
SWAN

IMPLEMENTATION MANUAL

SWAN Cycle III version 40.51

SWAN IMPLEMENTATION MANUAL

by : The SWAN team

mail address : Delft University of Technology
Faculty of Civil Engineering and Geosciences
Environmental Fluid Mechanics Section
P.O. Box 5048
2600 GA Delft
The Netherlands

e-mail : swan-info-citg@tudelft.nl
home page : http://www.fluidmechanics.tudelft.nl/swan/index.htmhttp://www.fluidmechanics.tudelft.nl/sw

Copyright (c) 2006 Delft University of Technology.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sec-
tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license
is available at http://www.gnu.org/licenses/fdl.html#TOC1http://www.gnu.org/licenses/fdl.html#TOC1.

iv

Contents

1 Introduction 1

1.1 The material . 2

2 Use of patch files 7

3 Installation of SWAN on your computer 9

3.1 Automatic and quick installation 11
3.2 Manual installation . 12

3.2.1 Modifications in the source code 12
3.2.2 Compiling and linking SWAN source code 14

3.3 Make SWAN documentation 16

4 User dependent changes and the file swaninit 17

5 Usage of SWAN executable 21

6 Testing the system 25

v

vi

Chapter 1

Introduction

This Implementation Manual is a part of the total material to implement the
SWAN wave model on your computer system. The total material consists of:

• the SWAN source code,

• the SWAN (serial) executable for MS Windows,

• the User Manual,

• this Implementation Manual,

• the Technical documentation,

• the SWAN programming rules,

• utilities and

• some test cases.

All of the material can be found on the following SWAN web page
http://www.fluidmechanics.tudelft.nl/swan/download/info.htmhttp://www.fluidmechanics.tudelft.nl/sw

On the SWAN home page http://www.fluidmechanics.tudelft.nl/swan/index.htmhttp://www.fluidmechanics.tudelft.nl/sw
general information is given about the functionalities, physics and limitations
of SWAN. Moreover, the modification history of SWAN is given. Finally, in-
formation on support, links to the related web pages and various free software
are provided.

After downloading the material, you may choose between

1

2 Chapter 1

• direct usage of the SWAN executable for Windows and

• implementation of SWAN on your computer system.

If you want to use the SWAN executable available on the SWAN web site,
please read Chapters 5 and 6 for further information.

For the purpose of implementation, you have access to the source code of
SWAN and additional files, e.g. for testing SWAN. Please read the copyright
in this manual and in the source code with respect to the terms of usage
and distribution of SWAN. You are permitted to implement SWAN on your
computer system.

Implementation involves the following steps:

1. Copying the source code from the SWAN web page to the computer
system on which you want to run SWAN.

2. If necessary, applying patches for an upgrade of the source code due to
e.g., bug fixes, new features, etc.

3. Making a few adaptions in installation-dependent parts of the code.

4. Compiling and linking the source code to produce an executable of
SWAN.

5. Testing of the executable SWAN.

After the last step you should have the executable SWAN ready for usage.
Note that steps 3 and 4 can be done fully automatically.

1.1 The material

The downloaded file swan4051.tgz contains the SWAN source code. You can
unzip this file either with WinZip (in case of Windows) or with the command
tar xzf (in case of UNIX or Linux). The SWAN source code consists of the
following files:

Introduction 3

main program : swanmain.ftn
pre-processing routines : swanpre1.ftn

swanpre2.ftn
computational routines : swancom1.ftn

swancom2.ftn
swancom3.ftn
swancom4.ftn
swancom5.ftn

post-processing routines : swanout1.ftn
swanout2.ftn

service routines : swanser.ftn
routines for support
parallel MPI runs : swanparll.ftn
routines for installation : ocpids.ftn
command reading routines : ocpcre.ftn
miscellaneous routines : ocpmix.ftn
modules : swmod1.ftn

swmod2.ftn
swmod3.ftn

The source code is written in fixed form Fortran 90. Depending on your
system, the extension may be for, f or F. The conversion from ftn to one
of these extensions can be done automatically or manually; see Chapter 3.

