)it−1

iy ,iσ ,iθ

(3.12)

Dyy

(

(N)iy+1 − 2(N)iy + (N)iy−1

∆y2

)it−1

ix,iσ ,iθ

(3.13)

Dxy

(

(N)ix,iy − (N)ix−1,iy − (N)ix−1,iy + (N)ix−1,iy−1

∆x∆y

)it−1

iσ ,iθ

(3.14)
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This explicit scheme is fast (having little impact on computation time) but
only conditionally stable. Through mathematical analysis (not shown) it can
be shown that a likely stability condition for the one-dimensional Stelling
and Leendertse scheme with this GSE correction is ∆t/∆x2 ≤ 0.5 which
corresponds to the two-dimensional stability criterion of Tolman (1995) based
on Fletcher (1988), Part I, section 7.1.1.:

Q =
max(Dxx, Dyy, Dxy)∆t

min(∆x, ∆y)2
≤ 0.5 (3.15)

Thus, it is credible that Eq. (3.15) holds true for the two-dimensional Stelling
and Leendertse scheme with this GSE correction. In experiments, it was
found that with Q ≤ 0.48, no instability was observed. In short, by adding
the GSE correction, the unconditionally stable advection scheme of SWAN
becomes a (likely) conditionally stable advection-diffusion scheme. It is read-
ily shown that for typical ocean applications Dnn dominates the diffusion and
Q can be written as

Q =
C

2
T∆t

12∆x2
(3.16)

The variable wave age T could be computed during the computations of
SWAN but it requires the same order of magnitude of computer memory as
integrating the action balance equation. Instead a constant wave age T can
be used as an approximation, so that Eq. (3.16) becomes

Q =
Lµ∆θ2

12∆x
(3.17)

where the characteristic travel distance of the waves is L = CT (e.g., the
dimension of the ocean basin). For oceanic applications, the Courant num-
ber is typically µ ≈ 1

2
so that Q ≤ 0.25 for typical values of ∆θ and L/∆x

(the number of grid point in one direction of the grid). This implies that the
Stelling and Leendertse scheme with the GSE correction is stable for typical
ocean cases. For shelf sea (regional) applications, the value of µ = O(1) but
the garden-sprinkler effect tends to be small on these scales and the diffusion
can and should not be used to avoid the stability problem. For small-scale
(local) applications, typically µ = O(10 − 100). But such cases are usually
treated as stationary and the SORDUP scheme should be used (no GSE cor-
rection is included in this scheme).
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The fluxes in the spectral space (σ, θ), as given in (3.2), should not be ap-
proximated with the first order upwind scheme since, it turns out to be very
diffusive for frequencies near the blocking frequency2. Central differences
should be used because of second order accuracy. However, such schemes
tend to produce unphysical oscillations due to relatively large gradients in
action density near the blocking frequency. Instead, a hybrid central/upwind
scheme is employed:

cσN |i,j,l+1/2,m =











(1 − 0.5µ)cσN |i,j,l,m + 0.5µcσN |i,j,l+1,m , cσ|i,j,l,m > 0

(1 − 0.5µ)cσN |i,j,l+1,m + 0.5µcσN |i,j,l,m , cσ|i,j,l+1,m < 0
(3.18)

and

cθN |i,j,l,m+1/2 =











(1 − 0.5ν)cθN |i,j,l,m + 0.5νcθN |i,j,l,m+1 , cθ|i,j,l,m > 0

(1 − 0.5ν)cθN |i,j,l,m+1 + 0.5νcθN |i,j,l,m , cθ|i,j,l,m+1 < 0
,

(3.19)
where the parameters µ and ν are still to be chosen. For all values µ ∈ [0, 1]
and ν ∈ [0, 1], a blended form arises between first order upwind differencing
(µ = ν = 0) and central differencing (µ = ν = 1).

3.3 Solution algorithm

The discretization of the action balance equation (2.17) as described in Sec-
tion 3.2 yields a system of linear equations that need to be solved. The
corresponding matrix structure can take different forms, mainly depending
on the propagation of wave energy in the geographic space. For instance,
suppose that cx > 0 and cy > 0, everywhere. Then, the matrix structure has

2Waves can be blocked by the current at a relative high frequency.
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the following form:
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. (3.20)

One recognizes that the subblocks on the main diagonal express coupling
among the unknowns in the (σ, θ)−space for each geographic grid point,
whereas the off-diagonal subblocks represent coupling across geographical
grid points. This system can be solved with a Gauss-Seidel technique in one
step (Wesseling, 1992). Generally, the velocities cx and cy may have different
signs in the geographical domain and hence, more steps are needed. However,
it is well known that adapting the ordering of updates of the unknowns N in
geographical space to the propagation direction can improve the rate of con-
vergence of the Gauss-Seidel iterative procedure (Wesseling, 1992). This is
done as follows. For each iteration, sweeping through grid rows and columns
in geographical domain are carried out, starting from each of the four corners
of the computational grid. After four sweeps, wave energy has been propa-
gated over the entire geographical domain. During each sweep, only a subset
of the unknown values of N are updated depending on the sign of cx and cy.
For instance, the first sweep starts at the lower left-hand corner and all grid
points with cx > 0 and cy > 0 are updated.

After each propagation update at geographic grid point, an update in the
spectral space is made. Since, according to (3.3) and (3.4), the wave energy
at a single spatial location depends on the upwind grid points only, it is
sufficient to carry out the update within a 90o-quadrant of the (σ, θ)-space,
as illustrated in Figure 3.1. Because of the implicit nature of the spectral
propagation terms in (3.2), a system of equations must be formed. Further-
more, due to the fact that the source term Stot in (3.2) is nonlinear in N ,
linearization is required in order to find a solution. Generally, the term Stot
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Figure 3.1: The solution procedure for wave energy propagation in geograph-
ical space with the appropriate directional quadrant (indicated by shaded
area) for each of four sweeps.

in each bin (l,m) is treated by distinguishing between positive and nega-
tive contributions and arranging these in the linear form (Ferziger and Perić,
1999):

Stot = Sp
tot + Sn

totN , (3.21)

where Sp
tot consists of positive contributions and Sn

tot of negative ones. Both
contributions are independent of the solution N at the corresponding bin
(l,m). Any negative term that does not contain N as a multiplier is first
divided by N obtained from the previous iteration level and then added to
Sn

tot. This stabilizes the iteration process. Details on the application of this
principle to each source term in SWAN can be found in Booij et al. (1999).

