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Abstract

This paper treats the derivation of a two-dimensional differential equation, which describes the
phenomenon of combined refraction - diffrdction for simple harmonic waves, and @ method of solving this
equation. The equation is derived with the aid of a small parameter development, and the method of
solution 1s based on the finite element technique, together with a source distribution mathod.

Introduction

It would greatly help designers of harbours and offshore structures if it were possible to get some
. quantitative information about the wave penetration and wave height which can be expected in the harbour
ond around the structures. For simple harmonic linear water waves mathematical models exist in the cose
of diffraction [3, 4] or refraction [5, 7] separately. The combined effect in the case of long waves
is described by the linear two-dimensional shallow water equation [10] , but for short waves the
describing equation has nat yet been derived. Battjes [l ] proposed a set of equationsfrom which the
equation derlved in this paper differs in one term.

{ndependently of the writer of this paper Schinfeld [E] derived the same equation written in
another form and obtained in o different way. Solving the equation and treating the boundary conditions
in the horizontal plane is possible in various ways. This paper gives a method which solves the equation
in an area in which the combined effect of refraction and diffraction is important, with a finite element
technique [I'Z] ond treats the Sommerfeld radiation condition [9] with a source distribution methed

41 . Numerical results in the case of Tsunami response of a circular island with parabolic water depth
bl
a constant slope of the bottom are given and compared with analytical or numerical results from other

, propagation of plane waves over o parabolic shoal, and response of a rectangular harbour with
methods. The accuracy of the numerical treatment is not yet known in detail and will be the subject of

further study, so the interpretation of the results must be done with care., An attempt was made o compare
the results for short waves over a parabolic shoal with measurements by Holthuysen [6]

Derivation of the equation

The theory will be restricted to irrotational linear harmonic waves, and loss of energy due to
frictian or breaking is not taken into account. A two-dimensional equation which is applicable to waves

in the range from shallow water to deep water has been derived by means of a small parameter development

and an integration over the water depth.
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Basic_equations

®

iif)

Dimensionless coordinates

The equations with which the derivation starts are:

The three-dimensional potential equation

2 2 2
?._é + a_é + ?__?_ = 0 1)
axz 372 822

The linearised free-surface condition for harmonic waves

2
B, g0 arz=0 @
0z g

The bottom condition

3_2_*2_?_51}‘_4,%_6& = afz——-h(x,y) (3)
3z ax  Ox ay oy B 4 . |
LT\' .( ey . }

with x, y ¢ horizontal coordinates.

vertical coordinates.

\ N

:  three~dimensional velocity potential.
angular frequency .

acceleration due to gravity.

o> @ £

; water depth.

N

Introduce dimensionless quantities with the aid of a vertical length H (mean water depth) and a

horizontal length A (wave length corresponding to H)

Figure {

s

x'=x/A; y' =y/h; z'= z/k; d=h/H

The equations written in these dimensionless quantities ore:

d

: Fro

o



with

COMBINED REFRACTION-DIFFRACTION

61’2
22 _§ig = o0 etz = 0
9z’
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Gradient of the bottom

“)

(5}

Instead of the horizontal length A it is more correct to use the horizontal length L (see Fgure 1

for the definition) as @ characteristic length corresponding to the slope of the bottom.

Ifx=x/Landy =y/L then Vh =} T d with x= H and ¥V =(—a——, L
L

9 x 2

Assume (T d. ¥ d) ond "‘;Zd are of order one.

Now

and

i‘—Vh =e g d
H

(From now on the primes will be omitted for simplicity in notation.)

Power - series

Assume the potential function § has the form

or

oy, D= ZW@, zi0) P Koy, Vea

p=z2WC:p ¢ ixyr$)

~|

)

@)
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with t =z/pand ¥V = pei (=H/ VTL), @ will be developed into a power - series with respect to v§

@ =P,y +V Rk Y #2820, G ) @

| The parameter p con vary independently from the parameter v between zero (shallow water) and
: infinity (deep water). Assuming that the function Zis suclizthur for small values of p the derivatives with
; respect to d are of order pz, then 5 and L 32 e Finite for every value of the parameter

,2 0d 2 ad?

Substitution into the boundary conditions

Substitution of (7) and (8) into the condition (6) using the relation

vz=¢Z T d ®
ad
gives in the limit V —»0 the results:
) zZ . ar g = -d (10
at
(i1 The odd numbered functions @ | are identically zero.
(i) The even numbered functions ¢ | can be expressed in the function Po with the aid

of recurrence relations.