You are allow to make changes in the source code of SWAN, but Delft Uni-
versity of Technology will not support modified versions of SWAN. If you
ever want your modifications to be implemented in the authorized version
of SWAN (the version on the SWAN web page), you need to submit these
changes to the SWAN team (swan-info-citg@tudelft.nl).

4 Chapter 1

The source code is being attended with the following files:
The Latex files (*.tex) can be read and written by any editor and can be
compiled with LATEX2ε. This compilation can also be done automatically;
see Section 3.3.

On the SWAN web page, you also find some test cases with some output
files for making a configuration test of SWAN on your computer. You may
compare your results with those in the provided output files.

Introduction 5

installation procedures : INSTALL.README
Makefile
Makefile.latex
macros.inc
getcmpl
platform.pl
switch.pl
adjlfh.pl

run procedures : SWANRUN.README
swanrun
swanrun.bat

machinefile for parallel
MPI runs : machinefile
edit file : swan.edt
for conversion of spectra : convrt1d.for

cvspec1d.for
cvspec2d.for

documentations : swanuse.tex
swanuse.pdf
swanimp.tex
swanimp.pdf
swantech.tex
swantech.pdf
swanpgr.tex
swanpgr.pdf
latexfordummies.tex
latexfordummies.pdf
conc.lst
*.eps
*.ps

6 Chapter 1

Chapter 2

Use of patch files

Between releases of authorised SWAN versions, it is possible that bug fixes or
new features are published on the SWAN web page. These are provided by
patch files that can be downloaded from the web site. Typically, a patch can
be installed over the top of the existing source code. Patches are indicated
by a link to patchfile. The names refer to the current version number
supplemented with letter codes. The first will be coded ’A’ (i.e. 40.51.A),
the second will be coded ’B’, the third will be coded ’C’, etc. The version
number in the resulting output files will be updated to 40.51ABC, indicating
the implemented patches.

To use a patch file, follow the next instructions:

1. download the file (right-click the file and choose save link as)

2. place it in the directory where the source code of SWAN is located

3. execute patch -p0 < patchfile

After applying a patch or patches, you need to recompile the SWAN source
code.

It is important to download the patch and not cut and paste it from the
display of your web browser. The reason for this is that some patches may
contain tabs, and most browsers will not preserve the tabs when they display
the file. Copying and pasting that text will cause the patch to fail because
the tabs would not be found. If you have trouble with patch, you can look
at the patch file itself.

7

8 Chapter 2

Note to UNIX/Linux users: the downloaded patch files are MS-DOS ASCII
files and contain carriage return (CR) characters. To convert these files
to UNIX format, use the command dos2unix. Alternatively, execute cat

40.51.[A-C] | tr -d ’\r’ | patch that apply the patch files 40.51.A to
40.51.C to the SWAN source code at once after which the conversion is car-
ried out.

Note to Windows users: patch is a UNIX command. Download the patch
program from the SWAN web site, which is appropriate for Windows oper-
ating system (NT/2000/XP).

Chapter 3

Installation of SWAN on your

computer

The portability of the SWAN code between single processor machines is guar-
anteed by the use of standard ANSI FORTRAN 90. Hence, virtually all
Fortran compilers can be used for installing SWAN. See also the manual
Programming rules.

The SWAN code is parallelized, which enables a considerable reduction in
the turn-around time for relatively large CPU-demanding calculations. Two
parallelization strategies are available:

• A message passing modelling is employed based on the Message Passing
Interface (MPI) standard that enables communication between inde-
pendent processors. Only simple point-to-point and collective commu-
nications have been employed. Hence, users can optionally run SWAN
on a cluster of PC nodes.

• The computational kernel of SWAN contains a number of OpenMP
compiler directives, so that users can optionally run SWAN on shared-
memory supercomputers.