The strongly nonlinear source term of depth-induced wave breaking is lin-
earized by means of the Newton-Raphson iteration, as follows:

Sn ≈ φn−1En +

(

∂S

∂E

)n−1

(En − En−1) (3.22)

Since, this process of depth-induced wave breaking has been formulated such
that S = aStot and E = aEtot, the derivative ∂S/∂E is analytically deter-
mined as ∂Stot/∂Etot. Here, a is identical in both expressions and the total
energy Etot and total source Stot are the integrals over all frequencies and
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directions of E(σ, θ) and Sds,br(σ, θ), respectively.

As such, each difference equation (3.2) using expressions (3.18), (3.19) and
(3.21) provides an algebraic relation between N at the corresponding bin and
its nearest neighbours:

aPNP = aLNL + aRNR + aBNB + aTNT + bP , (3.23)

where P corresponds to central bin (l,m) and L(eft), R(ight), B(ottom) and
T(op) correspond to (l − 1,m), (l + 1,m), (l,m − 1) and (l,m + 1), respec-
tively. Furthermore, the coefficients ak, k ∈ {P, L, R, B, T} arise from the
discretizations of the fluxes cσN and cθN and bP contains the positive con-
tributions of the source term Sp

tot in (3.21) and the updated fluxes cxN (3.3)
and cyN (3.4). Note that coefficient aP includes −Sn

tot.

The linear system of equations (3.23) for all bins within a directional quad-
rant at a particular geographical point is denoted by

A ~N = ~b , (3.24)

where A ∈ IRK×K contains the coefficients ak, k ∈ {P, L, R, B, T} (and cor-

responds to a subblock on the main diagonal of (3.20)), ~b ∈ IRK contains the

coefficient bP and boundary values and ~N ∈ IRK denotes an algebraic vector
containing the unknown action density values. Matrix A is non-symmetric.
The dimension K of a directional quadrant equals Nσ × 1/4Nθ. Note that
linearization of the source term (3.21) enhances diagonal dominance of A,

thereby improving numerical stability. Also note that neither A nor ~b de-
pends on the unknowns. Each row in the matrix A corresponds to a bin
(l,m). The main diagonal contains the coefficients aP and directly to the
left and right are the coefficients −aB and −aT, respectively. The coefficients
−aL and −aR are on the diagonals that are Nθ positions to the left and right
of the main diagonal, respectively.

The solution ~N is given by A−1~b. Since, the only non-zero matrix elements
are situated in five diagonals, iterative solution methods that utilize the spar-
sity of A optimally are very attractive. In SWAN, the solution of (3.24) is
found by means of an incomplete lower-upper decomposition method fol-
lowed by an iteration process called the Strongly Implicit Procedure (SIP)
(Ferziger and Perić, 1999). This procedure is specifically designed for (non-
symmetric) penta-diagonal systems and is relatively fast. Note that in the



50 Chapter 3

absence of mean current there are no shifts in the frequency, and consequently
the structure of A reduces to a tri-diagonal one, i.e. aL = aR = 0, which
can be inverted efficiently with the Thomas algorithm (Press et al., 1993;
Ferziger and Perić, 1999).

Due to refraction and nonlinear wave energy transfer, interactions occur be-
tween the directional quadrants. To properly take these interactions into
account and the fact that we employ the Gauss-Seidel technique and lin-
earization of the source term (3.21), the quadrant sweeping and the solution
of system (3.24) need to be repeated until some convergence criteria are met.
At present, the iteration process runs from s = 1 to s = S and is terminated
if the maximum number of iterations S (usually 15) is reached or the fol-
lowing criteria for the significant wave height Hm0 and mean relative wave
period Tm01, as given by

Hm0 = 4
√

m0 , Tm01 = 2π
m0

m1

, mj =
∫ ∞

0

∫ 2π

0
σjE(σ, θ)dσdθ , (3.25)

are both satisfied in at least 98% of all wet grid points (i, j):

|∆Hs
m0(i, j)|

Hs−1
m0 (i, j)

< εr
H or |∆Hs

m0(i, j)| < εa
H (3.26)

and
|∆T s

m01(i, j)|
T s−1

m01(i, j)
< εr

T or |∆T s
m01(i, j)| < εa

T . (3.27)

Here, ∆Qs ≡ Qs − Qs−1, with Q some quantity. In this study, we use
the default values: εr

H = εr
T = 0.02, εa

H = 0.02 m and εa
T = 0.2 s; see

Holthuijsen et al. (2003). The rationale behind the use of the integral wave
parameters Hm0 and Tm01 in the stopping criteria is that these are the output
variables typically of interest. The iterative solution procedure is accelerated
by calculating a reasonable first guess of the wave field based on second-
generation source terms of Holthuijsen and De Boer (1988).

3.4 Convergence-enhancing measures

As explained in Section 3.1, many time scales are involved in the evolution of
wind waves. The high-frequency waves have much shorter time scales than
the low-frequency waves, rendering the system of equations (3.24) stiff. If no
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special measures are taken, the need to resolve high-frequency waves at very
short time scales would result in extreme computational time. For economy,
it is desirable that a numerical technique can be used with a large, fixed time
step. Moreover, we are mainly interested in the evolution of slowly changing
low-frequency waves. For stationary problems, we are interested in obtain-
ing the steady-state solution. Unfortunately, the convergence to the steady
state is dominated by the smallest time scale and, in the absence of reme-
dial measures, destabilizing over- and undershoots will prevent solution from
converging monotonically during the iteration process. These oscillations
arise because of the off-diagonal terms in matrix A, which can be dominant
over the main diagonal, particularly when the ratio σmax/σmin is substantially
larger than one. As a consequence, convergence is slowed down and diver-
gence often occurs. To accelerate the iteration process without generating
instabilities, appropriately small updates must be made to the level of action
density.

