
funwaveC Users Manual

Falk Feddersen

July 31, 2007

Contents

1 Introduction 3

2 Compiling 4
2.1 Required Libraries 4
2.2 Unpacking, configure, and make 4

2.2.1 Apple Mac G4 Hack .. . 5

3 Running funwaveC 6
3.1 Invoking funwaveC 6
3.2 Init File 6

3.2.1 Example Init File 6
3.3 Init File Input Stuff 8

3.3.1 LINE 1: MODEL DYNAMICS .. 8
3.3.2 LINE 2: GRID SIZE & SPACING 8
3.3.3 LINE 3: BOTTOM STRESS INFORMATION 8
3.3.4 LINE 4: LATERAL FRICTION INFORMATION 8
3.3.5 LINE 5: BATHYMETRY .. 9
3.3.6 LINE 6: WAVEMAKER .. 9
3.3.7 LINE 7: BREAKING .. 11
3.3.8 LINE 8: SPONGE LAYERS .. . 12
3.3.9 LINE 9: FORCING .. 12
3.3.10 LINE 10: INITIAL CONDITIONS 12
3.3.11 LINE 11: TRACER .. . 13
3.3.12 LINE 12: FLOATS 13
3.3.13 MODEL TIMING .. 13
3.3.14 OUTPUT .. 14

3.4 Diagnostic Output 16
3.4.1 GeneralfunwaveC information . 17
3.4.2 Timing Report 17

3.5 Model Stability 17
3.5.1 CFL Stability Criteria 17
3.5.2 Sponge Layer Stability Criterion 18
3.5.3 Biharmonic Friction and Stability 18

1

4 Model Equations and Numerics 19
4.1 The Surfzone Circulation Model 19
4.2 The Staggered C-Grid and discretization 20
4.3 Model time-stepping 21

5 File Structure Overview 22

6 Tests and Example .init Files 23

7 MATLAB scripts for setup and processing 24

8 Bugs 25

2

Chapter 1

Introduction

funwaveC is an implementation in the C programming language of the fully nonlinear boussinesq equations
of (Wei et al., 1995) that also includes the extensions for a wave generation and wave breaking.funwaveC is
essentially a re-implementation of the FUNWAVE model (e.g., Chen et al., 1999;Kennedy et al., 2000)
from the University of Delaware (http://chinacat.udel.edu/...). For my own research projects, I needed
to use a Boussinesq wave model, and the reason why I undertookthis re-implementation is essentially
because FUNWAVE is written in FORTRAN (FORTRAN77 no less!).As a former computer scientist I
cannot abide FORTRAN. For those who do not appreciate the differences in programming langagues and
the practices they enforce, this may seem trivial. However,it makes a world of difference in creating clean,
debuggable, and maintainable code. So I decided to begin with an existing nonlinear shallow water equation
code I had previously developed (used inNoyes et al., 2005) and develop it into a Boussinesq model. After
considering using C++, I choose to write the code in C becauseI was more familiar with it, it allowed me
to code both at high and low levels, and it is highly portable.In the end there are a number of differences
betweenfunwaveC and FUNWAVE particularly in the numerics. However they haveessentially the same
functionality and to show my respects, I choose to name the model funwaveC .

The model has been used now in studies of surfzone tracer (Feddersen, 2007) and drifter (Spydell and
Feddersen, 2007) dispersion and is currently being used in other projects as well. I felt it would be useful
to others to release it publically under the GNU Public License Version 2 (http://gnu.org). The model has
been run in a variety of *NIX environments and in principle should compile and work on Windows as well
(with the Cygwin environment). Please note thatfunwaveC is a work in progress as is this user’s manual.
Neither are complete yet the model is certainly quite useful.

Please let me know if your experience with this model either fills you with joy or makes you cry! If you
have any problems or questions, do not hesitate to ask (falk@coast.ucsd.edu)

3

Chapter 2

Compiling

2.1 Required Libraries

To compile the program, one must first have certain librariesinstalled on the system. In particular, the
glib andgtk libraries must be present with a 1.2 series version number. Theglib library is used to handle
various I/O and memory resource things. Thegtk libarary handles all the GUI window stuff. These libraries
work together and are installed on most GNU/Linux and UNIX systems. They can be installed on OS X
using fink . The source code for the libraries also can be downloaded from www.gtk.org and again both
rpms and source tar balls are available. If you use rpms make sure the appropriate header files are installed.
This may require also installing the development version ofglib.

Installation ofglib andgtk can be checked by typing at a shell prompt:
% glib-config --version

and
% gtk-config --version

If you get a response such as1.2.8 then you are in business. I recommend using version> 1.2.8. Note the
2.0 series of these libraries will not work!

2.2 Unpacking, configure, and make

Once these libraries are installed, To build the program, untar the distributionfunwaveC-0.2.0 directory.
Type the command
% ./configure

and then
make

The program should compile automatically. This has been configured for Linux, Sun, and OS X.
One can do a basic test of the newly compiledfunwaveC by entering thetests directory and typing

make. This hasfunwaveC read in all the.init files in the tests directory, parse them, and quit. It does
not actually do any simulations. For more information on.init files see the next Chapter. For more
information on the test init files see the Tests Chapter.

4

2.2.1 Apple Mac G4 Hack

Note, there is a hack for compiling on Apple Mac G4 sytems withOS X. After runningconfigure , you
need to open the fileMakefile in an editor and add the following to theCFLAGSline: -mcpu=7450 which
tells the compiler to build for a G4 chip not a G5 chip. For example, replace:
CFLAGS = -fast ‘gtk-config --cflags‘
with CFLAGS = -fast -mcpu=7450 ‘gtk-config --cflags‘

I need to figure out how to set this in theconfigure process.