The material on the SWAN web site provides a Makefile and two Perl scripts
(platform.pl and switch.pl) that enables the user to quickly install SWAN
on the computer in a proper manner. For this, the following platforms,
operating systems and compilers are supported:

9

10 Chapter 3

platform OS F90 compiler

SGI Origin 3000 (Silicon Graphics) IRIX SGI
IBM SP AIX IBM
Compaq True 64 Alpha (DEC ALFA) OSF1 Compaq
Sun SPARC Solaris Sun
PA-RISC (HP 9000 series 700/800) HP-UX v11 HP
Intel Pentium (32-bit) PC Linux GNU (g95)
Intel Pentium (32-bit) PC Linux GNU (gfortran)
Intel Pentium (32-bit) PC Linux Intel
Intel Itanium (64-bit) PC Linux Intel
Intel Pentium (32-bit) PC Linux Portland Group
Intel Pentium (32-bit) PC Linux Lahey
Intel Pentium (32-bit) PC MS Windows Compaq Visual
Power Mac G4 Mac OS X IBM

If your computer and available compiler is mentioned in the table, you may
consult Section 3.1 for a quick installation of SWAN. Otherwise, read Section
3.2 for a detailed description of the manual installation of SWAN.

Note that for a successful installation, a Perl package must be available on
your computer. In most cases, it is available for Linux and a UNIX operating
system. Check it by typing perl -v. Otherwise, you can download a free dis-
tribution for Windows called ActivePerl; see http://aspn.activestate.com/ASPN/Downloads/ActivePerl/Sour
The Perl version should be at least 5.0.0 or higher!

Before installation, the user may first decide how to run the SWAN program.
There are three possibilities:

• serial runs,

• parallel runs on shared memory systems or

• parallel runs on distributed memory machines.

For stationary and small-scale computations, it may be sufficient to choose
the serial mode, i.e. one SWAN program running on one processor. However,
for relatively large CPU-demanding calculations (e.g., instationary or nesting
ones), two ways of parallelism for reducing the turn-around time are available:

• The SWAN code contains a number of so-called OpenMP directives
that tells the compiler how to generate multi-threaded code on a shared

Installation of SWAN on your computer 11

memory computer. For this, you need a Fortran 90 compiler having the
OpenMP option. The performance is good for a restricted number of
threads (< 8).This type of parallelism can be used e.g., on symmetric
multiprocessors and Linux PC’s with dual processors.

• If the user want to run SWAN on a relative large number of processors,
a message passing model is a good alternative. It is based on indepen-
dent processors which do not share any memory but are connected via
an interconnection network, such as Beowulf systems (cluster of Linux
PC’s connected via fast Ethernet switches). Since, the Message Pass-
ing Interface (MPI) standard (e.g., MPICH distribution, freely avail-
able for several platforms, such as Linux and Windows NT/2000/XP, at
http://www-unix.mcs.anl.gov/mpi/mpichhttp://www-unix.mcs.anl.gov/mpi/mpich)
is very popular nowadays, the SWAN code contains a set of generic
subroutines that call a number of MPI-routines, meant for local data
exchange, gathering data, global reductions, etc. This technique is ben-
eficial for larger simulations only, such that the communication times
are relatively small compared to the computing times.

3.1 Automatic and quick installation

Carry out the following steps for setting up SWAN on your computer.

1. An include file containing some machine-dependent macros must be
created first. This file is called macros.inc and can be created by
typing

make config

2. Now, SWAN can be built for serial or parallel mode, as follows:

mode instruction

serial make ser

parallel, shared make omp

parallel, distributed make mpi

12 Chapter 3

IMPORTANT NOTES:

• To Windows users:

– To execute the above instructions, just open a command prompt.

– In case of Compaq Visual Fortran compiler, use nmake instead of
make.

– This setup does not support OpenMP for Windows systems.

– This installation currently supports MPICH for Windows NT/2000/XP
(Professional); Win9x/ME are not supported.

