funwaveC Users Manual

Falk Feddersen

July 31, 2007

Contents

1 Introduction 3
2 Compiling 4
2.1 Required Libraries e e e e 4
2.2 Unpacking, configure,andmake i 4
221 AppleMacG4Hack e 5
3 Running funwaveC 6
3.1 Invoking funwaveC e e e 6
3.2 InitFile e 6
3.21 ExamplelnitFile e 6
3.3 InitFilelnput Stuff e e 8
3.3.1 LINE1l: MODELDYNAMICS i 8
332 LINE2:GRIDSIZE&SPACING e e 8
3.3.3 LINE 3: BOTTOM STRESS INFORMATION 8
3.3.4 LINE 4: LATERAL FRICTION INFORMATION 8
3.3.5 LINES5: BATHYMETRY e e e e 9
3.3.6 LINE6: WAVEMAKER 9
3.3.7 LINE7:BREAKING e 11
3.3.8 LINE8: SPONGELAYERS e 12
3.3.9 LINE9:FORCING e 12
3.3.10 LINE10: INITIALCONDITIONS e 12
3.3.11 LINE11: TRACER e 13
3.3.12 LINE 12: FLOATS e e e 13
3.3.13 MODELTIMING e e e e e e 13
3.3.14 OUTPUT e e e e e e e e e 14
3.4 DiagnosticOutput e e 16
3.4.1 GeneralunwaveC information, 17
3.4.2 Timing Report e 17
3.5 Model Stability e 17
3.5.1 CFL Stability Criteria e e 17
3.5.2 Sponge Layer Stability Criterion 0oL 18
3.5.3 Biharmonic Friction and Stability 18

Model Equations and Numerics

4.1 The Surfzone Circulation Model
4.2 The Staggered C-Grid and discretization
4.3 Model time-stepping

File Structure Overview
Tests and Example .init Files
MATLAB scripts for setup and processing

Bugs

19
19
20
21

22

23

24

25

Chapter 1

Introduction

funwaveC is an implementation in the C programming language of tHg fdnlinear boussinesq equations
of (We et al., 1995) that also includes the extensions for a wave geparatid wave breakingunwaveC is
essentially a re-implementation of the FUNWAVE modeb(Chen et al., 1999; Kennedy et al., 2000)
from the University of Delawareh{tp://chinacat.udel.edu/...). For my own research projects, | needed
to use a Boussinesq wave model, and the reason why | undeitigke-implementation is essentially
because FUNWAVE is written in FORTRAN (FORTRAN77 no lessBs a former computer scientist |
cannot abide FORTRAN. For those who do not appreciate tliereifces in programming langagues and
the practices they enforce, this may seem trivial. Howeatearakes a world of difference in creating clean,
debuggable, and maintainable code. So | decided to bedmraniexisting nonlinear shallow water equation
code | had previously developed (usedNoyes et al., 2005) and develop it into a Boussinesg model. After
considering using C++, | choose to write the code in C bechuses more familiar with it, it allowed me
to code both at high and low levels, and it is highly portabfethe end there are a number of differences
betweenfunwaveC and FUNWAVE particularly in the numerics. However they hagsentially the same
functionality and to show my respects, | choose to name thadehfianwaveC .

The model has been used now in studies of surfzone tr&edddrsen, 2007) and drifter oydell and
Feddersen, 2007) dispersion and is currently being used in other ptsjas well. 1 felt it would be useful
to others to release it publically under the GNU Public LeeVersion 2 Ifttp://gnu.org). The model has
been run in a variety of *NIX environments and in principlestd compile and work on Windows as well
(with the Cygwin environment). Please note thatwaveC is a work in progress as is this user's manual.
Neither are complete yet the model is certainly quite useful

Please let me know if your experience with this model eithisryfou with joy or makes you cry! If you
have any problems or questions, do not hesitate tofaB@coast.ucsd.edu)

Chapter 2

Compiling

2.1 Required Libraries

To compile the program, one must first have certain librainstalled on the system. In particular, the
glib andgtk libraries must be present with a 1.2 series version numbierglib library is used to handle
various I/O and memory resource things. Tite libarary handles all the GUI window stuff. These libraries
work together and are installed on most GNU/Linux and UNIDXteyns. They can be installed on OS X
usingfink . The source code for the libraries also can be downloaded Wwaw.gtk.org and again both
rpms and source tar balls are available. If you use rpms maketlse appropriate header files are installed.
This may require also installing the development versioglibt

Installation ofglib andgtk can be checked by typing at a shell prompt:
% glib-config --version
and
% gtk-config --version
If you get a response such 82.8 then you are in business. | recommend using versidn2.8. Note the
2.0 series of these libraries will not work!

2.2 Unpacking, configure, and make

Once these libraries are installed, To build the progrartanthe distributiorfunwaveC-0.2.0 directory.
Type the command

% ./configure

and then

make

The program should compile automatically. This has beefigamred for Linux, Sun, and OS X.

One can do a basic test of the newly compileadvaveC by entering thaests directory and typing
make. This hasfunwaveC read in all theinit files in the tests directory, parse them, and quit. It does
not actually do any simulations. For more information.omnt files see the next Chapter. For more
information on the test init files see the Tests Chapter.