With the development of the WAM model, a so-called action density limiter
was introduced as a remedy to the abovementioned problem. This action
limiter restricts the net growth or decay of action density to a maximum
change at each geographic grid point and spectral bin per time step. This
maximum change corresponds to a fraction of the omni-directional Phillips
equilibrium level (Hersbach and Janssen, 1999). In the context of SWAN
(Booij et al., 1999), this is

∆N ≡ γ
αPM

2σk3cg

, (3.28)

where γ ≥ 0 denotes the limitation factor, k is the wave number and αPM =
8.1×10−3 is the Phillips constant for a Pierson-Moskowitz spectrum (Komen et al.,
1994). Usually, γ = 0.1 (Tolman, 1992)3. Denoting the total change in Ni,j,l,m

from one iteration to the next after (3.2) by ∆Ni,j,l,m, the action density at
the new iteration level is given by

N s
i,j,l,m = N s−1

i,j,l,m +
∆Ni,j,l,m

|∆Ni,j,l,m|
min{|∆Ni,j,l,m|, ∆N} . (3.29)

For wave components at relatively low frequencies, (3.29) yields the pre-
limitation outcome of (3.2), because, for these components, the pseudo time

3It is noted here that the effective γ used in SWAN is not equivalent to that of WAM:
the former is a factor 2π larger.
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step matches the time scale of their evolution. For high-frequency waves,
however, (3.29) gives the upper limit for the spectrum to change per itera-
tion due to the limiter (3.28). For typical coastal engineering applications,
it is sufficient to compute the energy-containing part of the wave spectrum
accurately. In other words, action densities near and below the spectral peak
should not be imposed by the limiter (3.28). However, our experiences with
SWAN have shown that the limiter is active even close to the peak. Fur-
thermore, during the entire iteration process, the limiter is typically active
at almost every geographic grid point.

The alternative measure to enhance the convergence of the stable itera-
tion process considered here is so-called false time stepping (Ferziger and
Perić, 1999). Under-relaxation terms representing the rate of change are
introduced to enhance the main diagonal of A and thus stabilize the itera-
tion process. The system of equations (3.24) is replaced by the following,
iteration-dependent system

~N s − ~N s−1

τ
+ A ~N s = ~b (3.30)

with τ a pseudo time step. The first term of (3.30) controls the rate of
convergence of the iteration process in the sense that smaller updates are
made due to decreasing τ , usually at the cost of increased computational
time. To deal with decreasing time scales at increasing wave frequency, the
amount of under-relaxation is enlarged in proportion to frequency. This
allows a decrease in the computational cost of under-relaxation, because at
lower frequencies larger updates are made. This frequency-dependent under-
relaxation can be achieved by setting τ−1 = ασ, where α is a dimensionless
parameter. The parameter α will play an important role in determining the
convergence rate and stability of the iteration process. Substitution in (3.30)
gives

(A + ασI) ~N s = ~b + ασ ~N s−1 . (3.31)

When the steady state is reached (i.e. s → ∞), system (3.31) solves A ~N∞ =
~b since, ~N∞ is a fixed point of (3.31).

Suitable values for α must be determined empirically and thus robustness is
impaired. For increasing values of α, the change in action density per itera-
tion will decrease in the whole spectrum. The consequence of this is twofold.
Firstly, it allows a much broader frequency range in which the action balance
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equation (3.2) is actually solved without distorting convergence properties.
Secondly, the use of the limiter will be reduced because more density changes
will not exceed the maximum change (3.28). Clearly, this effect may be aug-
mented by increasing the value of γ in (3.28).

To allow proper calculation of the second-generation first guess of the wave
field (see Section 3.3), under-relaxation is temporarily disabled (α = 0) dur-
ing the first iteration. Whereas this measure is important in achieving fast
convergence, it does not affect stability, since the second-generation formu-
lations do not require stabilization.

3.5 Stopping criteria

In general, the iterative method should be stopped if the approximate so-
lution is accurate enough. A good termination criterion is very important,
because if the criterion is too weak the solution obtained may be useless,
whereas if the criterion is too severe the iteration process may never stop
or may cost too much work. Experiences with SWAN have shown that the
present criteria (3.26) and (3.27) are often not strict enough to obtain accu-
rate results after termination of the iterative procedure. Thus, criteria (3.26)
and (3.27) are necessary but not sufficient. It was found that the iteration
process can converge so slowly that at a certain iteration s the difference
between the successive iterates, Hs

m0 − Hs−1
m0 , can be small enough to meet

the convergence criteria, causing the iteration process to stop, even though
the converged solution has not yet been found. In particular, this happens
when convergence is non-monotonic such that the process is terminated at
local maxima or minima that may not coincide with the converged solution.

Furthermore, it became apparent that, unlike Hm0, the quantity Tm01 is not
an effective measure of convergence. It was found that the relative error in
Tm01, i.e. |T s

m01 − T s−1
m01|/T s−1

m01, does not monotonically decrease near conver-
gence, but keeps oscillating during the iteration process. This behaviour is
due to small variations in the spectrum at high frequencies, to which Tm01 is
sensitive. This behaviour is problematic when any form of stricter stopping
criterion is developed based on Tm01. Therefore, in the improved termination
criterion proposed in this paper, Tm01 has been abandoned as a convergence
measure and only Hm0, which displays more monotonic behaviour near con-
vergence, is retained.
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Stiffness and nonlinearity of the action balance equation are found to yield
less rapid and less monotone convergence. Ferziger and Perić (1999) explain
the slow convergence in terms of the eigenvalue or spectral radius of the it-
eration process generating the sequence {φ0, φ1, φ2, ...}. They show that the
actual solution error is given by