Substitution of (7) and (8) into the condition (5) gives

Z

% = 8pZ =0 t C =0 1
°F y at € am

As the unknown functions the two-dimensional potential function ?o and the function Z remain.

Substitution into the differential equation

Remembering the previous assumption about the function Z, substitution of (7) and (8) into the

differential equation (4) gives in first approximation for small values of ¥ the equation:

2%z

p2ZA(F°+

or

12)
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The left-hand side of equation (12) is a function of x and y only, so the right=hand side also must
be a function of x and y only.
Now put

1 9%z

_— = Y 2("1 ¥) (3)
pzz at2

with ¥ an arbitrary function of x and y only.

The function Z

Equation (13) together with condition (10) and the imposed condition Z =1 at t = 0 gives the solution:

cos h fxp (£ + d} (14
cos h{)( pd}

Dispersion relation

The function ¥ (dimensionless wave number) is fixed by equation (11} which resulis in the dispersion
relation

5 =X tanhi}(pd} (15)

The dispersion relation is the same os Is given In the theory with a constant water depth. The
wave number ¥ is the real root of equation (15) and will now be a function of x and y corresponding to
the local water depth d.

The function ¢

To get an equation for the two-dimensional function g ina higher degree of approximation than
is given by equation (12), equation (4) is infegrated with respect to § from -d to zero after multiplication,
with the function Z, With the aid of the relations

N\N-*Q"'. o £=0 o
/223_2‘P d{'=22_al) -/ ﬂa_zzdc
J at? oy e J af at
and

[Z'P—ﬁ— d§‘=vz)(2/ Zeag
2 B2

-d ~d

the power - series development of the function @ and the recurrence relations between the even numbered

o 7 : P
J 3L
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functions @+ the integrated equation becomes

o [+ o
2
Cf 2epse o f 2aprg,+ % L [ et
d =d H -d
(v, 5 + 00 + L O (v = o 16y
Y

The function ¢ | must be a solution of this equation. Now

o
fzzdt=_£‘-5— with n=3 (+2¥pd
4 X2, sin h{2}p df

and the following relafion exists between the parameters § and p according to the definition of A and

H (see figure 1)
§=2mntanh (2 7 p) 7

o
So for small values of p the integral / 22 d [,‘ is of order one. A distinction is now made
between three cases: -d

Case A: Assume p ) 1. In practice this is the case of "deep" water, giving no variation in the wave

number. Neglecting the terms of the order O (\72) gives the equation in dimensional quantities:
o2
Ago°+_g ¢, =0 s ,

which is the diffraction equation for deep water.
Case B: Assume p =V<& 1, which means the water is shallow, and neglect again terms of the order
0(1!2). It Is easy to see that in this case Z = | +Q (¥ and the dimensionless wave number

2w 2
¥ ===+ O (W)
Vd

In dimensional coordinates und variables the equation (16) becomes
v.Evp)ral e, =0 (19)

with ¢ = Vgh  (phase velocity).
This is the linearised shallow water equation.
Case C: Assume v £ p <1 and neglect in equation (16) terms of orderO(\)z), The resulting equation
in dimensional quantities is:
2
k 9 n _
22 (e, VR =0

n h I<2

2
A<f>°+k<P°+

or, written in another form,
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2
W c
v.(cchlpo)+——c9—¢Po = 0 (20)
with ¢ = 'ki ieg =nc (group velocity)

Wegkitah (h) sn=4 (14-—2Kh
sinhizkh;

Properties of equation (20)

Equation (20) changes into the weli-known diffraction equation in the case of constant water depth
and is also usable in the limiting cases of deep and shallow waters. Substitution of the expression

Po=0 e S, where a is the amplitude and S the phase of the wave,gives the equations:

va.V(cc)}+ K. (v5.99 = 0 @n
c C 9
g
and

V.(uZt:chS) =0 (22)

If the term between curly brackets in equation (21) is neglected, the refraction equations
remain [5] . Equation (20) therefore contains all [imiting situations as special cases and is generally
applicable.

Battjes [1] gives the equations:

—I-Aa+ kz—(VS‘VS)=Oand V.(ozcchS) =0
a

as the describing equations for the refraction - diffraction phenomenon. The combination of these equations,

however, does not pass into the linear shallow water equation when the water depth is small.