2.2.1 Apple Mac G4 Hack

Note, there is a hack for compiling on Apple Mac G4 sytems \@th X. After runningconfigure , you
need to open the filklakefile in an editor and add the following to tleFLAGSine: -mcpu=7450 which
tells the compiler to build for a G4 chip not a G5 chip. For epéenreplace:

CFLAGS = -fast ‘gtk-config --cflags'

with CFLAGS = -fast -mcpu=7450 ‘gtk-config --cflags

| need to figure out how to set this in tkenfigure process.

Chapter 3

Running funwaveC

3.1 Invoking funwaveC

funwaveC is run on the command line by invoking at the prompt:
% funwaveC test.init
wheretest.init is the name of the input file. There are a number of commanddpi®ns that are

available. These are
-h Print out help information on usage and quit

-p Parse the input file to check for errors and quit

-g Opens up a GUI timing window while the model runs

-v Prints out model kinetic and potential energy at each levxh#

-d [1,2,3] Prints out diagnostic information at either a level 1,2, ¢in® step
The verbose option tells the model to write out the value efititegrated kinetic and potential energy

at the end of every levell time (defined later in model timind)is is useful for making sure that the model
isn't going unstable. The diagnostic optionl | takes an argument of 1,2, or 3 and reports on the hard-
wired options, the estimated memory usage, the stabilitgpaters, the wavemaker, sponge layers, timing
info, and performs some basic tests (checking total watethdend testing continuity) at the beginning of
the model run and at the end of the intended timing level glwethe argument. Thusl 3 only gives
diagnostic output at the end of the model runl. 1 gives diagnostic output at the end of every levell
iteration loop which is useful for diagnosing stability ftu

3.2 Init File

funwaveC reads in a init file given on the command line. Customarilys file is given the extension
.init , but this is not required. The init file details how the modeta be configured, from model type,
domain size, the wavemaker properties, to the output thaigisested. In théests directory, there are
many examples of init files for many different situationsed®e see the Chapter on Tests.

3.2.1 Example Init File

The input information is given by the init filename on the coamu line. Comments are allowed in the
initfile by putting a ‘%’ at the start of the comment line. A ydrasic init file example is:

funwaveC dynamics nwogu

dimension 11 10 1 1

bottomstress 0.01

mixing biharmonicO 1

bathymetry flat 1.0

eta_source off

breaking off

sponge off

forcing none 0.0000 const 0.0001
initial_condition none 0 none 0 none 0O
tracer off

floats off

timing 80 (min) 5 (min) 10 (sec) 0.01 (sec)
levell cross U O file ascii Ucross.dat
levell cross V 0O file ascii Vcross.dat
levell cross N O file ascii eta cross.dat

which used Nwogu Boussinesq wave dynamics (line 1), setslplkey 10 grid with 1 m grid spacing
(line 2). The bathymetry is flat with depth of 1 m (line 5), ahere is no wave generation (line 6), wave
breaking (line 7), or sponge layers (line 8) active in the. rlithere is an alongshore)(forcing (e.g., due
to a wind stress) 0f.0001 m/s? (line 9) and a drag coefficient (line 3) of = 0.01. The initial condition
(line 10) foru, v, andn are zero. Tracers (line 11) and floats (line 12) are not ireduieh this run. The
model is to run for 80 minutes in 3 nested loops of 10 sec, 5 anid,finally 80 min (line 13). The time step
dt = 0.01 sec (line 13). Lines 14-16 describe the output that the misdel write. There is a wide variety
of possible model outputs. Here, the init file tells the madebutput the cross-shore array at alongshore
location 0 ofu, v, andn as ascii files with the given file names.

This example just gives a very small indication of the paksés of the init file. The full form of the
init file, not including output (we’ll come to that later) igantities in [] denote the various options)

funwaveC dynamics [linear,peregrine,nwogu,wei_kirby]
dimension nx ny dx dy
bottomstress cd
mixing [none,newtonian0,biharmonic0] nu
bathymetry [flat,planar,fileld,file2d] ...

flat => bathymetry flat depth

planar => bathymetry planar depthO slope

fileld => bathymetry fileld filename

file2d => bathymetry file2d filename

eta_source [on,off] [monochromatic,randomlnb,randomaf ile,random2nb,random2filea,random2fileb]
monochromatic => eta_source on monochromatic H f theta i_wa vemaker [delta]
randoml1nb => eta_source on randomlnb Hsig fp fwidth fnum the ta i_wavemaker [delta]
randomlfile = => eta_source on randomifile spectra_file i_w avemaker [delta]
random2nb => eta_source on random2nb Hsig fp fwidth fnum the ta spread i_wavemaker [del
random2filea => eta_source on random2filea spectra_file i _wavemaker [delta]
random2fileb => eta_source on random2fileb spectra_file i _wavemaker [delta]

breaking [on,off] [zelt, kennedy,falk] [smooth,nosmooth] ...
zelt => breaking on zelt [smooth,nosmooth] [delta_b cl]
kennedy => breaking on kennedy [smooth,nosmooth] [delta b cl cF Tstar] defaults= [1.2

falk => breaking on falk [smooth,nosmooth] [delta_b cl]

sponge [on,offf num_x0 num_XxL c_sponge
forcing [none,const fileld.file2d] (Fx.filename) [none ,const fileld.file2d] (Fy,filename)

initial_conditon [none,fileld,file2d] U_value [none,co nst,fileld,file2d] V_value [none,const,fileld,file2
tracer [on,off] [pointsource,alonglinesource] ix iy qsrc kappa start_time end_time
floats [on,off] [random,file,point] ...
random => floats on random N (N = number of floats)
filefloats => floats on file filename
timing level3_time (units) level2_time (units) levell ti me (units) dt (units)
level3_time = total run time, level2_time = loop2 run time
levell time = loopl run time, dt = time step
units = [hr,min,sec]

Note that this information is given by the model with the h@fg (-h). These quantities are now
described one by one.