φ∞ − φs ≈ φs+1 − φs

1 − ρ
, (3.32)

where φ∞ denotes the steady-state solution and ρ is the spectral radius indi-
cating the rate of convergence. The smaller ρ, the faster convergence. This
result shows that the solution error is larger than the difference between suc-
cessive iterates. Furthermore, the closer ρ is to 1, the larger the ratio of
solution error to the difference between successive iterates. In other words,
the lower the rate of convergence of the iteration process, the smaller this
difference from one iteration to the next must be to guarantee convergence.
The stopping criterion of SWAN could be improved by making the maximum
allowable relative increment in Hm0 a function of its spectral radius instead
of imposing a fixed allowable increment. By decreasing the allowable relative
increment as convergence is neared, it would be possible to delay run termi-
nation until a more advanced stage of convergence. Such a stopping criterion
was used by, e.g. Zijlema and Wesseling (1998). This criterion is adequate
if the iteration process converges in a well-behaved manner and ρ < 1 for
all iterations. However, due to nonlinearities SWAN typically does not dis-
play such smooth behaviour. Therefore, this criterion may be less suited for
SWAN.

An alternative way to evaluate the level of convergence is to consider the
second derivative or curvature of the curve traced by the series of iterates
(iteration curve). Since the curvature of the iteration curve must tend to-
wards zero as convergence is reached, terminating the iteration process when
a certain minimum curvature has been reached would be a robust break-off
procedure. The curvature of the iteration curve of Hm0 may be expressed in
the discrete sense as

∆(∆H̃s
m0)

s = H̃s
m0 − 2H̃s−1

m0 + H̃s−2
m0 , (3.33)

where H̃s
m0 is some measure of the significant wave height at iteration level s.

To eliminate the effect of small amplitude oscillations on the curvature mea-
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sure, we define H̃s
m0 ≡ (Hs

m0 + Hs−1
m0 )/2. The resulting curvature-based ter-

mination criterion at grid point (i, j) is then

|Hs
m0(i, j) − (Hs−1

m0 (i, j) + Hs−2
m0 (i, j)) + Hs−3

m0 (i, j)|
2Hs

m0(i, j)
< εC , s = 3, 4, ... ,

(3.34)
where εC is a given maximum allowable curvature. The curvature measure
is made non-dimensional through normalization with Hs

m0. Condition (3.34)
must be satisfied in at least 98% of all wet grid points before the iterative
process stops. This curvature requirement is considered to be the primary
criterion. However, the curvature passes through zero between local maxima
and minima and, at convergence, the solution may oscillate between two
constant levels due to the action limiter, whereas the average curvature is
zero. As safeguard against such a situation, the weaker criterion (3.26) is
retained in addition to the stricter criterion (3.34).
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Chapter 4

Wave boundary and initial
conditions

To obtain the numerical solution of the action balance equation (2.16), the
wave boundary and initial conditions should be provided. The incoming wave
components at the up-wave boundaries in the SWAN model are specified by
a two-dimensional spectrum. Several options are available:

• A parametric one-dimensional spectrum with a certain imposed direc-
tional distribution. An example is a Jonswap spectrum.

• A discrete one-dimensional spectrum with a certain imposed directional
distribution. This is often obtained from measurements.

• A discret two-dimensional spectrum. This may be obtained from other
SWAN runs or other models, e.g. WAM and WAVEWATCH III.

For the parametric one-dimensional spectrum, the following optional forms
have been recommended: a Pierson-Moskowitz spectrum (Pierson and Moskowitz,
1964), a Jonswap spectrum (Hasselmann et al., 1973) and a Gaussian-shaped
spectrum.

The boundaries in frequency space are fully absorbing at the lowest and
the highest discrete frequency. So, energy can freely propagate across these
boundaries and thus total energy might not be conserved in some cases.
However, a diagnostic tail f−m (m = 4 or m = 5) is added above the high
frequency cut-off, which is used to compute nonlinear wave-wave interactions
at the high frequencies and to compute integral wave parameters. When the
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directional space is a closed circular, no directional boundary conditions are
needed. However, for reasons of economy, SWAN has an option to compute
only wave components in a pre-defined directional sector. In this case, the
boundaries of this sector are fully absorbing (action density might be re-
moved from the model by refraction).

To facilitate the integration process of the action balance equation, wave
boundary conditions in geographical space need to be provided. The bound-
aries of the computational grid in SWAN are either land or water. In case of
land there is no problem. The land does not generate waves and in SWAN
it absorbs all incoming wave energy. But in the case of a water boundary
there is a problem. If observations are available, they can be used as inputs
at the boundary. In case no wave conditions are given along the boundary,
SWAN assumes that no waves enter the model and waves can leave the model
freely along that boundary. This assumption results in errors. Therefore, to
get reliable results, especially for such case, the model boundaries must be
placed far away from the area of interest.

In case of non-stationary computation, the default initial spectra are com-
puted from the local wind velocities using the deep-water growth curve of
Kahma and Calkoen (1992), cut off at values of significant wave height and
peak frequency from Pierson and Moskowitz (1964). The average (over the
model area) spatial step size is used as fetch with local wind. The shape
of the spectrum is default Jonswap with a cos2(θ) directional distribution
centred around the local wind direction.

The first guess conditions of a stationary run of SWAN are default deter-
mined with the second generation mode of SWAN.

It is possible to obtain an initial state by carrying out a previous stationary
or nonstationary computation.



Chapter 5

Implementation of 2D wave
set-up

5.1 Methods

For the present purpose flows in shallow water are sufficiently described
by the so- called shallow-water equation which consists of one continuity
equation and two equations of motion (one for the x− and one for the
y−component). For the present project the shallow water equation has to
be simplified. The possibilities for such simplification are investigated in the
remainder of this section.

Wave setup is usually confined to narrow zones in the immediate vicinity of
the shoreline. The size of such areas is small enough that the setup process
can be considered to be quasi-stationary.