5

Chapter 3

Running funwaveC

3.1 Invoking funwaveC

funwaveC is run on the command line by invoking at the prompt:
% funwaveC test.init

where test.init is the name of the input file. There are a number of command lineoptions that are
available. These are

-h Print out help information on usage and quit
-p Parse the input file to check for errors and quit
-g Opens up a GUI timing window while the model runs
-v Prints out model kinetic and potential energy at each level 1time

-d [1,2,3] Prints out diagnostic information at either a level 1,2, or 3time step
The verbose option tells the model to write out the value of the integrated kinetic and potential energy

at the end of every level1 time (defined later in model timing). This is useful for making sure that the model
isn’t going unstable. The diagnostic option (-d) takes an argument of 1,2, or 3 and reports on the hard-
wired options, the estimated memory usage, the stability parameters, the wavemaker, sponge layers, timing
info, and performs some basic tests (checking total water depth and testing continuity) at the beginning of
the model run and at the end of the intended timing level givenby the argument. Thus-d 3 only gives
diagnostic output at the end of the model run.-d 1 gives diagnostic output at the end of every level1
iteration loop which is useful for diagnosing stability stuff.

3.2 Init File

funwaveC reads in a init file given on the command line. Customarily, this file is given the extension
.init , but this is not required. The init file details how the model is to be configured, from model type,
domain size, the wavemaker properties, to the output that isrequested. In thetests directory, there are
many examples of init files for many different situations. Please see the Chapter on Tests.

3.2.1 Example Init File

The input information is given by the init filename on the command line. Comments are allowed in the
initfile by putting a ’%’ at the start of the comment line. A very basic init file example is:

funwaveC dynamics nwogu

6

dimension 11 10 1 1
bottomstress 0.01
mixing biharmonic0 1
bathymetry flat 1.0
eta_source off
breaking off
sponge off
forcing none 0.0000 const 0.0001
initial_condition none 0 none 0 none 0
tracer off
floats off
timing 80 (min) 5 (min) 10 (sec) 0.01 (sec)
level1 cross U 0 file ascii Ucross.dat
level1 cross V 0 file ascii Vcross.dat
level1 cross N 0 file ascii eta_cross.dat

which used Nwogu Boussinesq wave dynamics (line 1), sets up a11 by 10 grid with 1 m grid spacing
(line 2). The bathymetry is flat with depth of 1 m (line 5), and there is no wave generation (line 6), wave
breaking (line 7), or sponge layers (line 8) active in the run. There is an alongshore (y) forcing (e.g., due
to a wind stress) of0.0001 m/s2 (line 9) and a drag coefficient (line 3) ofcd = 0.01. The initial condition
(line 10) for u, v, andη are zero. Tracers (line 11) and floats (line 12) are not included in this run. The
model is to run for 80 minutes in 3 nested loops of 10 sec, 5 min,and finally 80 min (line 13). The time step
dt = 0.01 sec (line 13). Lines 14-16 describe the output that the modelis to write. There is a wide variety
of possible model outputs. Here, the init file tells the modelto output the cross-shore array at alongshore
location 0 ofu, v, andη as ascii files with the given file names.

This example just gives a very small indication of the possibilities of the init file. The full form of the
init file, not including output (we’ll come to that later) is (quantities in [] denote the various options)

funwaveC dynamics [linear,peregrine,nwogu,wei_kirby]
dimension nx ny dx dy
bottomstress c_d
mixing [none,newtonian0,biharmonic0] nu
bathymetry [flat,planar,file1d,file2d] ...

flat => bathymetry flat depth
planar => bathymetry planar depth0 slope
file1d => bathymetry file1d filename
file2d => bathymetry file2d filename

eta_source [on,off] [monochromatic,random1nb,random1f ile,random2nb,random2filea,random2fileb]
monochromatic => eta_source on monochromatic H f theta i_wa vemaker [delta]
random1nb => eta_source on random1nb Hsig fp fwidth fnum the ta i_wavemaker [delta]
random1file => eta_source on random1file spectra_file i_w avemaker [delta]
random2nb => eta_source on random2nb Hsig fp fwidth fnum the ta spread i_wavemaker [delta]
random2filea => eta_source on random2filea spectra_file i _wavemaker [delta]
random2fileb => eta_source on random2fileb spectra_file i _wavemaker [delta]

breaking [on,off] [zelt, kennedy,falk] [smooth,nosmooth]
zelt => breaking on zelt [smooth,nosmooth] [delta_b cI]
kennedy => breaking on kennedy [smooth,nosmooth] [delta_b cI cF Tstar] defaults= [1.2
falk => breaking on falk [smooth,nosmooth] [delta_b cI]

sponge [on,off] num_x0 num_xL c_sponge
forcing [none,const,file1d,file2d] (Fx,filename) [none ,const,file1d,file2d] (Fy,filename)

7

initial_conditon [none,file1d,file2d] U_value [none,co nst,file1d,file2d] V_value [none,const,file1d,file2d]
tracer [on,off] [pointsource,alonglinesource] ix iy qsrc kappa start_time end_time
floats [on,off] [random,file,point] ...

random => floats on random N (N = number of floats)
filefloats => floats on file filename

timing level3_time (units) level2_time (units) level1_ti me (units) dt (units)
level3_time = total run time, level2_time = loop2 run time
level1_time = loop1 run time, dt = time step
units = [hr,min,sec]

Note that this information is given by the model with the helpflag (-h). These quantities are now
described one by one.