3.3 Init File Input Stuff

3.3.1 LINE 1. MODEL DYNAMICS

The model dynamics are given by the first line of the init fileehhshould look like
funwaveC dynamics [wei _kirby,nwogu,peregrine,nswe,linear]
where the options in [] define chosen the model dynamics.

3.3.2 LINE 2: GRID SIZE & SPACING

The grid sizes are given by the first line of the init file as

dimension <nx> <ny> <dx> <dy>

Note thatny must be> 6. The units ofdx anddy are meters. For a run with a x and y domains of 1000 m
by 450 m and 5 meter grid spacing the line would read the linglavbe:

dimension 201 90 5 5

3.3.3 LINE 3: BOTTOM STRESS INFORMATION

bottomstress cd
The drag coefficient, is nondimensional and is typicall®(10-2). What this does is add a quadratic
bottom stress term of

—calul(u,v)/d

(whered is the instantaneous depth) to the momentum equations.

3.3.4 LINE 4: LATERAL FRICTION INFORMATION

mixing [none,newtonian0,biharmonic0] nu

The lateral friction can be eithetone, newtonian0 or biharmonicO . nu is the lateral viscoscity or
hyperviscosity depending on the lateral friction chosemat\this does is adds a term to the right-hand-side
of the momentum equation a term either (fQr

+vV3u, —vViu

for newtonian or biharmonic fruction respectively.

Choosing the hyperviscosity for biharmonic friction: There are subtelties to choosing théor bihar-
monic friction... More later.
3.3.5 LINE 5: BATHYMETRY
The fifth line loads the bathymetry. The format is
bathymetry [flat, planar, fileld, file2d] [hO, (slope hO0), filename, filename]
The options for each are wheréormat> is eitherflat , planar , fileld , orfile2d
o flat :If flat , the bathymetry is assumed constant everywhere and is @ivemeters) byho0.

e planar : When the format is:
bathymetry planar slope hO the bathymetry is planar with constant slope in x that is jive
slope and depth at: = 0 of hO (in meters).

o fileld: If the format isbathymetry fileld filename The alongshore uniform bathymetry if
loaded from the fildilename which is an ascii file of a single vector of lengik-1 . does not allow
for alongshore inhomogeneous bathymetry.

e file2d :Ifthe formatis
bathymetry file2d filename
the 2D bathymetry i sloaded up from the filename which is an ascii file and a two-d array of
length[nx-1,ny]

3.3.6 LINE 6: WAVEMAKER
The 6th line sets the wavemaker stuff, which can be complitathe line begins with,
eta _source [on,off] [monochromatic, randoml..., random2...]
The 2nd option sets the wavemaker to be on or off. If set tohafhtthe rest of the line is ignored.
Monochromatic There are three essential type of wave optiamenochromatic which is single fre-

guency and single direction waves, essentially the sp@cisua delta function in frquency and direction,
i.e, E(f,0) = Eod(f — f0)o(6 — 0o).

eta _source on monochromatic H f theta i _wavemaker [delta]

whereH is the wave height in meters, is the frequency in Hztheta is the wave angle in degrees,
i .wavemaker is the grid location in x where the wavemaker is centered. rdlie an optional parame-
terdelta regarding the relative width of the wavemaker regidalta defaults to zero. See the funwave
manual for more info.

Randoml1 There is an option for narrow-banded random waves cadledomlnb . This parameter looks
like

eta _source on randomlnb Hsig fp fwidth fnum theta i _wavemaker [delta]

Many of these options are similar to monochromatic. Thergis the addition ofwidth - the width of
the spectral peak in Hz, and fnum - the integer number of gisdrequencies that make up the peak. This
should be odd.

The randomifile option is for waves random in frequency but each frequency lave it's own
direction, so thaf(f,0) = E(f)o(6 — 0o(f)). The form is

eta _source on randomlfile spectra file i _wavemaker [delta]
where thespectra _file has 3 columns
f (Hz) a(f) (m), theta (deg)

wherea(f) is the fourier amplitude at that frequency (not the spektra!

Random2: There are three options for random directionally spreade&gandom?2). The firstrandom2nb
is narrow-banded in frequency and direction and is simddhérandominb option above:

eta _source on randomlnb Hsig fp fwidth fnum theta spread i _wavemaker [delta]

wherespread is the directional spread in degrees.
The second optionandom2filea is similar torandomifile in that a directional spread is specified
at each frequency The form is

eta _source on randomZ2filea spectra file i _wavemaker [delta]
where thespectra _file has 4 columns
f (Hz) a(f) (m), theta (deg) spread (deg)

wherea(f) is the fourier amplitude at that frequency (not the spektiehis is only tested at a rudimentary
level...

The third option fandom2fileb) specifies the full frequency-directional sprectra. Therfof this is
similar,

eta _source on randomZ2fileb spectra file i _wavemaker [delta]

but thespectra _file now is different it looks like rows of and columns of frequency,
-1 6, 6
fi ann a

fo oan ax ..
wherea;; are the fourier amplitudes at each frequency and direction.