Wave-induced currents are usually weak compared with e.g. tidal currents.
Therefore it seems acceptable to neglect all terms in the equation of motion
where the current velocity appears.

Comparisons of SWAN results with results from a full 2-dimensional flow
model have to show under which conditions the simplified equation provides
acceptable results. Such investigations are outside the scope of the present
project. This report presents a few cases with low overall current velocities
where apparently the computed setup is reasonably in accordance with ex-
pectations.
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Deleting from the equation of motion all terms involving current velocities
we retain an equilibrium between the wave-induced force and the gradient of
the water table, i.e.

Fk + gd
∂ζ

∂xk

= 0 , (5.1)

where ζ is the setup, d the depth and Fk is the wave-induced force. In a
one-dimensional model (5.1) can be used directly to compute the setup. In
two dimensions (5.1) is a set of two equations with only one unknown, the
setup ζ. In order to reduce the number of equations to one, we use the
observation by Dingemans(1997) that wave-driven currents are mainly due
to the divergence-free part of the wave forces whereas the setup is mainly due
to the rotation-free part of the force field. We therefore take the divergence
of eq. (5.1) to obtain the following elliptic partial differential equation for ζ:

∂Fk

∂xk

+
∂

∂xk

(gd
∂ζ

∂xk

) = 0 (5.2)

This Poisson equation needs one boundary condition in each point of the
boundary of the computational domain. Two types of boundary conditions
are foreseen; the first one is used on the open boundaries and on the shoreline
where the shoreline is defined as the line where the depth is zero:

Fn + gd
∂ζ

∂n
= 0 (5.3)

It is not possible to use this boundary condition on all boundary points be-
cause then there remains an unknown constant. So on on point, for which
we take the boundary point with the largest depth the setup is assumed to
be 0: ζ = 0.

The second type of boundary condition with given value of ζ is also used in
nested models. The setup computed in the larger model is used as boundary
condition in the nested model. In the nested model the setup is given in all
points of the outer boundary. On shorelines inside the area again eq. (5.3)
is used.

The Poisson equation (5.2) together with its boundary conditions will be
solved numerically on a curvilinear grid. The next section dsicusses the de-
tails of the method, and presents some results of preliminary computations
with the above model.
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The actual design of the modifications of the SWAN commands is presented
in Appendix A, the design of the modifications of the code is presented in
Appendix B. After each iteration performed in SWAN new values of the setup
are being calculated and added to the depth, so that the SWAN model incor-
porates the effect of setup on the wave field. An output quantity SETUP is
added so that the user can be informed about the magnitude and distribution
of the wave setup.

5.2 Analysis and Results

5.2.1 Discretization of the 2D setup equation

Problem definition

The equation to be solved has the following form:

∂

∂xk

(Fk + gd
∂ζ

∂xk

) = 0 , (5.4)

with ζ the setup, d the depth and Fk a golf-induced, time-averaged force.
In order to solve (5.4), the following types of boundary conditions may be
applied

Fn + gd
∂ζ

∂n
= 0 at the boundary , (5.5)

with n the outward direct normal. This is a so-called Neumann condition.
The setup is fixed upon an additive constant.

ζ = given at the boundary . (5.6)

This is boundary condition of Dirichlet type.

At beaches always the Neumann condition (5.5) is applied.
In order to solve (5.4) with boundary conditions (5.5) and (5.6) a boundary
fitted, vertex centered finite volume method is applied. The discretization is
based on the method described in Van Beek et al. (1995). In the remainder
of this Chapter we use k instead of gd.
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Discretization

The physical domain is mapped onto a rectangular domain in the (ξ1, ξ2)
plane, which is called the computational domain. All points of the domain
are used, including the dry ones.

Using the relation Zijlema (1996) (summation convection applied):

∂ϕ

∂xβ
=

1√
g

∂

∂ξγ
(
√

g a
(γ)
β ϕ) , (5.7)

with a
(γ)
β the components of the contravariant basevectors ~a(α) defined as

(Segal et al, 1992):
~a(α) = ∇ξα , (5.8)

and
√

g the Jacobian of the transformation:

√
g = a1

(1)a
2
(2) − a2

(1)a
1
(2) . (5.9)

~a(α) are the covariant base vectors defined by

~a(α) =
∂~x

∂ξα
. (5.10)

The contravariant base vectors follow immediately from the covariant ones
due to:

√
g~a(1) = (a2

(2), −a1
(2))

T , (5.11)
√

g~a(2) = (−a2
(1), a1

(1))
T . (5.12)

Application of (5.7) to equation (5.5) results in

1√
g

∂

∂ξα
(
√

g~a(α) · (k∇ζ + ~F )) = 0 . (5.13)

Note that ∇ζ is a derivative in the Cartesian (~x) direction and not in the ~ξ
direction.

In the remainder we shall use the local numbering as given in Figure 5.1.
The points (0, 0), (2, 0), (0, 2) and so on are the vertices of the cells. The
integration cell for the finite volume method is defined by the cell Ω (-1, 0),
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(2, 2)

(2, 0)

(0, 1)

(0, 0) (1, 0)

(0, 2)

Figure 5.1: Local numbering in computational domain

(0, -1), (1, 0), (0, 1).

Integrating (5.13) over this cell gives

∫

Ωx

1√
g

∂

∂ξα
(
√

g~a(α) · (k∇ζ + ~F ))dΩx

∫

Ωξ

∂

∂ξα
(
√

g~a(α) · (k∇ζ + ~F ))dΩξ (5.14)

≈ √
g~a(1) · (k∇ζ + F )|(1,0)

(−1,0) +
√

g~a(2) · (k∇ζ + ~F )|(0,1)
(0,−1) ,

where Ωx is the cell in the physical space and Ωξ the cell in the computational
domain.
The four points (1, 0), (0, 1), (-1,0) and (0, -1) will be cell integration points.
The covariant basis vectors ~a(α) are approximated by central differences.