– It is assumed that both the directories include and lib are
resided in
C:\PROGRAM FILES\MPICH\SDK. If not, the file macros.inc should
be adapted such that they can be found by the Makefile.

• One of the commands make ser, make omp and make mpi must be
preceded by make config.

• If desirable, you may clean-up the generated object files and modules
by typing make clean. If you want to go back to the original state
with respect to the source code, i.e. removing everything that has been
generated by the Makefile, just type make allclean.

• If you are unable to install SWAN using the Makefile and Perl scripts for
whatever reason, see Section 3.2 for instructions on manual installation.

3.2 Manual installation

3.2.1 Modifications in the source code

To compile SWAN on your computer system properly, some subroutines
should be adapted first depending on the operating system, use of compilers
and the wish to use MPI or OpenMP for parallel runs. This can be done by
removing the switches started with ’ !’ followed by an indentifiable prefix in
the first 3 or 4 columns of the subroutine. A Perl script called switch.pl is
provided in the material that enables the user to quickly select the switches
to be removed. This script can be used as follows:

Installation of SWAN on your computer 13

perl switch.pl [-dos] [-unix] [-f95] [-mpi] [-omp] [-cray]

[-sgi] [-cvis] [-timg] [-impi] *.ftn

where the options are all optionally. The meaning of these options are as
follows.

-dos, -unix Depending on the operating system, both the TAB and directory sep-
arator character must have a proper value (see also Chapter 4). This
can be done by removing the switch !DOS or !UNIX, for Windows
and UNIX/Linux platforms, respectively, in the subroutines OCPINI

(in ocpids.ftn) and TXPBLA (in swanser.ftn). For other operating
system (e.g., Macintosh), you should change the values of the follow-
ing variables manually: DIRCH1, DIRCH2 (in OCPINI), TABC (in OCPINI)
and ITABVL (in TXPBLA). Finally, the MPICH distribution for Windows
NT/2000/XP does not support USE MPI statement and therefore, the
module MPI in swmod1.ftn must be included by removing the switch
!DOS.

-f95 If you have a Fortran 95 compiler or a Fortran 90 compiler that sup-
ports Fortran 95 features, it might be useful to activate the CPU TIME

statement in the subroutines SWTSTA and SWTSTO (in swanser.ftn)
by removing the switch !F95 meant for the detailed timings of several
parts of the SWAN calculation. Note that this can be obtained with
the command TEST by setting itest=1 in your command file.

-mpi For the proper use of MPI, you must remove the switch !MPI at several
places in the file swanparll.ftn, swancom1.ftn and swmod1.ftn.

-omp The subroutine SWCOMP (in swancom1.ftn) contains a number of OPENMP

macro that needs to be set by first preprocessing it by the C (or For-
tran) preprocessor. In order to use this macro just remove the !OMP
switch.

-cray, -sgi If you use a Cray or SGI Fortran 90 compiler, the subroutines OCPINI
(in ocpids.ftn) and FOR (in ocpmix.ftn) should be adapted by remov-
ing the switch !/Cray or !/SGI since, these compilers cannot read/write
lines longer than 256 characters by default. By means of the option
RECL in the OPEN statement sufficiently long lines can be read/write
by these compilers.

14 Chapter 3

-cvis The same subroutines OCPINI and FOR need also to be adapted when
the Compaq Visual Fortran compiler is used in case of a parallel MPI
run. Windows systems have a well-known problem of the inability of
opening a file by multiple SWAN executables. This can be remedied
by using the option SHARED in the OPEN statement for shared access.
For this, just remove the switch !CVIS.

-timg If the user want to print the timings (both wall-clock and CPU times
in seconds) of different processes within SWAN then remove the switch
!TIMG. Otherwise, no timings will be keeped up and subsequently
printed in the PRINT file.

-impi Some Fortran compilers do not support the use of module MPI (USE
MPI). In that case, remove the switch !/impi.