Potential Bug: There may be problems in my conversion frénto &, of the directional spectra. In a
continum

/D(e)de =1= /D(k‘y)dk:y/cos(sin_l ky)

could i be messing this up?

10

3.3.7 LINE 7: BREAKING

The 7th line sets the wave-breaking parameters. Breakiigislated by using a eddy viscosity on the front
face of sufficiently steep waves. Breaking parameters areifsgd by:

breaking [on,off] [zelt,kennedy] [smooth,nosmooth]

If breaking is set to beff then the eddy viscosity always zero. If breakingristhen there are two types of
breaking optionszelt (Zelt, 1991) and the more complicatédnnedy (Kennedy et al., 2000) breaking.
In addition, one must also specify whether a smoothed or asnwothed eddy viscosity is desired. The
eddy viscosity is smoothed on a 3 by 3 grid.

Zelt (1991)
breaking on zelt [smooth,nosmooth] [delta b cl]

where the defaults are [1.2 0.3].

Kennedy et al. (2000)
breaking on kennedy [smooth,nosmooth] [delta b cl cF cT]

¢ where the 4 parameters control breaking. If not all therpatars are given then the defaults[of.2
0.65 0.15 5] are used.

Falk breaking
breaking on falk [smooth,nosmooth] [delta b cl]

where the defaults are [1.2 0.3]. This is NOT YET TESTED. USEYAOUR OWN RISK!

Breaking Eddy Viscosity Definition The breaking eddy viscosity is defined as
vor = 5 B(t)(h+m)m (3.1)

whered, and B are non-dimensional. The parametéfsets the overall magnitude of the eddy viscosity.
The parameteB is defined so that

177715 > 277:
B=q m/n;—Lm>mn (3.2)
077715 < 77;

Wheren; is the critical free-surface elevation time-derivativeigfhturns on wave-breaking. This is defined
as....

Thefalk breaking method is slightly different. If at any poiBt (as Zelt) becomes non-zero, then it
stays non-zero further offshore until < 0. This is intended to better mimic the fact that white water of
breaking waves always stretches up until the top of the walkeeneed to see how this works.

11

3.3.8 LINE 8: SPONGE LAYERS

The next line defines the sponge layer:
sponge [on,off] num X0 numxL c _sponge

The 2nd parameter sets the onshore and offshore spongs Eyeither on or off. The 3rd and 4th pa-
rameters fumx0 andnumxL) set the number of grid points (U grid points?) on the onslaare offshore
boundary where the spong layer is active. The 5th parametgsange) is the maximum linear drag coef-
ficient for the sponge layer. Experience has showndhsatonge * dt < 0.25 for the model to be stable.
If the-d X flag is turned on then the sponge layer stability is tested.

3.3.9 LINE 9: FORCING

The nth line sets the cross-shore and alongshore forcing farmat is

forcing [none,const,fileld,file2d] (Fx,forcing Afile)
[none,const,fileld,file2d] (Fy,forcing file)

wherenone means there is no (x or y) forcing. The parametarst implies that there is constant x or y
forcing and the subsequent parameter ¢r Fy) is the forcing value in units...?? (eithers—2 or m?s~2 -
need to check).

With parametefileld , the forcing is given by a cross-shore array in filendoneing _file . Simi-
larly, with parametefile2d , the forcing is given by a two-dimensional array in filenaforeing file
The size of the 1D and 2D arrays must be correct given the dosize. If not there will be an error mes-
sage. Along rows correspond to constant cross-shore dogatnd down columns correspond to the same
alongshore location.

3.3.10 LINE 10: INITIAL CONDITIONS

The next line load the, v, andp initial conditions respectively. The format is identicalthat for the forcing

initial _condition [none,const,fileld,file2d] Uic [none,const,f ileld,file2d]
Vic [none,const,fileld,file2d] ETAic

where the first pair is the initial condition and subsequent pairs are fcandn, respectively.
e none: With the choice ohone, the initial condition foru, v, orn is zero.

e const : With the choice ottonst then the initial condition is constant throughout the damend
is given by the numerical value ldic , etc.

e fileld : With the choice ofileld the icis a cross-shore array (uniformginof ascii numbers in
the filenameJic , Vic , ETAIc . The array sizes amgX, NX+1, NX-1 for u, v, andn, respectively.
The boundary conditions that the model uses must alreadgthgsn these initial conditions. This is
also rather kludgy but makes things simpler right now. If yloun’t understand the andv boundary
conditions consult the other documentation.

e file2d : With this choice the a 2-D initial condition field given indlfilename is specified.

12

3.3.11 LINE 11: TRACER

tracer [on,off] [pointsource, alonglinesource] <ix> <iy> <gsrc> <kappa> <half _life>
<start time> <end time>

where<qgsrc> is the flux source in units ..skappa> is the lateral diffusivity in MKS, anchalf _life>

is the tracer half life in secondsstart time> (in sec) indicates when the tracer release is to begin and
<end time> whenitis to end. If these two parameters are missing theeitnrelease is assumed to begin
at the start of the run and continue until the end.

3.3.12 LINE 12: FLOATS

The next line controls the floats or drifters used in the modke line format is,

floats [on,off] [random,file,point] ...

where the options aneandom positioning or positions input from a file.

Random Float Positioning: For random float positioning choose
floats on random N (time)

whereN is the number of floats. Optionally you can also specify a flekgase time (implemented yet?)