3.3 Init File Input Stuff

3.3.1 LINE 1: MODEL DYNAMICS

The model dynamics are given by the first line of the init file which should look like
funwaveC dynamics [wei kirby,nwogu,peregrine,nswe,linear]

where the options in [] define chosen the model dynamics.

3.3.2 LINE 2: GRID SIZE & SPACING

The grid sizes are given by the first line of the init file as
dimension <nx> <ny> <dx> <dy>

Note thatny must be≥ 6. The units ofdx anddy are meters. For a run with a x and y domains of 1000 m
by 450 m and 5 meter grid spacing the line would read the line would be:
dimension 201 90 5 5

3.3.3 LINE 3: BOTTOM STRESS INFORMATION

bottomstress cd

The drag coefficientcd is nondimensional and is typicallyO(10−3). What this does is add a quadratic
bottom stress term of

−cd|u|(u, v)/d

(whered is the instantaneous depth) to the momentum equations.

3.3.4 LINE 4: LATERAL FRICTION INFORMATION

mixing [none,newtonian0,biharmonic0] nu

The lateral friction can be eithernone , newtonian0 or biharmonic0 . nu is the lateral viscoscity or
hyperviscosity depending on the lateral friction chosen. What this does is adds a term to the right-hand-side
of the momentum equation a term either (foru)

+ν∇2u, −ν∇4u

for newtonian or biharmonic fruction respectively.

8

Choosing the hyperviscosity for biharmonic friction: There are subtelties to choosing theν for bihar-
monic friction... More later.

3.3.5 LINE 5: BATHYMETRY

The fifth line loads the bathymetry. The format is

bathymetry [flat, planar, file1d, file2d] [h0, (slope h0), filename, filename]

The options for each are where<format> is eitherflat , planar , file1d , or file2d .

• flat : If flat , the bathymetry is assumed constant everywhere and is given(in meters) byh0.

• planar : When the format is:
bathymetry planar slope h0 the bathymetry is planar with constant slope in x that is given by
slope and depth atx = 0 of h0 (in meters).

• file1d: If the format isbathymetry file1d filename The alongshore uniform bathymetry if
loaded from the filefilename which is an ascii file of a single vector of lengthnx-1 . does not allow
for alongshore inhomogeneous bathymetry.

• file2d : If the format is
bathymetry file2d filename

the 2D bathymetry i sloaded up from the filefilename which is an ascii file and a two-d array of
length[nx-1,ny] .

3.3.6 LINE 6: WAVEMAKER

The 6th line sets the wavemaker stuff, which can be complicated. The line begins with,

eta source [on,off] [monochromatic, random1..., random2...] ...

The 2nd option sets the wavemaker to be on or off. If set to off then the rest of the line is ignored.

Monochromatic There are three essential type of wave options,monochromatic which is single fre-
quency and single direction waves, essentially the spectrum is a delta function in frquency and direction,
i.e., E(f, θ) = E0δ(f − f0)δ(θ − θ0).

eta source on monochromatic H f theta i wavemaker [delta]

where H is the wave height in meters,f is the frequency in Hz,theta is the wave angle in degrees,
i wavemaker is the grid location in x where the wavemaker is centered. There is an optional parame-
ter delta regarding the relative width of the wavemaker region.delta defaults to zero. See the funwave
manual for more info.

9

Random1 There is an option for narrow-banded random waves calledrandom1nb . This parameter looks
like

eta source on random1nb Hsig fp fwidth fnum theta i wavemaker [delta]

Many of these options are similar to monochromatic. There isnow the addition offwidth - the width of
the spectral peak in Hz, and fnum - the integer number of discrete frequencies that make up the peak. This
should be odd.

The random1file option is for waves random in frequency but each frequency can have it’s own
direction, so thatE(f, θ) = E(f)δ(θ − θ0(f)). The form is

eta source on random1file spectra file i wavemaker [delta]

where thespectra file has 3 columns

f (Hz) a(f) (m), theta (deg)

wherea(f) is the fourier amplitude at that frequency (not the spectra!).

Random2: There are three options for random directionally spread waves (random2). The firstrandom2nb

is narrow-banded in frequency and direction and is similar to therandom1nb option above:

eta source on random1nb Hsig fp fwidth fnum theta spread i wavemaker [delta]

wherespread is the directional spread in degrees.
The second optionsrandom2filea is similar torandom1file in that a directional spread is specified

at each frequency The form is

eta source on random2filea spectra file i wavemaker [delta]

where thespectra file has 4 columns

f (Hz) a(f) (m), theta (deg) spread (deg)

wherea(f) is the fourier amplitude at that frequency (not the spectra!). This is only tested at a rudimentary
level...

The third option (random2fileb) specifies the full frequency-directional sprectra. The form of this is
similar,

eta source on random2fileb spectra file i wavemaker [delta]

but thespectra file now is different it looks like rows ofθ and columns of frequencyf ,
−1 θ1 θ2 ...
f1 a11 a12 ...
f2 a21 a22 ...

whereaij are the fourier amplitudes at each frequency and direction.

Potential Bug: There may be problems in my conversion fromθ to ky of the directional spectra. In a
continum

∫

D(θ)dθ = 1 =

∫

D(ky)dky/ cos(sin−1 ky)

could i be messing this up?