~a(2)|(0,1) = ~x(0,2) − ~x(0,0) , (5.15)

~a(1)|(1,0) = ~x(2,0) − ~x(0,0) , (5.16)

and by linear interpolation in other points.
In these relations we have used that the step width in the computational
domain is equal to 1.
The term ∇ζ needs special attention. Since it concerns derivatives in the ~x
direction, whereas all derivatives in the computational domain are in the ~ξ
directions it is necessary to make some approximation. We approximate this
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term by the integration path method introduced in Van Beek et al. (1995).

To that end ∇ζ is integrated in two independent directions ξ1 and ξ2. This
yields two equations to express ∂ζ

∂x
and ∂ζ

∂y
in ζ values of neighbours.

(~x2,0 − ~x),0)∇ζ|(1,0) = ζ2,0 − ζ0,0 , (5.17)

1

2
((~x2,2 − ~x2,−2) + (~x0,2 − ~x0,−2))∇ζ|(1,0) =

1

2
((ζ2,2 − ζ2,−2) + (ζ0,2 − ζ0,−2)) .(5.18)

(5.17), (5.18) may be considered as two sets of equations to express ∇ζ into
ζ values. Solution of this linear system results in:

∇ζ|(1,0) = ζ|(2,0)
(0,0)~c

(1) + (ζ|(0,2)
(0,−2) + ζ|(2,2)

(2,−2))~c
(2) , (5.19)

with

~c1 =
1

C
(c2

(2), −c1
(2)) ; ~c2 =

1

C
(−c2

(1), c1
(1)) , (5.20)

C = c2
(2)c

1
(1) − c2

(1)c
1
(2) , (5.21)

~c(1) = a(1)|(1,0) ~c(2) = ~a(2)|(0,−1) + ~a(2)|(0,1) + ~a(2)|(2,−1) + ~a(2)|(2,1) .(5.22)

A similar formula is applied for point (0, 1). Equation (5.14) together with
expression (5.19) gives one row of the discretized equation.

Treatment of the boundary conditions

The boundary conditions at the outer boundary of the domain are relatively
easy to implement.

In case of Dirichlet boundary conditions the corresponding row of the matrix
is made equal to 0 and the diagonal element is set to 1. The value of the
boundary condition is filled into the right-hand side.

Neumann boundary conditions are treated integrating over a half cell as
sketched in Figure 5.2. In this case we get:

∫

Ωξ

∂

∂ξα
(
√

g~a(α) · (k∇ζ + ~F )dΩξ

≃ 1

2

√
g~a(1) · (k∇ζ + ~F )|(1,0)

(−1,0) +
√

g~a(2) · (k∇ζ + ~F )|(0,1)
(0,0) . (5.23)
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(0, 0)

(0, 1)

(-1, 0) (1, 0)

Figure 5.2: Half cell at boundary

Due to the Neumann boundary conditions the term in the boundary point
(0, 0) vanishes.

Mark that in this case we need to evaluate ∇ζ at the boundary. In order to
do so we apply a one-sided integration path approach i.e.

(~x(2,0) − ~x(1,0)) · ∇ζ|(1,0) = ζ(2,0) − ζ(0,0) ,

((x(2,2) − x(2,0)) + (~x(0,2) − ~x(0,0))) · ∇ζ|(1,0) = (ζ(0,2) − ζ(0,0)) + (ζ(2,2) − ζ(2,0)) .(5.24)

Furthermore we need the values of ~a(α) in virtual cells, because we need the
c(α) at the boundary. To that end we construct a row of virtual cells by
extrapolating the coordinates of the boundary cells.

The implementation of dry points

Dry points complicate the software considerably.

For the dry points itself there is no problem. In fact we make the correspond-
ing row of the matrix, as well as the right-hand side element completely equal
to zero. This is allowed since our linear solver is able to deal with zero rows.

Dry points in the neighbourhood of wet points, however, also influence the
matrix for the wet point. Consider for example the integration point (1,0)
in Figure 5.3. If (0, 0) is a wet point and (2, 0) a dry point then we assume
that at point (1,0) we have a Neumann boundary condition. This means in
fact that the contribution of the integration point (1,0) to the matrix and
right-hand side is equal to zero. With respect to the evaluation of the gradi-
ent of ζ with the integration path method one sided differences are applied
for those formulas involving ζ(2,0). This process is applied for all transitions
from wet to dry points. As a consequence, in the case of a situation like
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(0, 0)
(2, 0)

(0, 1)

(1, 0)(-1, 0)

(0, -1)

Figure 5.3: Dry point (2, 0) and wet point (0, 0)

2
1

Figure 5.4: Wet points • enclosed by a row of dry points ×

in Figure 5.4 we make ∇ζ for point 2 zero. The reason is that in point 2
it is only possible to evaluate ∂ζ

∂ξ1 and not ∂ζ
∂ξ2 , and hence we have too few

information to express ∇ζ in neighbour values.

Building of the matrix and right-hand side

With respect to the building of matrix and right-hand side we start by com-
puting all contributions in the integration points. This is done by looping
over the various integration points. Since the contribution of point (0,1) in
cell (i, j) is equal to that of point (0, -1) in cell (i − 1, j) it is sufficient to
loop over two sets of integration points only.

Once we have computed the coefficients in a set of integration points we must
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add these contributions, multiplied by some factor, to the matrix elements.
This process is known as distribution.

Hence the actual implementation is as follows:

1 Map indirect addressing to direct addressing. (subroutine swdct).

2 Compute and store ~a(α) for all integration points. First we use central
differences where possible and after that we apply linear interpolation
for the remaining points. (subroutine swcova2d).

3 Compute
√

g~a(α) in all integration points using ~a(α). (subroutine swjcta2d).

For 2 integration directions do

4 Compute factors ~c(α) taking into account boundary effects and dry
points.
Compute contributions for matrix and right-hand side for integra-
tion points.
(subroutine swtrad2d).