Floats Position Input File:
floats on file filename
wherefilename is the float input file. It has a format of columns of
X y (release _time (recovery _time))

wherex andy are the release locations in meters and there is an optileate _time andrecovery _time

(in seconds). If theelease _time is not given then it is assumed to be at the intial tihe=(0), and the
drifters are never recovered. If thelease _time is given but without aecovery _time , then the drifters
are never recovered. Obviously there can be no recoverputith specific release time.

Point Drifter Release: Still need to implement this.

3.3.13 MODEL TIMING

The 13th line, controls the timing of the program includimgat run time and the time steft. Before
explaining the format, let me explain a little about htwmwaveC runs. The heart of the integration code
takes place within three for loops which look like

for (i=0 to [loop3])
for (j=0 to [loop2])
for (k=0 to [loopl])
time_step_model();
time=time-+dt

13

The user has control of how much run time is spent within eacp.| This is convenient when one wants
to specify the output that the model is to write. Output isered in the next section. The timing control
line contains eight pieces, which must all be present. Thadbis
timing <total _time> (<units>) <loop2 _time> (<units>) <loopl time> (<units>) <dt>
(<units>) The four times can be floating point numbers and their mearang summarized below

e total _time is the total time the model is to integrate for in the specitiads.
e loop2 _time is the time spent in loop2 (i.dor (j=0 ...

e loopl _time is the time spentin loopl (i.déor (k=0 ...

e dt is the time step size of the model.

The are four possible choices for the unitday), (hr), (min), (sec) . Different times can have
different units.

Because the four different times control the number of itens in the three loops (above), the four run
times must be integer divisible, that is,
total _time/loop2 _time
loop2 _time/loopl _time
loopl _time/dt
must all be perfect integers (in common units of course).otfthe model returns with an error message.
Note also thatoop2 _time can equaloopl _time andtotal _time can equaloop2 _time . This means
that one iteration of a loop occurs.

Here is an example of a timing line. Suppose one wants to rmibdel for a total of 24 hours, with
time step of 10 sec, and loopl time of 30 min and loop2 time od@$ (note these values are all integer
divisible), then the timing line in the init file would lookid:

1 (day) 2 (hr) 30 (min) 10 (sec)

3.3.14 OUTPUT

There are a number of functions which output the model dadaaegcontained in the fileutput.h . There
are three options for output, (1) at the end of loop 1 - calsell 1 output, (2) at the end of loop 2 - called
level 2 output, or (3) at the end of the model run - called I&/elutput. This allows for a wide range of
output options at various time intervals. The line formathia init file is the same for all three cases and
looks like

<level[123]> argl arg2 arg3 arg4 arg5

where<level[123]> is the string “levell”, “level2”, or “level3”. There can beanany output commands
of this sort as desired (provisionally). Following we ddserthe detail of each level command.

There are six different output types for amyel[123] output: (1)point , (2) along - alongshore
line, (3) cross - cross-shore line, (49napshot (2D map), (5)avgsnapshot , and (6)floats - docu-
mented later. Any ofi, v, eta , vorticity (vort), breaking eddy viscositye@idy), tracer , and cross-shore
(taubx) & alongshore fauby) bottom stresses can be chosen as output variables for mipsttdypes.
Note that output parameters (except for filenames) are s&t-sansitive. This means thatdy andEDDY
are treated the same.

14

Point Output: Point output is restricted to only variablesv, eta , andtracer . This can be changed if
needed and is a relic of older code. For point output the foisna
levell point [U,V,P,T] x-loc y-loc [file,term] [ascii,bin ary] filename
The parameterg-loc andy-loc are the index locations for the point output. The last twoiars
[ascii,binary] filename are only given iffle option is chosen. Théle option sends output
to the specified filename in eithascii or binary format. Theterm output sends output to the terminal
(ie., stdout).

For example to output) at index location 5,5 every levell time step to the fifie.dat use the
command:
levell point U 5 5 file ascii ufile.dat
Note that the index locations cannot be out of boundsQi.€.y-loc < NY and0 < x-loc < NX (for
U, NX+1 for V, NX-1 for P). An error message is given if the indis are out of bounds. (this is not yet
implemented!!)

Cross and Along Output: Similar to point output, the model can output a cross-shomd/ax along-
shore array at each output level time. The format is simdgvdint output,evell cross var y-loc
[file,term] [ascii,binary] filename

andlevell along var x-loc [file,term] [ascii,binary] filenam e

wherey-loc

Snapshot Output snapshot outputs the entire 2D grid of variable at the raqddtevel123) time interval.
The variable can be eta, U, V, vorticity, eddy viscosigdy) or tracer. The format similar islevel123>
snapshot var [file,term] [ascii,binary,fCbinary] filena me.base

In addition to ascii and binary format, there is an additlomatput format called fCbinary. This output
format is useful for data that will be read into MATLAB. Thaeea functionload _fCbinary _fileem in
thematlab directory that reads in these data files. Note that binaryf@bthary are machine architecture
dependent so, fChinary files cannot be transfered from a G3ntel system and still be useful. There is
a separate output file for each levell23 time step. The filesaane based on tHdename _base and
are namedilename _base _snap X _NNNN.dat or with extensionfCdat for fChinary output. The
X denotes the level (1,2, or 3) and NNNN is the level123 tirmpsHere is an example

level2 snapshot eta file fChinary eta

This commands writes the value of eta at each level2 time $tepsequency of files are calleth _snap 12 _0000.dat,
eta _snap 12 0001.dat, eta _snap 12 _0002.dat,...