10

3.3.7 LINE 7: BREAKING

The 7th line sets the wave-breaking parameters. Breaking issimulated by using a eddy viscosity on the front
face of sufficiently steep waves. Breaking parameters are specified by:

breaking [on,off] [zelt,kennedy] [smooth,nosmooth]

If breaking is set to beoff then the eddy viscosity always zero. If breaking ison then there are two types of
breaking options,zelt (Zelt, 1991) and the more complicatedkennedy (Kennedy et al., 2000) breaking.
In addition, one must also specify whether a smoothed or a non-smoothed eddy viscosity is desired. The
eddy viscosity is smoothed on a 3 by 3 grid.

Zelt (1991)

breaking on zelt [smooth,nosmooth] [delta b cI]

where the defaults are [1.2 0.3].

Kennedy et al. (2000)

breaking on kennedy [smooth,nosmooth] [delta b cI cF cT]

c where the 4 parameters control breaking. If not all the parameters are given then the defaults of[1.2

0.65 0.15 5] are used.

Falk breaking

breaking on falk [smooth,nosmooth] [delta b cI]

where the defaults are [1.2 0.3]. This is NOT YET TESTED. USE AT YOUR OWN RISK!

Breaking Eddy Viscosity Definition The breaking eddy viscosity is defined as

νbr = δ2
bB(t)(h + η)ηt (3.1)

whereδb andB are non-dimensional. The parametersδb sets the overall magnitude of the eddy viscosity.
The parameterB is defined so that

B =







1, ηt > 2η∗t
ηt/η

∗

t − 1, ηt > η∗t
0, ηt < η∗t

(3.2)

Whereη∗t is the critical free-surface elevation time-derivative which turns on wave-breaking. This is defined
as....

The falk breaking method is slightly different. If at any pointB (as Zelt) becomes non-zero, then it
stays non-zero further offshore untilηt < 0. This is intended to better mimic the fact that white water of
breaking waves always stretches up until the top of the wave.We need to see how this works.

11

3.3.8 LINE 8: SPONGE LAYERS

The next line defines the sponge layer:

sponge [on,off] num x0 num xL c sponge

The 2nd parameter sets the onshore and offshore sponge layers as either on or off. The 3rd and 4th pa-
rameters (num x0 andnum xL) set the number of grid points (U grid points?) on the onshoreand offshore
boundary where the spong layer is active. The 5th parameter (c sponge) is the maximum linear drag coef-
ficient for the sponge layer. Experience has shown thatc sponge * dt < 0.25 for the model to be stable.
If the -d X flag is turned on then the sponge layer stability is tested.

3.3.9 LINE 9: FORCING

The nth line sets the cross-shore and alongshore forcing. The format is

forcing [none,const,file1d,file2d] (Fx,forcing file)

[none,const,file1d,file2d] (Fy,forcing file)

wherenone means there is no (x or y) forcing. The parameterconst implies that there is constant x or y
forcing and the subsequent parameter (Fx or Fy) is the forcing value in units...?? (eitherms−2 or m2s−2 -
need to check).

With parameterfile1d , the forcing is given by a cross-shore array in filenameforcing file . Simi-
larly, with parameterfile2d , the forcing is given by a two-dimensional array in filenameforcing file .
The size of the 1D and 2D arrays must be correct given the domain size. If not there will be an error mes-
sage. Along rows correspond to constant cross-shore location, and down columns correspond to the same
alongshore location.

3.3.10 LINE 10: INITIAL CONDITIONS

The next line load theu, v, andη initial conditions respectively. The format is identical to that for the forcing

initial condition [none,const,file1d,file2d] Uic [none,const,f ile1d,file2d]

Vic [none,const,file1d,file2d] ETAic

where the first pair is theu initial condition and subsequent pairs are forv andη, respectively.

• none : With the choice ofnone , the initial condition foru, v, or η is zero.

• const : With the choice ofconst then the initial condition is constant throughout the domain and
is given by the numerical value inUic , etc.

• file1d : With the choice offile1d the ic is a cross-shore array (uniform iny) of ascii numbers in
the filenameUic , Vic , ETAic . The array sizes areNX, NX+1, NX-1 for u, v, andη, respectively.
The boundary conditions that the model uses must already be set up in these initial conditions. This is
also rather kludgy but makes things simpler right now. If youdon’t understand theu andv boundary
conditions consult the other documentation.

• file2d : With this choice the a 2-D initial condition field given in the filename is specified.

12

3.3.11 LINE 11: TRACER

tracer [on,off] [pointsource, alonglinesource] <ix> <iy> <qsrc> <kappa> <half life>

<start time> <end time>

where<qsrc> is the flux source in units ...,<kappa> is the lateral diffusivity in MKS, and<half life>

is the tracer half life in seconds.<start time> (in sec) indicates when the tracer release is to begin and
<end time> when it is to end. If these two parameters are missing then tracer release is assumed to begin
at the start of the run and continue until the end.

3.3.12 LINE 12: FLOATS

The next line controls the floats or drifters used in the model. The line format is,

floats [on,off] [random,file,point] ...

where the options arerandom positioning or positions input from a file.

Random Float Positioning: For random float positioning choose

floats on random N (time)

whereN is the number of floats. Optionally you can also specify a floatrelease time (implemented yet?)

Floats Position Input File:

floats on file filename

wherefilename is the float input file. It has a format of columns of

x y (release time (recovery time))

wherex andy are the release locations in meters and there is an optionalrelease time andrecovery time

(in seconds). If therelease time is not given then it is assumed to be at the intial time (t = 0), and the
drifters are never recovered. If therelease time is given but without arecovery time , then the drifters
are never recovered. Obviously there can be no recovery without a specific release time.