5 Distribute contribution to correct matrix elements.
(subroutine swdisdt2).

6 Fill essential boundary conditions.
(subroutine swessbc).

7 Solve system of linear equations.
(subroutine swsolve).
This part is explained in more detail in the next Chapter.

8 Map from direct to indirect addressing.
(subroutine swindct).

5.2.2 The iterative solver for the linear system

In this section we describe the mathematical methods, which are used to
solve the system of linear equations as derived in Chapter 1. In Section 5.2.2
we consider the data structure used. Some properties of the matrix are given
in Section 5.2.2. Due to the sparseness of the matrix we prefer an iterative
solution method of Krylov subspace type. The details are described in Section
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5.2.2. As is well known, Krylov subspace methods are only attractive when
they are combined with suitable preconditioners (see Section ??). Finally
our choices are summarised in Section ??.

Data structure

After the discretization of the Poisson equation in curvilinear coordinates,
one has to solve the following matrix vector system:

Ax = f, (5.25)

where A is the discrete Poisson operator, x is an approximation of the setup
(of the water level), and the right-hand-side vector f contains the effects of
the boundary conditions and the forces due to the surface waves. In the
solver it is very efficient to calculate with direct addressing, so dry points
are included in the vector x. This implies that the dimension of x and f are
fixed and equal to MXC × MY C. In the discretization a 9-point stencil is
used. That implies that only 9 matrix elements per row are non-zero. These
elements are stored in a diagonal-wise way. So for this part NWKARR = 9.
The rows corresponding to dry points are filled with zeroes except on the
main diagonal where the value 1 is substituted. The value of x and f are
taken equal to 0 at these points.

Properties of the matrix

The discrete operator is symmetric in the inner region. This means that
ai,j = aj,i. Due to the boundary conditions the symmetry of the operator is
lost. The reasons for this are:

• When Dirichlet boundary conditions are used the known elements of x
should be eliminated in order to keep the matrix symmetric. However
this leads to a different dimension of A, x, and f , therefore the known
elements are not eliminated.

• When dry points occur the derivation of the discrete boundary con-
ditions is already complicated at the interface between wet and dry
points. At this moment it is not clear how to discretize these condi-
tions such that the resulting matrix is symmetric.
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These difficulties motivate us to use a non-symmetric matrix. This is only
a small drawback, because recently good methods have been developed to
solve non-symmetric matrix vector systems.

When Neumann conditions are used on all boundaries the resulting matrix
is singular. The solution is determined up to a constant. We have to keep
this in mind during the construction of the solution procedure.

When Gauss elimination is used to solve equation (5.25), the zero elements
in the bend of A become non-zero. This means that the required memory is
equal to 2×MXC+2 vectors. For MXC large, this leads to an unacceptable
large amount of memory. Therefore we use an iterative solution method,
where the total amount of memory is less than the memory used in the
discretization procedure.

The iterative solver

In 1D cases, the wave-induced set-up is calculated in SWAN with a simple
trapezoidal rule.

In 2D cases, the Poisson equation of the divergence-free force field is solved in
SWAN with a modified Successive Over Relaxation (SOR) technique (Botta
and Ellenbroek, 1985). The boundary conditions for this elliptical partial
differential equation are:

• at open boundaries: equilibrium between wave force and hydrostatic
pressure gradient normal to the model boundary,

• at last grid points before shoreline: equilibrium between wave force and
hydrostatic pressure gradient normal to the model boundary and

• at deepest boundary point: set-up is zero.

The shoreline in SWAN moves as dictated by the wave-induced set-up. The
set-up computations are available in both the recti-linear and curvi-linear
grids.
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Iterative solvers

This chapter is under preparation.

71
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Parallel implementation aspects

Domain decomposition methods have been successfully used for solving large
sparse systems arising from finite difference or finite volume methods in com-
putational fluid dynamics on distributed memory platforms. They are based,
in essence, upon a partition of the whole computational domain in ~x-space
into a number of contiguous, non-overlapping subdomains with each of them
being assigned to a different processor. In this case the same algorithm per-
forms on all available processors and on its own set of data (known as the
SPMD programming model). Each subdomain can have multiple neighbors
on each of its four sides. For this, a data structure is implemented to store all
the information about the relationship of the subdomain and its particular
neighbors. Next, each subdomain, look in isolation, is then surrounded by
an auxiliary layer of one to three grid points originating from neighbouring
subdomains. This layer is used to store the so-called halo data from neigh-
bouring subdomains that are needed for the solution within the subdomain
in question. The choice of one, two or three grid points depends on the use
of propagation scheme in geographical space, i.e., respectively, BSBT, SOR-
DUP or Stelling/Leendertse. Since, each processor needs data that resides
in other neighbouring subdomains, exchange of data across boundaries of
subdomains is necessary. Moreover, to evaluate the stopping criterion (3.26),
global communication is required. These message passings are implemented
by a high level communication library such as MPI standard. A popular
distribution is MPICH which is free software1 and is used in the present
study. Only simple point-to-point and collective communications have been

1Available from http://www-unix.mcs.anl.gov/mpi/mpichhttp://www-
unix.mcs.anl.gov/mpi/mpich.
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employed. There are, however, some other implementation and algorithmic
issues that need to be addressed.

7.1 Load balancing

The mapping of subdomains on processors should be chosen so as to dis-
tribute the computational load as equally as possible and to minimize the
communication cost. Intuitively, it will be clear that we have to allocate con-
tiguous blocks of equal numbers of grid points on each processor. However,
in the context of SWAN applications to coastal areas, some difficulties arise.
Firstly, wet and dry grid points may unevenly distributed over subdomains
while no computations have to be done in dry points. Secondly, an unbal-
anced partition may arise during the simulation due to the tidal effect (dry
points become wet and vice versa). In such a case, one may decide to adapt
the partition such that it is balanced again (so-called dynamic load balanc-
ing). Finally, most end-users are not willing to determine the partitioning
themselves, thus automatic support for partitioning the grids is desirable.