Method of Solution
General description:

The solution of the differential equation (20) in an arbitrary area can be found by minimizing the
corresponding functional over the area, taking into account the conditions at the boundaries, i.e., full
reflection at rigid walls and the Sommerfeld condition at sea. The solution at sea, where the water depth
is assumed to be constant, will be o superposition of the incident and an outgoing wave which is caused
by the presence of the harbour or an obstacle. This outgoing wave will represented by a superposition
of waves from point sources at the boundary between the sea and the area of interest. The solution ot

this boundary must be continuous with respect to wave height and phase.
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The functional

The functional which must be minimised to get the solution in area | in which the water depth is
varigble (see figure 2) reads [2] :

<

J='):ffl [ccg(vsa,-VTpl)-uziso,TO,] dx dy (23)

The overbar denotes the conjugate complex value. Minimizing (23) gives @ solution with the

natural boundary conditions:

8lf|

= 0 at /"] um:l/"2

e m—
- ~
\& I P -

//’ \\(' n

e \
M n ll
T ! ! s Figure 2
IL |
b !
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AN 1 /
/
AN L
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L= f, the following term must be added to the
dn

If the boundary condition at /-"2 is
functional J [2] :

'*f (F P+ T P) ccyo @4)
I

Source distribution

in area 11, where the water depth h_ is constant, the solufion can be written in the form [3] :

~ ] 2
P, 0 =P @ +/ b L kg (29)
I 21
2
with $ : The potential function of the known incident wave.

p(s) : The strength of a source distribution on the boundary f2 .
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HO : Hankel function of the second kind.
k° :  Constant wave number.

Distance from point P to the point M at the boundary /-'2 (see figure 2).
i : V- 1.

r

Formulation (25) gives a solution in area Il that satisfies the Sommerfeld radiation condition. From
this expression it can be derived that

aal I [ [ 1 2 ]
= - P L L
an 3 n ”()+£ ke 9 n 24 H° (kar) “ @)

if the point is situated on the boundary /"2 [3 ] .

Continuity conditions

Taking together the two continuity conditions between the solutions ? and £y, ot the boundaryf'2

ap 3
u LA @7)
dn an

P = ¥ and
the problem is well-defined and the unknown functions p(s) and Pl (x, y) con be found.

Numerical method

The functional written in real terms (¢ =Cpl + iy’z) reads:

3¢, 2 3p, 2 3p, 2 3p, 2 .
1= 1 o M _ _r2
%J4[ccgi(ax) +(ay)+(6x)+(3y)}

2 S 2 2
- —f— (P, + P, ] dx oy -éccg F Py +f P (28)

Thenumerical treatment is based on the finite element method to find the minimum of the
functional [12] . Now area | is split up into elements of triangular form and the functions Py and
P 5 are approximated in each element by a linear expression. As the treatment of both functions @
and P, is the same, in the following the subscript will ba omitted. After the linear approximation of

P, the functional will be a function of the M nodal values ProPor eeeeeeien IvE The functional
must be minimal with respect to variation in these values, so
8J - m=1,2,3, ... ) M 29)
29
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This gives a set of linear equations in the unknown nodal values. The function fis also  unknown,
and therefore the integral will be ap

proximated by a summation over N segments in which ¢ cgf is assumed
to be a constant and equal fo the value in the centre point P (see figure 4).

Figure 4

With the aid of equations (26) and (27) the unknown values f in the N points P on the boundary
/72 can be expressed in terms of the strength p of the source distribution:

I N
no= (22) - .p 27l 42 L 30
B (an),, ue) + kz:]p(r.gan[u o ko)l L GO

The confinuity condition for the wave height gives the odditional set of equations to provide
M + N equations in the M + N unknown values P, ¢,

ch and Hy s Har

N
o 1 2
t (Pp, * ?Pi) =P+ kZ1 w P 2 Mo e op)

@n
The value of p in the source point P is approximated by the average of the values in the two
neighbouring nodal points Pi and Pi on the boundary /"2 (see figure 4). The full set of equations, which
must be solved to get the complex values ¢ and y in the nodal and source points respectively, becomes

in matrix notation:

AP+ B p =
De+ Ty

(R

32)

% is the vector of the unknown complex values Pre® o

..... F P M and p the vector of the strength of
the source distribution in the N source points on the boundary /72.

A is a real symmetric M x M matrix with a band structure generated by the finite element method.