Point Drifter Release: Still need to implement this.

3.3.13 MODEL TIMING

The 13th line, controls the timing of the program including total run time and the time stepdt. Before
explaining the format, let me explain a little about howfunwaveC runs. The heart of the integration code
takes place within three for loops which look like

for (i=0 to [loop3])
for (j=0 to [loop2])

for (k=0 to [loop1])
time_step_model();
time=time+dt

13

The user has control of how much run time is spent within each loop. This is convenient when one wants
to specify the output that the model is to write. Output is covered in the next section. The timing control
line contains eight pieces, which must all be present. The format is
timing <total time> (<units>) <loop2 time> (<units>) <loop1 time> (<units>) <dt>

(<units>) The four times can be floating point numbers and their meanings are summarized below

• total time is the total time the model is to integrate for in the specifiedunits.

• loop2 time is the time spent in loop2 (i.e.for (j=0 ...

• loop1 time is the time spent in loop1 (i.e.for (k=0 ...

• dt is the time step size of the model.

The are four possible choices for the units:(day), (hr), (min), (sec) . Different times can have
different units.

Because the four different times control the number of iterations in the three loops (above), the four run
times must be integer divisible, that is,
total time/loop2 time

loop2 time/loop1 time

loop1 time/dt

must all be perfect integers (in common units of course). If not the model returns with an error message.
Note also thatloop2 time can equalloop1 time andtotal time can equalloop2 time . This means
that one iteration of a loop occurs.

Here is an example of a timing line. Suppose one wants to run the model for a total of 24 hours, with
time step of 10 sec, and loop1 time of 30 min and loop2 time of 2 hours (note these values are all integer
divisible), then the timing line in the init file would look like:
1 (day) 2 (hr) 30 (min) 10 (sec)

3.3.14 OUTPUT

There are a number of functions which output the model data and are contained in the fileoutput.h . There
are three options for output, (1) at the end of loop 1 - called level 1 output, (2) at the end of loop 2 - called
level 2 output, or (3) at the end of the model run - called level3 output. This allows for a wide range of
output options at various time intervals. The line format inthe init file is the same for all three cases and
looks like
<level[123]> arg1 arg2 arg3 arg4 arg5

where<level[123]> is the string “level1”, “level2”, or “level3”. There can be as many output commands
of this sort as desired (provisionally). Following we describe the detail of each level command.

There are six different output types for anylevel[123] output: (1)point , (2) along - alongshore
line, (3) cross - cross-shore line, (4)snapshot (2D map), (5)avgsnapshot , and (6)floats - docu-
mented later. Any ofu, v , eta , vorticity (vort), breaking eddy viscosity (eddy), tracer , and cross-shore
(taubx) & alongshore (tauby) bottom stresses can be chosen as output variables for most output types.
Note that output parameters (except for filenames) are not case-sensitive. This means thateddy andEDDY

are treated the same.

14

Point Output: Point output is restricted to only variablesu, v , eta , andtracer . This can be changed if
needed and is a relic of older code. For point output the format is:
level1 point [U,V,P,T] x-loc y-loc [file,term] [ascii,bin ary] filename

The parametersx-loc and y-loc are the index locations for the point output. The last two options
[ascii,binary] filename are only given iffile option is chosen. Thefile option sends output
to the specified filename in eitherascii or binary format. Theterm output sends output to the terminal
(ie., stdout).

For example to outputU at index location 5,5 every level1 time step to the fileufile.dat use the
command:
level1 point U 5 5 file ascii ufile.dat

Note that the index locations cannot be out of bounds, i.e.0 ≤ y-loc < NY and0 ≤ x-loc < NX (for
U, NX+1 for V, NX-1 for P). An error message is given if the indicies are out of bounds. (this is not yet
implemented!!!)

Cross and Along Output: Similar to point output, the model can output a cross-shore and/or along-
shore array at each output level time. The format is similar to point output,level1 cross var y-loc

[file,term] [ascii,binary] filename

andlevel1 along var x-loc [file,term] [ascii,binary] filenam e

wherey-loc

Snapshot Output snapshot outputs the entire 2D grid of variable at the requested (level123) time interval.
The variable can be eta, U, V, vorticity, eddy viscosity (eddy) or tracer. The format similar is<level123>

snapshot var [file,term] [ascii,binary,fCbinary] filena me base

In addition to ascii and binary format, there is an additional output format called fCbinary. This output
format is useful for data that will be read into MATLAB. Thereis a functionload fCbinary file.m in
thematlab directory that reads in these data files. Note that binary andfCbinary are machine architecture
dependent so, fCbinary files cannot be transfered from a G5 toa Intel system and still be useful. There is
a separate output file for each level123 time step. The filenames are based on thefilename base and
are namedfilename base snap lX NNNN.dat or with extension.fCdat for fCbinary output. The
X denotes the level (1,2, or 3) and NNNN is the level123 timestep. Here is an example
level2 snapshot eta file fCbinary eta

This commands writes the value of eta at each level2 time step. The sequency of files are calledeta snap l2 0000.dat,
eta snap l2 0001.dat, eta snap l2 0002.dat,...