Average Snapshot Output This is very similar to snapshot output, only that an aveiaghe 2D field is
output. The format islevel123> avgsnapshot var [file,term] [ascii,binary,fC binary]
filename _base

The averaging is done at every lower level time step. ThusvelR is selected, the averaging is done over
every levell time step. If levell is selected, | think theragéng is done every dt. Not sure. The output
filenames are similar to snapstidéname _base _avgsnap _IX _NNNN.dat

Float Position Output: Float positions can be output at aleyel[123] . The format for this is

levell floats [term,file] ...

15

If the terminal optionstérm) is chosen then float positions are written to the termintlefr). If file
output file) is chosen then there options include

levell floats file [ascii,binary] filename
Right now only ascii output is well developed. The formatiuf butput file is:

time float _id release _time x y u v

wheretime andrelease _time are in seconddgloat _id isinthe float number 1...N; andy are the float
locations in meters, anglandv are the cross-shore and alongshore float velocities in ni/sa¢h time, all
the active floats are output. An example of the float outpubisthiree floats)

66.02 0001 0.0 505 5 -1.49 0
66.02 0002 0.0 59.6 5 0.00737 0
66.02 0003 0.0 681 5 0.0642 0
66.52 0001 0.0 498 5 -1.18 0
66.52 0002 0.0 596 5 -0.0391 0
66.52 0003 0.0 68.1 5 0.0971 0

3.4 Diagnostic Output

RunningfunwaveC with diagnostic output€g., -d 2) outputs on the terminal (stderr) information on the
model run. For example running the modelf@angle.init inthetests directory with the command:
% ../funwaveC -v -d 2 fCangle.init

gives the following output

Fkkkkkk funwaveC 0.1.10 sxxrrnnrccesikkk
funwaveC: reading in init file: fCangle.init

* Nonlinear Nwogu Boussinesq Dynamics

field2D: number allocated =65, Memory requirements: 19.87 2 Megabytes
------------- * Timing Report * -------m-mmme-

Total Run Time = 80 (s) dt = 0.005 (s)

Levell Run Time = 1 (s) Level2 Run Time= 4 (s)

Level3 # = 20 Level2 # = 4 Levell # = 200

Default time units are (sec)

——————————— * Stability Report *
Max U = 0 (m/s), dt=0.005 (sec), dx=1 (m) Lx=400 (m) Ly=100 (m)

cd=-0.01, nu_bi=-1 (m"4/s), nu_newt=0 (Mm"2/s), min h=1 (m)

CFL_UV-x # = 0, CFL_UV-y # = 0 :CFL UV number OK

CFL_WAVEx # = 0.0156605 , CFL_WAVEy # = 0.0156605 :CFL WAVE nu mber OK

* Min depth (h+eta) = 1 (m), Max depth (h) = 1

Mass conservation: \int \eta dx dy = 0 (m™3)

————————— Lateral Mixing Stability Report --------------

Using Biharmonic Friction: Shi_x # , Shi_y # = 0.005 : B iharmonic Friction OK
Grid Reynolds Number: R_bi-x # = i-y # = 0 : Biharmonic Gr id Re OK

Domain Scale Biharmonic Re # = 0

©
T o

S
o G

Botom Friction Stability: Su # = 0 : Bottom friction OK

16

Sponge Rayleigh Friction (xO,xL) # = (0.0449809 , 0.0449809)

----------- Eta Source Function Report: MONOCHROMATIC Wav €S -

H = 0.01 (m), freq = 0.20 (Hz), Lwave = 15.2 (m) theta = 17.745 (d eg)

hO = 1.000 (m), kh_0 = 0.41, a/h = 0.01, Ur=0.03, LY/ly=2 , k_y = 0.12566 (rad/m)
i_src = 200, i_width =9, x_src = 200.5 (m), x_width = 9.0 (m), d elta=1.0

------------- * Passive Tracer Report *

Passive Tracer: module not used in this run

————————————— + Floats Report *
Floats: module not used in this run

Time (units) Total KE (m"3/s"2) Total PE (m"3/s"2)
0.005 (sec) 0 1.36e-06
0.010 (sec) 1.32e-10 5.43e-06

3.4.1 Generalf unwavecCinformation

The first few lines of diagnostic output are,

KAAFKEK funwaveC 0.1.10 Ak koo
funwaveC: reading in init file: fCangle.init

* Nonlinear Nwogu Boussinesq Dynamics

field2D: number allocated =65, Memory requirements: 19.87 2 Megabytes

Line 1 gives the model version number, Line 2 gives.thi# file being read in. Line 3, reports on the
model dynamics that were requested in fim¢ file and are being used. The 4th line, basically reports
on the estimated memory requirements of the model. Thisgilso that you can be sure that you are not
running a simulation that uses more memory than your sysssnThe listed memory requirements are an
estimate only and are probably slightly low.