For example, you work on a Beowulf cluster where MPI has been installed
and use the Intel Fortran compiler (that can handle Fortran 95 statements),
then type the following:

perl switch.pl -unix -f95 -mpi *.ftn

Note that due to the option -unix the extension ftn is automatically changed
into f.

3.2.2 Compiling and linking SWAN source code

After the necessary modifications are made as described in the previous sec-
tion, the source code is ready for compilation. All source code is written
in fixed form Fortran 90 so you must have a Fortran 90 compiler in order
to compile SWAN. The source code cannot be compiled with a Fortran 77
compiler. If you intended to use MPI for parallel runs, you must use the
command mpif90 instead of the original compiler command or using the In-
tegrated Development Environment e.g., for Visual Fortran (see Installation
and User’s Guide for MPICH). For parallel runs using OpenMP, the compiler
must have an option to interpret OpenMP directives and the extension ftn

must be changed into F (will be done automatically when using the script
switch.pl).

The SWAN source code complies with the ANSI Fortran 90 standard, except
for a few cases, where the limit of 19 continuation lines is violated. We are

Installation of SWAN on your computer 15

currently not aware of any compiler that cannot deal with this violation of
the ANSI standard.

When compiling SWAN you should check that the compiler allocates the
same amount of memory for all INTEGERS, REAL and LOGICALS. Usually, for
these variables 4 bytes are allocated, on supercomputers (vector or parallel),
however, this sometimes is 8 bytes. When a compiler allocates 8 bytes for a
REAL and 4 bytes for an INTEGER, for example, SWAN will not run correctly.

Furthermore, SWAN can generate binary MATLAB files on request, which
are unformatted. Some compilers, e.g. Compaq Visual Fortran and Intel
Fortran version 9.x, measured record length in 4-byte units and as a con-
sequence, these unformatted files cannot be loaded in MATLAB. Hence, in
such as case a compiler option is needed to request 1-byte units, e.g. for
Compaq Visual Fortran this is /assume:byterecl and for Intel Fortran ver-
sion 9.x this is -assume byterecl.

The modules (in files swmod1.ftn, swmod2.ftn and swmod3.ftn) must be
compiled first. Several subroutines use the modules. These subroutines need
the compiled versions of swmod1.ftn, swmod2.ftn and swmod3.ftn, before
they can be compiled. Linking should be done without any options nor us-
ing shared libraries (e.g. math or NAG). It is recommended to rename the
executable to swan.exe after linking.

Referring to the previous example, compilation and linking may be done as
follows:

mpif90 swmod1.f swmod2.f swmod3.f ocp*.f swan*.f -o swan.exe

16 Chapter 3

3.3 Make SWAN documentation

SWAN comes with 4 detailed documents which are provided as downloadable
PDF files as well as browsable web-pages:

• The User Manual describes the complete input and usage of the SWAN
package.

• The Implementation Manual explains the installation procedure of SWAN
on a single- or multi-processor machine with shared or distributed mem-
ory.

• The Programming rules is meant for programmers who want to develop
SWAN.

• The Technical documentation discusses the mathematical details and
the discretizations that are used in the SWAN program.

These documents are written in LATEX format. If you are new to LATEX, we
recommend to read first the manual LATEX for dummies that is available in
the SWAN material.

The PDF files are very easy to generate by just typing

make doc

Chapter 4

User dependent changes and

the file swaninit

SWAN allows you to customize the input and the output to the wishes of
your department, company or institute. This can be done by changing the
settings in the initialisation file swaninit, which is created during the first
time SWAN is executed on your computer system. The changes in swaninit

only affect the runs executed in the directory that contains that file.

A typical initialisation file swaninit may look like:

4 version of initialisation file

Delft University of Technology name of institute

3 command file ref. number

INPUT command file name

4 print file ref. number

PRINT print file name

4 test file ref. number

test file name

6 screen ref. number

99 highest file ref. number

$ comment identifier

[TAB] TAB character

\ dir sep char in input file

/ dir sep char replacing previous one

1 default time coding option

100 speed of processor 1

17

18 Chapter 4

100 speed of processor 2

100 speed of processor 3

100 speed of processor 4

User dependent changes and the file swaninit 19

Explanation:

• The version number of the initialisation file is included in the file so
that SWAN can verify whether the file it reads is a valid initialisation
file. The current version is 4.