Average Snapshot Output This is very similar to snapshot output, only that an averageof the 2D field is
output. The format is<level123> avgsnapshot var [file,term] [ascii,binary,fC binary]

filename base

The averaging is done at every lower level time step. Thus if level2 is selected, the averaging is done over
every level1 time step. If level1 is selected, I think the averaging is done every dt. Not sure. The output
filenames are similar to snapshotfilename base avgsnap lX NNNN.dat

Float Position Output: Float positions can be output at anylevel[123] . The format for this is

level1 floats [term,file] ...

15

If the terminal options (term) is chosen then float positions are written to the terminal (stderr). If file
output (file) is chosen then there options include

level1 floats file [ascii,binary] filename

Right now only ascii output is well developed. The format of the output file is:

time float id release time x y u v

wheretime andrelease time are in seconds,float id is in the float number 1...N,x andy are the float
locations in meters, andu andv are the cross-shore and alongshore float velocities in m/s. At each time, all
the active floats are output. An example of the float output is (for three floats)

66.02 0001 0.0 50.5 5 -1.49 0
66.02 0002 0.0 59.6 5 0.00737 0
66.02 0003 0.0 68.1 5 0.0642 0
66.52 0001 0.0 49.8 5 -1.18 0
66.52 0002 0.0 59.6 5 -0.0391 0
66.52 0003 0.0 68.1 5 0.0971 0

3.4 Diagnostic Output

RunningfunwaveC with diagnostic output (e.g., -d 2) outputs on the terminal (stderr) information on the
model run. For example running the model onfCangle.init in thetests directory with the command:
% ../funwaveC -v -d 2 fCangle.init
gives the following output

******* funwaveC 0.1.10 *******************
funwaveC: reading in init file: fCangle.init

* Nonlinear Nwogu Boussinesq Dynamics

field2D: number allocated =65, Memory requirements: 19.87 2 Megabytes
------------- * Timing Report * --------------
Total Run Time = 80 (s) dt = 0.005 (s)
Level1 Run Time = 1 (s) Level2 Run Time= 4 (s)
Level3 # = 20 Level2 # = 4 Level1 # = 200
Default time units are (sec)

----------- * Stability Report * ---
Max U = 0 (m/s), dt=0.005 (sec), dx=1 (m) Lx=400 (m) Ly=100 (m)
cd=-0.01, nu_bi=-1 (mˆ4/s), nu_newt=0 (mˆ2/s), min h=1 (m)
CFL_UV-x # = 0 , CFL_UV-y # = 0 :CFL UV number OK
CFL_WAVEx # = 0.0156605 , CFL_WAVEy # = 0.0156605 :CFL WAVE nu mber OK

* Min depth (h+eta) = 1 (m), Max depth (h) = 1
Mass conservation: \int \eta dx dy = 0 (mˆ3)

---------Lateral Mixing Stability Report -------------- --------
Using Biharmonic Friction: Sbi_x # = 0.005 , Sbi_y # = 0.005 : B iharmonic Friction OK
Grid Reynolds Number: R_bi-x # = 0 , R_bi-y # = 0 : Biharmonic Gr id Re OK
Domain Scale Biharmonic Re # = 0

Botom Friction Stability: Su # = 0 : Bottom friction OK

16

Sponge Rayleigh Friction (x0,xL) # = (0.0449809 , 0.0449809)

--- ----------
----------- Eta Source Function Report: MONOCHROMATIC Wav es -----------------
H = 0.01 (m), freq = 0.20 (Hz), Lwave = 15.2 (m) theta = 17.745 (d eg)
h0 = 1.000 (m), kh_0 = 0.41, a/h = 0.01, Ur=0.03, LY/ly=2 , k_y = 0.12566 (rad/m)
i_src = 200, i_width =9, x_src = 200.5 (m), x_width = 9.0 (m), d elta=1.0
--- ----------------------
------------- * Passive Tracer Report * --------------------------
Passive Tracer: module not used in this run
--- ---------------
------------- * Floats Report * --------------------------
Floats: module not used in this run
--- ---------------

Time (units) Total KE (mˆ3/sˆ2) Total PE (mˆ3/sˆ2)
0.005 (sec) 0 1.36e-06
0.010 (sec) 1.32e-10 5.43e-06

3.4.1 GeneralfunwaveC information

The first few lines of diagnostic output are,

******* funwaveC 0.1.10 *******************
funwaveC: reading in init file: fCangle.init

* Nonlinear Nwogu Boussinesq Dynamics

field2D: number allocated =65, Memory requirements: 19.87 2 Megabytes

Line 1 gives the model version number, Line 2 gives the.init file being read in. Line 3, reports on the
model dynamics that were requested in the.init file and are being used. The 4th line, basically reports
on the estimated memory requirements of the model. This is useful so that you can be sure that you are not
running a simulation that uses more memory than your system has. The listed memory requirements are an
estimate only and are probably slightly low.

3.4.2 Timing Report

------------- * Timing Report * --------------
Total Run Time = 80 (s) dt = 0.005 (s)
Level1 Run Time = 1 (s) Level2 Run Time= 4 (s)
Level3 # = 20 Level2 # = 4 Level1 # = 200
Default time units are (sec)

3.5 Model Stability

3.5.1 CFL Stability Criteria

There are two CFL stability criteria, wave and advective CFLnumbers. The wave stability number can be
approximated bycmax∆t/∆x wherecmax =

√
ghmax, ie., the shallow water maximum phase speed. The

17

advective stability number is given by|u|max∆t/∆x where|u|max is the maximum instantaneous horizontal
velocity vector. Both of these number must be less than 0.2 ideally. If diagnostic output is requested, this
value is checked and a warning is given if either number is toobig.