3.4.2 Timing Report

————————————— * Timing Report * -----m-mmmmme-

Total Run Time = 80 (s) dt = 0.005 (s)

Levell Run Time = 1 (s) Level2 Run Time= 4 (s)
Level3 # = 20 Level2 # = 4 Levell # = 200

Default time units are (sec)

3.5 Model Stability

3.5.1 CFL Stability Criteria

There are two CFL stability criteria, wave and advective Gkimbers. The wave stability number can be
approximated by;,.xAt/Az wherecyna.x = v ghmax, i€., the shallow water maximum phase speed. The

17

advective stability number is given by ,.x At/ Az where|u|nax is the maximum instantaneous horizontal
velocity vector. Both of these number must be less than @allg If diagnostic output is requested, this
value is checked and a warning is given if either number iigo

3.5.2 Sponge Layer Stability Criterion

The friction equation
ou
5 =
simulates the dynamics in the sponge layers. For the fricmuation (3.3), AB3 requiresAt < 0.359 to
damp computational modes. Experience has shown that tngeayer stability numbe$,, = At must
be S, < 0.25in funwaveC . If diagnostic outputd) is chosen, the model reports on the sponge laygr
on terminal output.

—Ku, (3.3)

3.5.3 Biharmonic Friction and Stability

Biharmonic friction is included in the model equations teyent nonlinear generation of motions at wave-
lengths less than twice the grid spacing.(the Nyquist wavelength) that are aliased and lead to namiine
instability. Biharmonic friction performs scale seleetidamping iHolland, 1978), dissipating the shortest
scales preferentially, while hopefully not affecting tlaeger scalesI) of interest. Therefore, the bihar-
monic Reynolds number should be large at the scales of sitéRg, = UL3/v > 1), but small at grid
scalesRy,; = U(Ax)3/v < 1 so that sufficient hyper-viscous damping occurs. For eactietitg situa-
tion, stability is obtained by adjusting depending on th&/, L, and Ax. If diagnostic output is selected,
funwaveC outputs the grid Reynolds number and a warning if it is togdag> 15).

A Von-Neumann stability condition is associated with bihanic friction. For the simple equation

ou 0t

ot~ oxt
that is 2nd order discretized and with a Euler forward tinep stonditional stability requires that

VAt 1
< —.

Sbi = (Az)t ~ 8

For the 2-D equation
% = vV
the condition is much more stringeitt,; < 1/128. For AB3 time-stepping the limit appears to be approxi-

mately.Sy; < 0.008.

18

Chapter 4

Model Equations and Numerics

4.1 The Surfzone Circulation Model

A time-dependent Boussinesq wave model similar to FUNWARE. (Chen et al., 1999), which resolves
individual waves and parameterizes wave breaking usingehe1991) orKennedy et al. (2000) scheme,
is used to numerically simulate velocities and sea surfagghhin the surfzone.

The Boussinesq model equations are similar to the nonlistegtow water equations but include higher
order dispersive terms (and in some derivations higherraraelinear terms). Here the equationd\afogu
(1993) are implemented. The equation for mass (or volumegawation is

52 2
m+V-[(h+nu +V- { <E’" - %) hV(V -u) + (2, + h/2)hV[V - (hu)]} (4.1)

wheren is the instantaneous free surface elevatiaa time,/ is the still water depthu is the instantaneous
horizontal velocity at the reference depth= —0.531h. The momentum equation is

w+u-Vu=—gVn+Fg+Fy — (n+h) " — 1, Via (4.2)

whereg is gravity, F; are the higher order dispersive ter$, is the breaking termsy is the instantaneous
bottom stress and,; is the hyperviscosity for the biharmonic frictioR'{u) term. The dispersive terms are
(Nwogu, 1993)

22
F;= ETV(V ‘w) + 2, V(V - (huy). (4.3)

The bottom stress is parameterized with a quadratic drag law

Ty, = cqluju (4.4)

with the non-dimensional drag coefficiefit
Following the method outlined iKennedy et al. (2000), the effect of wave breaking on the momentum
equations is parameterized as a Newtonian damping where

Fie = (h+1)7'V - [te(h + 1) V] (4.5)

where v, is the eddy viscosity associated with the breaking wavese fohm of Newtonian damping
used here differs slightly from that outlined Kennedy et al. (2000) which has the form of1/2)V -
(e (h +n){Vu + (Vu)T}]. The breaking eddy viscosity is given by

Ve = B&?(h +)y (4.6)

19

where B varies between 0 and 1 and depends;pnwhen, is sufficiently large i¢e., the front face of a
steep breaking wavey becomes non-zero. In detail the expression#ds

1777t > 277;:
B=q m/ni —1,m>mnp (4.7)
0777t < 77?

wheren; controls the onset and cessation of breaking and is given by

5 (F) .
; { a")t>T (4.8)

(gh)1/2 B a(I)—F%(a(F)—a(I)),0<t—t0<T*
In the model simulations the parameters usedbare6, ') = 0.4 anda¥) = 0.125 andT™*(g/h)"/? = 3.
These parameter choices are similar to the ones us&@ringdy et al. (2000) to model laboratory breaking
waves (and what about Chen in the field??) and the modeled-shage wave height distributions are not
overly sensitive to these choices.

4.2 The Staggered C-Grid and discretization

(i+1,))
2Ax - ® ° ° ° 'y .

(i+1,j-1) (i) (+1,)
- X S X O X) X < X O T

()
[

y=20 Ay 2Ay 3Ay 4Ay

Figure 4.1: The locations af (e), v (¢), andn (x) on the C-grid. The depth angpoints are colocated. The
solid line represents a boundary to cross-shore flow. Tlativelindexing scheme used is shown.