• The initialisation file provides a character string containing the name
of the institute that may carry out the computations or modifying the
source code. You may assign it to the name of your institute instead
of ’DELFT UNIVERSITY OF TECHNOLOGY’, which is the present
value.

• The standard input file and standard print file are usually named INPUT

and PRINT, respectively. You may rename these files, if appropriate.

• The unit reference numbers for the input and print files are set to 3
and 4, respectively. If necessary, you can change these numbers into the
standard input and output unit numbers for your installation. Another
unit reference number is foreseen for output to screen and it set to 6.
There is also a unit number for a separate test print file. In the version
that you downloaded from our web page, this is equal to that of the
print file so that test output will appear on the same file as the standard
print output.

• The comment identifier to be used in the command file is usually ’$’,
but on some computer system this may be inappropriate because a line
beginning with ’$’ is interpreted as a command for the corresponding
operating system (e.g., VAX systems). If necessary, change to ’ !’.

• To insert [TAB] in the initialisation file, just use the TAB key on your
keyboard.

• Depending on the operating system, the first directory separation char-
acter in swaninit, as used in the input file, may be replaced by the
second one, if appropriate.

• Date and time can be read and written according to various options.
The following options are available:

1. 19870530.153000 (ISO-notation)

20 Chapter 4

2. 30-May-87 15:30:00

3. 05/30/87 15:30:00

4. 15:30:00

5. 87/05/30 15:30:00

6. 8705301530 (WAM-equivalence)

Note that the ISO-notation has no millenium problem, therefore the
ISO-notation is recommended. In case of other options, the range of
valid dates is in between January 1, 1911 and December 31, 2010 (both
inclusive).

• In case of a parallel MPI run at the machine having a number of inde-
pendent processors, it is important to assign subdomains representing
appropriate amounts of work to each processor. Usually, this refers
to an equal number of grid points per subdomain. However, if the
computer has processors which are not all equally fast (a so-called het-
erogeneous machine), then the sizes of the subdomains depend on the
speed of the processors. Faster processors should deal with more grid
points than slower ones. Therefore, if necessary, a list of non-default
processor speeds is provided. The given speeds are in % of default =
100%. As an illustrating example, we have two PC’s connected via
an Ethernet switch of which the first one is 1.5 times faster than the
second one. The list would be

150 speed of processor 1

100 speed of processor 2

Based on this list, SWAN will automatically distribute the total number
of active grid points over two subdomains in an appropriate manner.
Referring to the above example, with 1000 active points, the first and
second subdomains will contain 600 and 400 grid points, respectively.

Chapter 5

Usage of SWAN executable

To help you in editing an command file for SWAN input, the file swan.edt

is provided.

Two run procedures are provided among the source code, one for the Win-
dows platform, called swanrun.bat, and one for the UNIX/Linux platform,
called swanrun. Basically, the following actions need to be done by the run
procedure:

• Copy the command file with extension swn to INPUT (assuming INPUT

is the standard file name for command input, see Chapter 4).

• Run SWAN.

• Copy the file PRINT (assuming PRINT is the standard file name for print
output, see Chapter 4) to a file which name equals the command file
with extension prt.

On other operating system a similar procedure can be followed. For parallel
MPI runs, the program mpirun is needed and is provided in the MPICH
distribution.

Before calling the run procedure, the environment variable PATH need to
be adapted by including the pathname of the directory where swan.exe can
be found. In case of Windows, this pathname can be specified through the
category System of Control Panel (on the Advanced tab, click Environment
Variables) or by adding it in the AUTOEXEC.BAT file. In case of UNIX or Linux
running the Bourne shell, the environment variable PATH may be changed
as follows:

21

22 Chapter 5

export PATH=${PATH}:/usr/local/swan

if /usr/local/swan is the directory where the executable swan.exe can be
found. In case of the C shell, use the following command:

setenv PATH ${PATH}:/usr/local/swan

If appropriate, you also need to add the directory path where the bin direc-
tory of MPICH is resided to PATH to have access to the command mpirun.