B is a complex M x N matrix which has non-zero values in the rows corresponding with the nodal
points on the boundary /"2.

D is a real N x M matrix generated by the averaging procedure in equation (31).
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T is @ complex N x N matrix with coefficients consisting of Hankel functions according to equat

481

ion

The known vectors r and s are provided by the indicent wave $ This system of equations is solved
by a direct solution method. First the vector u is computed according to

p=0-0a"p" ¢ -paly (33)

and then the vector ¢  follows from

p=AT ~aTpy (34)

In computing the decomposition of the matrix A, the symmetrical band structure of the matrix has

been taken into account.

Results

It 1s not the intention of this paper to glve accurate solutions of some of the problems but more

to show the possibilities of the method of solution which has been described.

(i)

The quantitative aspects of the accuracy of the method will be the subject of further study.

Tsunami_response for a circulor island

A good comparison with other computations without large computing time can be obtained in
the problem of tsunami response for o circular island with a parabolic bottem profile. Vastano and
Reid [l l] have solved this problem with a finite difference technique and compared their results
with analytic solutions. The results of the method given in this paper are shown in figures 5 - 9.

Figure 5 gives the configuration of the finite elements in the area of variable depth, First
the problem with a constant water depth has been computed to check the method of solution (figure
6) and then the problem with a parabolic bottom profile has been solved and compared with the
results of Vastano and Reid {figure 7). It has still to be seen whether the accuracy of the method is
better when the wave length becomes greater with respect to the size of the elements.

Propagation of tsunami waves over a parabolic shoal

The influence of ashoal with parabolic bottom profile on the propagation of tsunami waves has
been computed and the results are given in figures 8 - 10. Figure 8 indicates how the area of
varioble depth hos been split up into triangular elements. Figures 9 « 10 show lines of equal phase
ond amplitude. The phase of the wave is expressed in degrees, so a difference of 360 degrees
corresponds to one wave length.

Propagation of short waves over a shoal

An interesting problem with respect to the combined effect of refraction and diffraction of
waves is the propagation of short waves (short with respect to the size of the disturbance of the
bottom) over a shoal with a parabolic bottom profile, because the presence of a caustic curve (see
figure 11) following from the refraction theory is an indication that diffraction effects cannot be

neglected. An attempt was made to compare the results in this cose with the measurements of
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Holthuysen [6] . To save memory and computing time the area, which has been split up into finite
elements, was reduced to a circle segment with an angle at the top of 60 degrees (figure 12). It was
assumed that the solution ot the boundary AO (see figure 11) does not deviate from the solution follo-
wing from the refraction theary (ray-method) according to the measurements. The solution of the ray-
methad has been imposed as a boundary condition on the boundary AO, and the results of the compuy~
tation are given as lines of equal phase (fiure 13), lines of equal amplitude (figure 14) ond lines

of equal water elevation at some time (figure 15). A good comparison with the measurements over a
large area was not possible because of the lack of information about the phase and because of the
unreliability of the quantitative results of the measurements in an area above the shoal. Qualitatively
the computer results seem reasonable.

Response of a rectangular harbour

The last problem of which the results will be given is the response of a rectangular harbour
with a constant slope of the bottom. The amplitude of the standing wave in the centre line of the
harbour is given for different slopes of the bottom in figure 16. In the first instance the wave
height in the harbour decreases as a result of the increasing slope of the bottom, but with a slope
of 1/3 the phenomenon of resonance of the harbour becomes important.
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matrix

amp litude

matrix

phase velocity

group velocity

matrix

dimensionless depth
function

gravity constant

mean water depth
Hankel function
water depth

V-T

functional

wave number

constant wave number
horizontal length
length of k-th segment
number of nodal points
number of source points
shoaling factor

normal vector

known vector

phase

distance along the boundary

knewn vector

matrix

horizontal coordinates
vertical coordinate

function

o > ey
ol

T - X -

pés)

T R S

R4l

Qey €16

boundaries

parameter (H/L)

Laplace operator

parameter (u2 A/g)

parameter (2 /H)

dimensionless wave number

mean wave length

parameter (H/2)

strength of the source distribution
vector of strength of the sources
parameter (H/ V A L)
three~dimensional potential function
two-dimensional potential function
potential of incident wave
potential functions in areas | and I
respectively

vector of values of ¢ in the nodal points
angular frequency

stretched vertical coordinate z/p

nabla operator.
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