These model equations are discretized on a staggered QH&ritbw and Welch, 1965) with grid spac-
ing Az andAy (Figure 4.1), and cross- and alongshore model domain &i#esandL(¥). On a C-gridu is
defined a(iAz, jAy) (which includes the shoreline and offshore boundariesyahe: 0,1,..., N®) —1,
andj = 0,1,...,N® — 1, with N®) = LI /Az + 1 and N® = L®)/Ay. The depthy), and tracer

20

g points are defined at the same alongshore locations bst staggered half a cross-shore grid step, that
is at (iAz + 1/2, jAy), wherei = 0,1,...,N® —2andj = 0,1,...,N® — 1. The alongshore ve-
locity v is staggered alongshore and cross-shore fiprand defined atiAz — 1/2, jAy + 1/2) where
i=0,1,...,N® andj = 0,...,N® — 1. The vertical vorticityw = u, — v, is staggered alongshore
from u, and defined atiAx, jAy + 1/2).

There are a total oV (®) N¥) grid points foru andw, (N®) — 1)N'®) grid points forp, (N®) + 1) N®)
grid points forv, h, andg

The following C-grid finite difference operators are defined

5yh = {(b(w + %Am) — bz — %Am)] Az

—T

5 = [(b(ac + %Am) + oz — %Am)]

N =

andV2¢ = (63 + 67)¢.

4.3 Model time-stepping

A third-order Adams-Bashforth (hereafter AB3) time stegpscheme is used fanwaveC . The form of
this is:
n+1 n 1 n n—1 n—2
" ="+ ﬁAt(Z?)ut — 16wy ™" + buy ™ 7).

Durran (1991) shows that the physical mode of the wave equation

ou ou

e = 4.9
o T =0 (4.9)

is damped and that the two computation modes are damped<ad.676, wherep = cAt/Ax, is a CFL

number. Atp < 1, both computation modes are strongly damped and and thefaamin of the physical

mode is

3
A|=1- gpA‘ +0(p%).

In addition to computational modes for both time-steppixhhiques, there are also Von-Neumann stability
limits on the sizes of the CFLL{A¢/Axz) number.

21

Chapter 5

File Structure Overview

22

Chapter 6

Tests and Example .init Files

23

Chapter 7

MATLAB scripts for setup and processing

24

Chapter 8

Bugs

There are surely many and many more to be found.
Please check theEODfile in the mainfunwaveC directory for many other broken things.

25

Bibliography

Chen, Q., R. A. Dalrymple, J. .T Kirby, A. B. Kennedy, M. C. la Boussinesg modeling of a rip current
system.J. Geophys. Res.104, 20,617-20,637, 1999.

Chen, Q., J. T. Kirby, R. A. Dalrymple, F. Shi, and E. B. Thomt Boussinesq modeling of longshore
currents.J. Geophys. Res.108, 3362, doi:10.1029/2002JC001308, 2003.

Durran, D.R., The 3rd-order Adams-Bashforth method - Araative alternative to leapfrog time differenc-
ing. Monthly Weather Rev., 119, 702-720, 1991.

Feddersen, F., Breaking wave induced cross-shore trasperdion in the surfzone: Model results and
scalings.J. Geophys. Res,, in press, 2007.

Harlow, F. and J. Welch, Numerical calculation of time-dwsgent viscous incompressible flow of fluid with
free surfacesPhys. Fluids, 8, 2181-2189, 1965.

Holland, W. R., The stability of ocean currents in eddy-téisg general circulation models]. Phys.
Oceanogr., 8, 363-392, 1978.

Johnson, D., and C. Pattiaratchi, Boussinesq modellingaostent rip currentoastal Eng., 53, 419-439,
2006.

Kennedy, A. B, Q. Chen, J. T. Kirby, and R. A. Dalrymple, Banesq modeling of wave transformation,
breaking and runup. I: One dimensiahWaterway, Port, Coastal and Ocean Eng., 126, 39-47, 2000.

Lynett, P., Nearshore Modeling Using High-Order BousginEguations,). Waterway, Port, Coastal, and
Ocean Engineering, 132, 348-357. 2006.

Noyes, T. J., R. T. Guza, F. Feddersen, S. Elgar, and T. H. fhdfds Comparison of observed shear waves
with numerical simulations]. Geophys. Res., 2005

Nwogu, O., Alternative Form of Boussinesq Equations for idkare Wave Propagatiod. Wtrwy., Port,
Coast., and Oc. Engrg., 119, 618—-638, 1993.

Schaffer H. A., P. A. Madsen, and R. Deigaard, A Boussinesdahfor waves breaking in shallow water,
Coadtal Eng., 20, 185-202, 1993.

Spydell, M., and F. Feddersen, Lagrangian Dispersion irsimézone: Directionally-spread normally inci-
dent waves, submitted tb Phys. Oceangr., 2007.

Wei, G., J. T. Kirby, S. T. Grilli, and R. Subramanya, A fullpmlinear Boussinesq model for surface waves.
I. Highly nonlinear, unsteady waves.Fluid Mech., 294, 71-92, 1995.

26

Wei, G., J. T. Kirby, and A. Sinha, Generation of waves in Binissq models using a source function
method,Coastal Eng., 36, 271-299, 1999.

Zelt, J. A., The run-up of nonbreaking and breaking solitaayes.Coastal Eng., 15, 205-246, 1991.

27