The provided run procedures enable the user to properly and easily run
SWAN both serial as well as parallel (MPI or OpenMP). Note that for par-
allel MPI runs, the executable swan.exe should be accessible by copying it
to all the multiple machines or by placing it in a shared directory. When
running the SWAN program, the user must specify the name of the com-
mand file. However, it is assumed that the extension of this file is swn.
Note that contrary to UNIX/Linux, Windows does not distinguish between
lowercase and uppercase characters in filenames. Next, the user may also
indicate whether the run is serial or parallel. In case of Windows, use the
run procedure swanrun.bat from a command prompt:

swanrun filename [nprocs]

where filename is the name of your command file without extension (assum-
ing it is swn) and nprocs indicates how many processes need to be launched
for a parallel MPI run (do not type the brackets; they just indicate that
nprocs is optional). By default, nprocs = 1.

The command line for the UNIX script swanrun is as follows:

./swanrun -input filename [-omp n | -mpi n]

where filename is the name of your command file without extension. The
parameter -omp n specifies a parallel run on n processors using OpenMP. The
parameter -mpi n specifies a parallel run on n processors using MPI. The
parameter -input is obliged, whereas the parameters -omp n and -mpi n

can be omitted (default: n = 1). Note that the script swanrun need to be
made executable first, as follows:

chmod +rx ./swanrun

Usage of SWAN executable 23

For a parallel MPI run, you may also need a machinefile that contains the
names of the nodes in your parallel environment. Put one node per line in the
file. Lines starting with the # character are comment lines. You can specify a
number after the node name to indicate how many processes to launch on the
node. This is useful e.g., for dual-processors. The run procedure will cycle
through this list until all the requested processes are launched. Example of
such a file may look like:

here, eight processes will be launched

node1

node2:2

node4

node7:4

Note that for Windows platforms, a space should be used instead of a colon
as the separation character in the machinefile.

SWAN will generate a number of output files:

• A print file with the name PRINT that can be renamed by the user with
a batch (DOS) or script (UNIX) file, e.g. with the provided run pro-
cedures. For parallel MPI runs, however, a sequence of PRINT files will
be generated (PRINT-001, PRINT-002, etc.) depending on the num-
ber of processors. The print file(s) contain(s) the echo of the input,
information concerning the iteration process, possible errors, timings,
etc.

• Numerical output (such as table, spectra and block output) appearing
in files with user provided names.

• A file called Errfile (or renamed by the run procedures as well as more
than one file in case of parallel MPI runs) containing the error messages
is created only when SWAN produces error messages. Existence of this
file is an indication to study the results with more care.

• A file called ERRPTS (or renamed by the run procedures as well as
more than one file in case of parallel MPI runs) containing the grid-
points, where specific errors occured during the calculation, such as
non-convergence of an iterative matrix-solver. Existence of this file is
an indication to study the spectrum in that grid-point with more care.

24 Chapter 5

Chapter 6

Testing the system

The SWAN system consists of one executable file (swan.exe), a command
file (swan.edt) and a run procedure (swanrun.bat or swanrun). The input
and output to a number of test problems is provided on the SWAN web page.
The files with extension swn are the command files for these tests; the files
with extension bot are the bottom files for these tests, etc. This input can
be used to make a configuration test of SWAN on your computer. Compare
the results with those in the provided output files. Note that the results need
not to be identical up to the last digit.

To run the SWAN program for the test cases, at least 50 MBytes of free
internal memory is recommended. For more realistic cases 100 to 500 MBytes
may be needed, whereas for more simple stationary or 1D cases significant
less memory is needed (less than 5 MBytes for 1D cases).

25