3.5.2 Sponge Layer Stability Criterion

The friction equation
∂u

∂t
= −κu, (3.3)

simulates the dynamics in the sponge layers. For the friction equation (3.3), AB3 requiresκ∆t < 0.359 to
damp computational modes. Experience has shown that the sponge layer stability numberSsp = µ∆t must
beSsp < 0.25 in funwaveC . If diagnostic output (-d) is chosen, the model reports on the sponge layerSsp

on terminal output.

3.5.3 Biharmonic Friction and Stability

Biharmonic friction is included in the model equations to prevent nonlinear generation of motions at wave-
lengths less than twice the grid spacing (i.e., the Nyquist wavelength) that are aliased and lead to nonlinear
instability. Biharmonic friction performs scale selective damping (Holland, 1978), dissipating the shortest
scales preferentially, while hopefully not affecting the larger scales (L) of interest. Therefore, the bihar-
monic Reynolds number should be large at the scales of interest (Rbi = UL3/ν ≫ 1), but small at grid
scalesRbi = U(∆x)3/ν ≪ 1 so that sufficient hyper-viscous damping occurs. For each modeling situa-
tion, stability is obtained by adjustingν depending on theU , L, and∆x. If diagnostic output is selected,
funwaveC outputs the grid Reynolds number and a warning if it is too large (> 15).

A Von-Neumann stability condition is associated with biharmonic friction. For the simple equation

∂u

∂t
= −ν

∂4u

∂x4

that is 2nd order discretized and with a Euler forward time step, conditional stability requires that

Sbi =
ν∆t

(∆x)4
<

1

8
.

For the 2-D equation
∂u

∂t
= −ν∇4u

the condition is much more stringent,Sbi < 1/128. For AB3 time-stepping the limit appears to be approxi-
matelySbi < 0.008.

18

Chapter 4

Model Equations and Numerics

4.1 The Surfzone Circulation Model

A time-dependent Boussinesq wave model similar to FUNWAVE (e.g., Chen et al., 1999), which resolves
individual waves and parameterizes wave breaking using theZelt (1991) orKennedy et al. (2000) scheme,
is used to numerically simulate velocities and sea surface height in the surfzone.

The Boussinesq model equations are similar to the nonlinearshallow water equations but include higher
order dispersive terms (and in some derivations higher order nonlinear terms). Here the equations ofNwogu
(1993) are implemented. The equation for mass (or volume) conservation is

ηt + ∇ · [(h + η)u] + ∇ ·
{(

z2
r

2
− h2

6

)

h∇(∇ · u) + (zr + h/2)h∇[∇ · (hu)]

}

(4.1)

whereη is the instantaneous free surface elevation,t is time,h is the still water depth,u is the instantaneous
horizontal velocity at the reference depthzr = −0.531h. The momentum equation is

ut + u · ∇u = −g∇η + Fd + Fbr − (η + h)−1τb − νbi∇4
u (4.2)

whereg is gravity,Fd are the higher order dispersive terms,Fbr is the breaking terms,τb is the instantaneous
bottom stress andνbi is the hyperviscosity for the biharmonic friction (∇4

u) term. The dispersive terms are
(Nwogu, 1993)

Fd =
z2
r

2
∇(∇ · ut) + zr∇(∇ · (hut). (4.3)

The bottom stress is parameterized with a quadratic drag law

τb = cd|u|u (4.4)

with the non-dimensional drag coefficientcd.
Following the method outlined inKennedy et al. (2000), the effect of wave breaking on the momentum

equations is parameterized as a Newtonian damping where

Fbr = (h + η)−1∇ · [νbr(h + η)∇u] (4.5)

whereνbr is the eddy viscosity associated with the breaking waves. The form of Newtonian damping
used here differs slightly from that outlined inKennedy et al. (2000) which has the form of(1/2)∇ ·
[

νbr(h + η){∇u + (∇u)T }
]

. The breaking eddy viscosity is given by

νbr = Bδ2(h + η)ηt (4.6)

19

whereB varies between 0 and 1 and depends onηt - whenηt is sufficiently large (i.e., the front face of a
steep breaking wave)B becomes non-zero. In detail the expression forB is

B =







1, ηt > 2η∗t
ηt/η

∗

t − 1, ηt > η∗t
0, ηt < η∗t

(4.7)

whereη∗t controls the onset and cessation of breaking and is given by

η∗t
(gh)1/2

=

{

a(F), t > T ∗

a(I) + t−t0
T ∗

(a(F) − a(I)), 0 < t − t0 < T ∗
(4.8)

In the model simulations the parameters used areδ = 6, a(I) = 0.4 anda(F) = 0.125 andT ∗(g/h)1/2 = 3.
These parameter choices are similar to the ones used byKennedy et al. (2000) to model laboratory breaking
waves (and what about Chen in the field??) and the modeled cross-shore wave height distributions are not
overly sensitive to these choices.

4.2 The Staggered C-Grid and discretization

(i,j)

(i,j)

(i+1,j)

(i+1,j)(i+1,j−1)

y = 0 ∆y 2∆y 3∆y 4∆y

x = 0

∆x

2∆x

Figure 4.1: The locations ofu (•), v (⋄), andη (×) on the C-grid. The depth andη points are colocated. The
solid line represents a boundary to cross-shore flow. The relative indexing scheme used is shown.