In the present study, two well-established partition methods are applied.
The first is called stripwise partitioning in which the computational grid is
cut along one direction, resulting in horizontal or vertical strips. The choice
of cutting direction depends on the interface size of the strips which should
be minimized. However, the communication volume, which is related to the
total size of the interfaces, can be further reduced by means of recursive
application of alternately horizontal and vertical bisection. This is known as
Recursive Co-ordinate Bisection (RCB). Further details on these techniques
and an overview on grid partitioning can be found, e.g. in Fox (1988) and
Chrisochoides et al. (1994). .

Within SWAN, the grid partitioning is carried out automatically on wet
grid points only. The size of the subdomain equals the total number of wet
points divided by the total number of subdomains. The implementation
of a stripwise partitioning is as follows. First, an empty strip is created.
Next, assign point-by-point to the created part until the size of that part has
been reached. Thereafter, verify whether non-assigning wet points remain
in the current strip. If so, these points will be assign to the same part
too, otherwise create next empty strip. As a result, all strips have straight
interfaces and include approximately the same number of wet grid points.
Moreover, experiences with SWAN simulation have shown that the amount
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of computations in each wet grid point remains more or less constant during
the simulation and hence, there is no need for dynamic load balancing.

A final remark has to be made considering grid partitioning. The above
described methodology does not seem to have been implemented in spectral
wave models before. In Tolman (20020, another way of distributing data
over the processors is discussed: each pth wet grid point is assign to the
same processor with p the total number of processors. The requirement of
equal numbers of wet grid points per processor is provided automatically.
However, it is impossible to compute the spatial wave propagation in an
effective manner. The only alternative is to gather data for all grid points in
a single processor before the calculation is performed. This will require a full
data transpose, i.e. rearranging data distribution over separate processors.
It is believed that this technique requires much more communication between
processors than domain decomposition and therefore less suitable for SWAN.

7.2 Parallelization of implicit propagation schemes

Contrary to explicit schemes, implicit ones are more difficult to parallelize,
because of the coupling introduced at subdomain interfaces. For example,
concerning the four-sweep technique, during the first sweep, an update of
N(i, j, l,m) can be carried out as soon as N(i−1, j, l,m) and N(i, j−1, l,m)
have been updated and thus it can not be performed in parallel. Paral-
lelization of this implicit scheme requires modifications. Ideally, the parallel
algorithm need no more computing operations than the sequential one for
the same accuracy.

The simplest strategy to circumvent this problem consists in treating
the data on subdomain interfaces explicitly, which in mathematical terms
amounts to using a block Jacobi approximation of the implicit operator. In
this context, we employ the RCB partition method, since it gives the required
balanced, low-communication partitioning. This strategy possess a high de-
gree of parallelism, but may lead to a certain degradation of convergence
properties. However, this numerical overhead can be reduced by colouring
the subdomains with four different colors and subsequently permuting the
numbering of unknowns in four sweeps in accordance with the color of subdo-
mains. Furthermore, each subdomain is surrounded by subblocks of different
colors. See Figure 7.1. As a result, each coloured subdomain start with a
different ordering of updates within the same sweep and thus reducing the
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Figure 7.1: Four types of subblocks (red, yellow, green and black) treated
differently with respect to the ordering of updates (indicated by arrows) per
sweep.

number of synchronization points. This multicolor ordering technique has
been proposed earlier, e.g. in Meurant (1988) and Van der Vorst (1989).

Another strategy is based on the ideas proposed by Bastian and Horton
(1991) and is referred here to as the block wavefront approach. It is demon-
strated with the following example. First, we decompose the computational
domain into a number of strips. In this example, we assume that these strips
are parallel to y−axis. Next, we start with the first sweep. The processor
belonging to the first strip updates the unknowns N(i, 1, l,m) along the first
row j = 1. Thereafter, communication takes place between this processor
and processor for strip 2. The unknowns N(i, 2, l,m) along j = 2 in strip
1 and N(i, 1, l,m) along j = 1 in strip 2 can be updated in parallel, and
so on. After some start-up time all processors are busy. This is depicted in
Figure 7.2. Finally, this process is repeated for the other three sweeps. De-
tails can be found in the source code of SWAN 40.20. The block wavefront
approach does not alter the order of computing operations of the sequen-
tial algorithm and thus preserving the convergence properties, but reduces
parallel efficiency to a lesser extent because of the serial start-up and shut-
down phases (Amdahl’s law). This technique resembles much to the standard
wavefront technique applied in a pointwise manner (unknowns on a diagonal



Parallel implementation aspects 77

o o o
*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

* **
*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

* **

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

* **

o o o
o o o+ + +

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

+ + +
+ ++

+ + +

o o
o o o

o o o

o

active activeactiveidle idle idleactiveactiveactive
CPU 1 CPU 1CPU 2 CPU 3 CPU 3CPU 2CPU 3CPU 2CPU 1

Iteration 1 Iteration 2 Iteration 3

Figure 7.2: Application of block wavefront approach for the first 3 iterations
during the first sweep. Domain is divided into 3 vertical strips. Stars rep-
resent unknowns to be updated, circles mean that unknowns are currently
updated and the plus signs indicate unknowns that have been updated.

are mutually independent and thus can be updated in parallel; for details, see
Templates (1994), which has also been employed by Campbell et al. (2002)
for parallelizing SWAN using OpenMP.

The performance of the two discussed parallelization methods applied in
the SWAN model has been discussed in (Zijlema, 2005). Numerical exper-
iments have been run on a dedicated Beowulf cluster with a real-life appli-
cation. They show that good speedups have been achieved with the block
wavefront approach, as long as the computational domain is not divided
into too thin slices. Moreover, it appears that this technique is sufficiently
scalable. Concerning the block Jacobi method, a considerable decline in per-
formance has been observed which is attributable to the numerical overhead
arising from doubling the number of iterations. Furthermore, it may result in
a solution that is computed to an accuracy that may not be realistic. In con-
clusion, parallelization with the block wavefront technique has been favoured
and has been implemented in the current operational version of SWAN.

A survey of other alternatives to the parallelization of the implicit schemes
is given in Templates (1994).
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The overall solution algorithm
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