These model equations are discretized on a staggered C-Grid(Harlow and Welch, 1965) with grid spac-
ing ∆x and∆y (Figure 4.1), and cross- and alongshore model domain sizesL(x) andL(y). On a C-gridu is
defined at(i∆x, j∆y) (which includes the shoreline and offshore boundaries) where i = 0, 1, . . . , N (x)−1,
andj = 0, 1, . . . , N (y) − 1, with N (x) = L(x)/∆x + 1 andN (y) = L(y)/∆y. The depth,η, and tracer

20

q points are defined at the same alongshore locations asu, but staggered half a cross-shore grid step, that
is at (i∆x + 1/2, j∆y), wherei = 0, 1, . . . , N (x) − 2 andj = 0, 1, . . . , N (y) − 1. The alongshore ve-
locity v is staggered alongshore and cross-shore fromu, and defined at(i∆x − 1/2, j∆y + 1/2) where
i = 0, 1, . . . , N (x) andj = 0, . . . , N (y) − 1. The vertical vorticityω = ux − vy is staggered alongshore
from u, and defined at(i∆x, j∆y + 1/2).

There are a total ofN (x)N (y) grid points foru andω, (N (x) − 1)N (y) grid points forη, (N (x) +1)N (y)

grid points forv, h, andq
The following C-grid finite difference operators are defined:

δxφ =

[

φ(x +
1

2
∆x) − φ(x − 1

2
∆x)

]

/∆x

φ
x

=
1

2

[

φ(x +
1

2
∆x) + φ(x − 1

2
∆x)

]

and∇2φ = (δ2
x + δ2

y)φ.

4.3 Model time-stepping

A third-order Adams-Bashforth (hereafter AB3) time stepping scheme is used infunwaveC . The form of
this is:

un+1 = un +
1

12
∆t(23un

t − 16un−1
t + 5un−2

t).

Durran (1991) shows that the physical mode of the wave equation

∂u

∂t
+ c

∂u

∂x
= 0 (4.9)

is damped and that the two computation modes are damped atp < 0.676, wherep = c∆t/∆x, is a CFL
number. Atp ≪ 1, both computation modes are strongly damped and and the amplification of the physical
mode is

|λ1| = 1 − 3

8
p4 + O(p6).

In addition to computational modes for both time-stepping techniques, there are also Von-Neumann stability
limits on the sizes of the CFL (U∆t/∆x) number.

21

Chapter 5

File Structure Overview

22

Chapter 6

Tests and Example .init Files

23

Chapter 7

MATLAB scripts for setup and processing

24

Chapter 8

Bugs

There are surely many and many more to be found.
Please check theTODOfile in the mainfunwaveC directory for many other broken things.

25

Bibliography

Chen, Q., R. A. Dalrymple, J. .T Kirby, A. B. Kennedy, M. C. Haller, Boussinesq modeling of a rip current
system.J. Geophys. Res.104, 20,617–20,637, 1999.

Chen, Q., J. T. Kirby, R. A. Dalrymple, F. Shi, and E. B. Thornton, Boussinesq modeling of longshore
currents.J. Geophys. Res.108, 3362, doi:10.1029/2002JC001308, 2003.

Durran, D.R., The 3rd-order Adams-Bashforth method - An attractive alternative to leapfrog time differenc-
ing. Monthly Weather Rev., 119, 702-720, 1991.

Feddersen, F., Breaking wave induced cross-shore tracer dispersion in the surfzone: Model results and
scalings.J. Geophys. Res., in press, 2007.

Harlow, F. and J. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with
free surfaces,Phys. Fluids, 8, 2181–2189, 1965.

Holland, W. R., The stability of ocean currents in eddy-resolving general circulation models,J. Phys.
Oceanogr., 8, 363-392, 1978.

Johnson, D., and C. Pattiaratchi, Boussinesq modelling of transient rip currents,Coastal Eng., 53, 419–439,
2006.

Kennedy, A. B, Q. Chen, J. T. Kirby, and R. A. Dalrymple, Boussinesq modeling of wave transformation,
breaking and runup. I: One dimension.J. Waterway, Port, Coastal and Ocean Eng., 126, 39–47, 2000.

Lynett, P., Nearshore Modeling Using High-Order Boussinesq Equations,J. Waterway, Port, Coastal, and
Ocean Engineering, 132, 348–357. 2006.

Noyes, T. J., R. T. Guza, F. Feddersen, S. Elgar, and T. H. C. Herbers, Comparison of observed shear waves
with numerical simulations.J. Geophys. Res., 2005

Nwogu, O., Alternative Form of Boussinesq Equations for Nearshore Wave Propagation.J. Wtrwy., Port,
Coast., and Oc. Engrg., 119, 618–638, 1993.

Schäffer H. A., P. A. Madsen, and R. Deigaard, A Boussinesq model for waves breaking in shallow water,
Coastal Eng., 20, 185–202, 1993.

Spydell, M., and F. Feddersen, Lagrangian Dispersion in theSurfzone: Directionally-spread normally inci-
dent waves, submitted toJ. Phys. Oceangr., 2007.

Wei, G., J. T. Kirby, S. T. Grilli, and R. Subramanya, A fully nonlinear Boussinesq model for surface waves.
I. Highly nonlinear, unsteady waves.J. Fluid Mech., 294, 71–92, 1995.

26

Wei, G., J. T. Kirby, and A. Sinha, Generation of waves in Boussinesq models using a source function
method,Coastal Eng., 36, 271–299, 1999.

Zelt, J. A., The run-up of nonbreaking and breaking solitarywaves.Coastal Eng., 15, 205–246, 1991.

27

